910
.venv/lib/python3.9/site-packages/numpy/LICENSE.txt
Normal file
910
.venv/lib/python3.9/site-packages/numpy/LICENSE.txt
Normal file
@@ -0,0 +1,910 @@
|
||||
Copyright (c) 2005-2021, NumPy Developers.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of the NumPy Developers nor the names of any
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
----
|
||||
|
||||
This binary distribution of NumPy also bundles the following software:
|
||||
|
||||
|
||||
Name: OpenBLAS
|
||||
Files: .libs/libopenb*.so
|
||||
Description: bundled as a dynamically linked library
|
||||
Availability: https://github.com/xianyi/OpenBLAS/
|
||||
License: 3-clause BSD
|
||||
Copyright (c) 2011-2014, The OpenBLAS Project
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
3. Neither the name of the OpenBLAS project nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Name: LAPACK
|
||||
Files: .libs/libopenb*.so
|
||||
Description: bundled in OpenBLAS
|
||||
Availability: https://github.com/xianyi/OpenBLAS/
|
||||
License 3-clause BSD
|
||||
Copyright (c) 1992-2013 The University of Tennessee and The University
|
||||
of Tennessee Research Foundation. All rights
|
||||
reserved.
|
||||
Copyright (c) 2000-2013 The University of California Berkeley. All
|
||||
rights reserved.
|
||||
Copyright (c) 2006-2013 The University of Colorado Denver. All rights
|
||||
reserved.
|
||||
|
||||
$COPYRIGHT$
|
||||
|
||||
Additional copyrights may follow
|
||||
|
||||
$HEADER$
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer listed
|
||||
in this license in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
- Neither the name of the copyright holders nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
The copyright holders provide no reassurances that the source code
|
||||
provided does not infringe any patent, copyright, or any other
|
||||
intellectual property rights of third parties. The copyright holders
|
||||
disclaim any liability to any recipient for claims brought against
|
||||
recipient by any third party for infringement of that parties
|
||||
intellectual property rights.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
Name: GCC runtime library
|
||||
Files: .libs/libgfortran*.so
|
||||
Description: dynamically linked to files compiled with gcc
|
||||
Availability: https://gcc.gnu.org/viewcvs/gcc/
|
||||
License: GPLv3 + runtime exception
|
||||
Copyright (C) 2002-2017 Free Software Foundation, Inc.
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 3, or (at your option)
|
||||
any later version.
|
||||
|
||||
Libgfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
Under Section 7 of GPL version 3, you are granted additional
|
||||
permissions described in the GCC Runtime Library Exception, version
|
||||
3.1, as published by the Free Software Foundation.
|
||||
|
||||
You should have received a copy of the GNU General Public License and
|
||||
a copy of the GCC Runtime Library Exception along with this program;
|
||||
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
----
|
||||
|
||||
Full text of license texts referred to above follows (that they are
|
||||
listed below does not necessarily imply the conditions apply to the
|
||||
present binary release):
|
||||
|
||||
----
|
||||
|
||||
GCC RUNTIME LIBRARY EXCEPTION
|
||||
|
||||
Version 3.1, 31 March 2009
|
||||
|
||||
Copyright (C) 2009 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
This GCC Runtime Library Exception ("Exception") is an additional
|
||||
permission under section 7 of the GNU General Public License, version
|
||||
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
|
||||
bears a notice placed by the copyright holder of the file stating that
|
||||
the file is governed by GPLv3 along with this Exception.
|
||||
|
||||
When you use GCC to compile a program, GCC may combine portions of
|
||||
certain GCC header files and runtime libraries with the compiled
|
||||
program. The purpose of this Exception is to allow compilation of
|
||||
non-GPL (including proprietary) programs to use, in this way, the
|
||||
header files and runtime libraries covered by this Exception.
|
||||
|
||||
0. Definitions.
|
||||
|
||||
A file is an "Independent Module" if it either requires the Runtime
|
||||
Library for execution after a Compilation Process, or makes use of an
|
||||
interface provided by the Runtime Library, but is not otherwise based
|
||||
on the Runtime Library.
|
||||
|
||||
"GCC" means a version of the GNU Compiler Collection, with or without
|
||||
modifications, governed by version 3 (or a specified later version) of
|
||||
the GNU General Public License (GPL) with the option of using any
|
||||
subsequent versions published by the FSF.
|
||||
|
||||
"GPL-compatible Software" is software whose conditions of propagation,
|
||||
modification and use would permit combination with GCC in accord with
|
||||
the license of GCC.
|
||||
|
||||
"Target Code" refers to output from any compiler for a real or virtual
|
||||
target processor architecture, in executable form or suitable for
|
||||
input to an assembler, loader, linker and/or execution
|
||||
phase. Notwithstanding that, Target Code does not include data in any
|
||||
format that is used as a compiler intermediate representation, or used
|
||||
for producing a compiler intermediate representation.
|
||||
|
||||
The "Compilation Process" transforms code entirely represented in
|
||||
non-intermediate languages designed for human-written code, and/or in
|
||||
Java Virtual Machine byte code, into Target Code. Thus, for example,
|
||||
use of source code generators and preprocessors need not be considered
|
||||
part of the Compilation Process, since the Compilation Process can be
|
||||
understood as starting with the output of the generators or
|
||||
preprocessors.
|
||||
|
||||
A Compilation Process is "Eligible" if it is done using GCC, alone or
|
||||
with other GPL-compatible software, or if it is done without using any
|
||||
work based on GCC. For example, using non-GPL-compatible Software to
|
||||
optimize any GCC intermediate representations would not qualify as an
|
||||
Eligible Compilation Process.
|
||||
|
||||
1. Grant of Additional Permission.
|
||||
|
||||
You have permission to propagate a work of Target Code formed by
|
||||
combining the Runtime Library with Independent Modules, even if such
|
||||
propagation would otherwise violate the terms of GPLv3, provided that
|
||||
all Target Code was generated by Eligible Compilation Processes. You
|
||||
may then convey such a combination under terms of your choice,
|
||||
consistent with the licensing of the Independent Modules.
|
||||
|
||||
2. No Weakening of GCC Copyleft.
|
||||
|
||||
The availability of this Exception does not imply any general
|
||||
presumption that third-party software is unaffected by the copyleft
|
||||
requirements of the license of GCC.
|
||||
|
||||
----
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
98
.venv/lib/python3.9/site-packages/numpy/__config__.py
Normal file
98
.venv/lib/python3.9/site-packages/numpy/__config__.py
Normal file
@@ -0,0 +1,98 @@
|
||||
# This file is generated by numpy's setup.py
|
||||
# It contains system_info results at the time of building this package.
|
||||
__all__ = ["get_info","show"]
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
extra_dll_dir = os.path.join(os.path.dirname(__file__), '.libs')
|
||||
|
||||
if sys.platform == 'win32' and os.path.isdir(extra_dll_dir):
|
||||
if sys.version_info >= (3, 8):
|
||||
os.add_dll_directory(extra_dll_dir)
|
||||
else:
|
||||
os.environ.setdefault('PATH', '')
|
||||
os.environ['PATH'] += os.pathsep + extra_dll_dir
|
||||
|
||||
blas_mkl_info={}
|
||||
blis_info={}
|
||||
openblas_info={'libraries': ['openblas', 'openblas'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
blas_opt_info={'libraries': ['openblas', 'openblas'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
lapack_mkl_info={}
|
||||
openblas_lapack_info={'libraries': ['openblas', 'openblas'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
lapack_opt_info={'libraries': ['openblas', 'openblas'], 'library_dirs': ['/usr/local/lib'], 'language': 'c', 'define_macros': [('HAVE_CBLAS', None)], 'runtime_library_dirs': ['/usr/local/lib']}
|
||||
|
||||
def get_info(name):
|
||||
g = globals()
|
||||
return g.get(name, g.get(name + "_info", {}))
|
||||
|
||||
def show():
|
||||
"""
|
||||
Show libraries in the system on which NumPy was built.
|
||||
|
||||
Print information about various resources (libraries, library
|
||||
directories, include directories, etc.) in the system on which
|
||||
NumPy was built.
|
||||
|
||||
See Also
|
||||
--------
|
||||
get_include : Returns the directory containing NumPy C
|
||||
header files.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Classes specifying the information to be printed are defined
|
||||
in the `numpy.distutils.system_info` module.
|
||||
|
||||
Information may include:
|
||||
|
||||
* ``language``: language used to write the libraries (mostly
|
||||
C or f77)
|
||||
* ``libraries``: names of libraries found in the system
|
||||
* ``library_dirs``: directories containing the libraries
|
||||
* ``include_dirs``: directories containing library header files
|
||||
* ``src_dirs``: directories containing library source files
|
||||
* ``define_macros``: preprocessor macros used by
|
||||
``distutils.setup``
|
||||
* ``baseline``: minimum CPU features required
|
||||
* ``found``: dispatched features supported in the system
|
||||
* ``not found``: dispatched features that are not supported
|
||||
in the system
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.show_config()
|
||||
blas_opt_info:
|
||||
language = c
|
||||
define_macros = [('HAVE_CBLAS', None)]
|
||||
libraries = ['openblas', 'openblas']
|
||||
library_dirs = ['/usr/local/lib']
|
||||
"""
|
||||
from numpy.core._multiarray_umath import (
|
||||
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
||||
)
|
||||
for name,info_dict in globals().items():
|
||||
if name[0] == "_" or type(info_dict) is not type({}): continue
|
||||
print(name + ":")
|
||||
if not info_dict:
|
||||
print(" NOT AVAILABLE")
|
||||
for k,v in info_dict.items():
|
||||
v = str(v)
|
||||
if k == "sources" and len(v) > 200:
|
||||
v = v[:60] + " ...\n... " + v[-60:]
|
||||
print(" %s = %s" % (k,v))
|
||||
|
||||
features_found, features_not_found = [], []
|
||||
for feature in __cpu_dispatch__:
|
||||
if __cpu_features__[feature]:
|
||||
features_found.append(feature)
|
||||
else:
|
||||
features_not_found.append(feature)
|
||||
|
||||
print("Supported SIMD extensions in this NumPy install:")
|
||||
print(" baseline = %s" % (','.join(__cpu_baseline__)))
|
||||
print(" found = %s" % (','.join(features_found)))
|
||||
print(" not found = %s" % (','.join(features_not_found)))
|
||||
|
1053
.venv/lib/python3.9/site-packages/numpy/__init__.cython-30.pxd
Normal file
1053
.venv/lib/python3.9/site-packages/numpy/__init__.cython-30.pxd
Normal file
File diff suppressed because it is too large
Load Diff
1018
.venv/lib/python3.9/site-packages/numpy/__init__.pxd
Normal file
1018
.venv/lib/python3.9/site-packages/numpy/__init__.pxd
Normal file
File diff suppressed because it is too large
Load Diff
429
.venv/lib/python3.9/site-packages/numpy/__init__.py
Normal file
429
.venv/lib/python3.9/site-packages/numpy/__init__.py
Normal file
@@ -0,0 +1,429 @@
|
||||
"""
|
||||
NumPy
|
||||
=====
|
||||
|
||||
Provides
|
||||
1. An array object of arbitrary homogeneous items
|
||||
2. Fast mathematical operations over arrays
|
||||
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
||||
|
||||
How to use the documentation
|
||||
----------------------------
|
||||
Documentation is available in two forms: docstrings provided
|
||||
with the code, and a loose standing reference guide, available from
|
||||
`the NumPy homepage <https://www.scipy.org>`_.
|
||||
|
||||
We recommend exploring the docstrings using
|
||||
`IPython <https://ipython.org>`_, an advanced Python shell with
|
||||
TAB-completion and introspection capabilities. See below for further
|
||||
instructions.
|
||||
|
||||
The docstring examples assume that `numpy` has been imported as `np`::
|
||||
|
||||
>>> import numpy as np
|
||||
|
||||
Code snippets are indicated by three greater-than signs::
|
||||
|
||||
>>> x = 42
|
||||
>>> x = x + 1
|
||||
|
||||
Use the built-in ``help`` function to view a function's docstring::
|
||||
|
||||
>>> help(np.sort)
|
||||
... # doctest: +SKIP
|
||||
|
||||
For some objects, ``np.info(obj)`` may provide additional help. This is
|
||||
particularly true if you see the line "Help on ufunc object:" at the top
|
||||
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
||||
The native Python help() does not know how to view their help, but our
|
||||
np.info() function does.
|
||||
|
||||
To search for documents containing a keyword, do::
|
||||
|
||||
>>> np.lookfor('keyword')
|
||||
... # doctest: +SKIP
|
||||
|
||||
General-purpose documents like a glossary and help on the basic concepts
|
||||
of numpy are available under the ``doc`` sub-module::
|
||||
|
||||
>>> from numpy import doc
|
||||
>>> help(doc)
|
||||
... # doctest: +SKIP
|
||||
|
||||
Available subpackages
|
||||
---------------------
|
||||
doc
|
||||
Topical documentation on broadcasting, indexing, etc.
|
||||
lib
|
||||
Basic functions used by several sub-packages.
|
||||
random
|
||||
Core Random Tools
|
||||
linalg
|
||||
Core Linear Algebra Tools
|
||||
fft
|
||||
Core FFT routines
|
||||
polynomial
|
||||
Polynomial tools
|
||||
testing
|
||||
NumPy testing tools
|
||||
f2py
|
||||
Fortran to Python Interface Generator.
|
||||
distutils
|
||||
Enhancements to distutils with support for
|
||||
Fortran compilers support and more.
|
||||
|
||||
Utilities
|
||||
---------
|
||||
test
|
||||
Run numpy unittests
|
||||
show_config
|
||||
Show numpy build configuration
|
||||
dual
|
||||
Overwrite certain functions with high-performance SciPy tools.
|
||||
Note: `numpy.dual` is deprecated. Use the functions from NumPy or Scipy
|
||||
directly instead of importing them from `numpy.dual`.
|
||||
matlib
|
||||
Make everything matrices.
|
||||
__version__
|
||||
NumPy version string
|
||||
|
||||
Viewing documentation using IPython
|
||||
-----------------------------------
|
||||
Start IPython with the NumPy profile (``ipython -p numpy``), which will
|
||||
import `numpy` under the alias `np`. Then, use the ``cpaste`` command to
|
||||
paste examples into the shell. To see which functions are available in
|
||||
`numpy`, type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
||||
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
||||
down the list. To view the docstring for a function, use
|
||||
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
||||
the source code).
|
||||
|
||||
Copies vs. in-place operation
|
||||
-----------------------------
|
||||
Most of the functions in `numpy` return a copy of the array argument
|
||||
(e.g., `np.sort`). In-place versions of these functions are often
|
||||
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
||||
Exceptions to this rule are documented.
|
||||
|
||||
"""
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ._globals import (
|
||||
ModuleDeprecationWarning, VisibleDeprecationWarning, _NoValue
|
||||
)
|
||||
|
||||
# We first need to detect if we're being called as part of the numpy setup
|
||||
# procedure itself in a reliable manner.
|
||||
try:
|
||||
__NUMPY_SETUP__
|
||||
except NameError:
|
||||
__NUMPY_SETUP__ = False
|
||||
|
||||
if __NUMPY_SETUP__:
|
||||
sys.stderr.write('Running from numpy source directory.\n')
|
||||
else:
|
||||
try:
|
||||
from numpy.__config__ import show as show_config
|
||||
except ImportError as e:
|
||||
msg = """Error importing numpy: you should not try to import numpy from
|
||||
its source directory; please exit the numpy source tree, and relaunch
|
||||
your python interpreter from there."""
|
||||
raise ImportError(msg) from e
|
||||
|
||||
__all__ = ['ModuleDeprecationWarning',
|
||||
'VisibleDeprecationWarning']
|
||||
|
||||
# get the version using versioneer
|
||||
from ._version import get_versions
|
||||
vinfo = get_versions()
|
||||
__version__ = vinfo.get("closest-tag", vinfo["version"])
|
||||
__git_version__ = vinfo.get("full-revisionid")
|
||||
del get_versions, vinfo
|
||||
|
||||
# mapping of {name: (value, deprecation_msg)}
|
||||
__deprecated_attrs__ = {}
|
||||
|
||||
# Allow distributors to run custom init code
|
||||
from . import _distributor_init
|
||||
|
||||
from . import core
|
||||
from .core import *
|
||||
from . import compat
|
||||
from . import lib
|
||||
# NOTE: to be revisited following future namespace cleanup.
|
||||
# See gh-14454 and gh-15672 for discussion.
|
||||
from .lib import *
|
||||
|
||||
from . import linalg
|
||||
from . import fft
|
||||
from . import polynomial
|
||||
from . import random
|
||||
from . import ctypeslib
|
||||
from . import ma
|
||||
from . import matrixlib as _mat
|
||||
from .matrixlib import *
|
||||
|
||||
# Deprecations introduced in NumPy 1.20.0, 2020-06-06
|
||||
import builtins as _builtins
|
||||
|
||||
_msg = (
|
||||
"`np.{n}` is a deprecated alias for the builtin `{n}`. "
|
||||
"To silence this warning, use `{n}` by itself. Doing this will not "
|
||||
"modify any behavior and is safe. {extended_msg}\n"
|
||||
"Deprecated in NumPy 1.20; for more details and guidance: "
|
||||
"https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||
|
||||
_specific_msg = (
|
||||
"If you specifically wanted the numpy scalar type, use `np.{}` here.")
|
||||
|
||||
_int_extended_msg = (
|
||||
"When replacing `np.{}`, you may wish to use e.g. `np.int64` "
|
||||
"or `np.int32` to specify the precision. If you wish to review "
|
||||
"your current use, check the release note link for "
|
||||
"additional information.")
|
||||
|
||||
_type_info = [
|
||||
("object", ""), # The NumPy scalar only exists by name.
|
||||
("bool", _specific_msg.format("bool_")),
|
||||
("float", _specific_msg.format("float64")),
|
||||
("complex", _specific_msg.format("complex128")),
|
||||
("str", _specific_msg.format("str_")),
|
||||
("int", _int_extended_msg.format("int"))]
|
||||
|
||||
__deprecated_attrs__.update({
|
||||
n: (getattr(_builtins, n), _msg.format(n=n, extended_msg=extended_msg))
|
||||
for n, extended_msg in _type_info
|
||||
})
|
||||
# Numpy 1.20.0, 2020-10-19
|
||||
__deprecated_attrs__["typeDict"] = (
|
||||
core.numerictypes.typeDict,
|
||||
"`np.typeDict` is a deprecated alias for `np.sctypeDict`."
|
||||
)
|
||||
|
||||
_msg = (
|
||||
"`np.{n}` is a deprecated alias for `np.compat.{n}`. "
|
||||
"To silence this warning, use `np.compat.{n}` by itself. "
|
||||
"In the likely event your code does not need to work on Python 2 "
|
||||
"you can use the builtin `{n2}` for which `np.compat.{n}` is itself "
|
||||
"an alias. Doing this will not modify any behaviour and is safe. "
|
||||
"{extended_msg}\n"
|
||||
"Deprecated in NumPy 1.20; for more details and guidance: "
|
||||
"https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||
|
||||
__deprecated_attrs__["long"] = (
|
||||
getattr(compat, "long"),
|
||||
_msg.format(n="long", n2="int",
|
||||
extended_msg=_int_extended_msg.format("long")))
|
||||
|
||||
__deprecated_attrs__["unicode"] = (
|
||||
getattr(compat, "unicode"),
|
||||
_msg.format(n="unicode", n2="str",
|
||||
extended_msg=_specific_msg.format("str_")))
|
||||
|
||||
del _msg, _specific_msg, _int_extended_msg, _type_info, _builtins
|
||||
|
||||
from .core import round, abs, max, min
|
||||
# now that numpy modules are imported, can initialize limits
|
||||
core.getlimits._register_known_types()
|
||||
|
||||
__all__.extend(['__version__', 'show_config'])
|
||||
__all__.extend(core.__all__)
|
||||
__all__.extend(_mat.__all__)
|
||||
__all__.extend(lib.__all__)
|
||||
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
|
||||
|
||||
# These are exported by np.core, but are replaced by the builtins below
|
||||
# remove them to ensure that we don't end up with `np.long == np.int_`,
|
||||
# which would be a breaking change.
|
||||
del long, unicode
|
||||
__all__.remove('long')
|
||||
__all__.remove('unicode')
|
||||
|
||||
# Remove things that are in the numpy.lib but not in the numpy namespace
|
||||
# Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
|
||||
# that prevents adding more things to the main namespace by accident.
|
||||
# The list below will grow until the `from .lib import *` fixme above is
|
||||
# taken care of
|
||||
__all__.remove('Arrayterator')
|
||||
del Arrayterator
|
||||
|
||||
# These names were removed in NumPy 1.20. For at least one release,
|
||||
# attempts to access these names in the numpy namespace will trigger
|
||||
# a warning, and calling the function will raise an exception.
|
||||
_financial_names = ['fv', 'ipmt', 'irr', 'mirr', 'nper', 'npv', 'pmt',
|
||||
'ppmt', 'pv', 'rate']
|
||||
__expired_functions__ = {
|
||||
name: (f'In accordance with NEP 32, the function {name} was removed '
|
||||
'from NumPy version 1.20. A replacement for this function '
|
||||
'is available in the numpy_financial library: '
|
||||
'https://pypi.org/project/numpy-financial')
|
||||
for name in _financial_names}
|
||||
|
||||
# Filter out Cython harmless warnings
|
||||
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||
|
||||
# oldnumeric and numarray were removed in 1.9. In case some packages import
|
||||
# but do not use them, we define them here for backward compatibility.
|
||||
oldnumeric = 'removed'
|
||||
numarray = 'removed'
|
||||
|
||||
if sys.version_info[:2] >= (3, 7):
|
||||
# module level getattr is only supported in 3.7 onwards
|
||||
# https://www.python.org/dev/peps/pep-0562/
|
||||
def __getattr__(attr):
|
||||
# Warn for expired attributes, and return a dummy function
|
||||
# that always raises an exception.
|
||||
try:
|
||||
msg = __expired_functions__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
|
||||
def _expired(*args, **kwds):
|
||||
raise RuntimeError(msg)
|
||||
|
||||
return _expired
|
||||
|
||||
# Emit warnings for deprecated attributes
|
||||
try:
|
||||
val, msg = __deprecated_attrs__[attr]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
||||
return val
|
||||
|
||||
# Importing Tester requires importing all of UnitTest which is not a
|
||||
# cheap import Since it is mainly used in test suits, we lazy import it
|
||||
# here to save on the order of 10 ms of import time for most users
|
||||
#
|
||||
# The previous way Tester was imported also had a side effect of adding
|
||||
# the full `numpy.testing` namespace
|
||||
if attr == 'testing':
|
||||
import numpy.testing as testing
|
||||
return testing
|
||||
elif attr == 'Tester':
|
||||
from .testing import Tester
|
||||
return Tester
|
||||
|
||||
raise AttributeError("module {!r} has no attribute "
|
||||
"{!r}".format(__name__, attr))
|
||||
|
||||
def __dir__():
|
||||
return list(globals().keys() | {'Tester', 'testing'})
|
||||
|
||||
else:
|
||||
# We don't actually use this ourselves anymore, but I'm not 100% sure that
|
||||
# no-one else in the world is using it (though I hope not)
|
||||
from .testing import Tester
|
||||
|
||||
# We weren't able to emit a warning about these, so keep them around
|
||||
globals().update({
|
||||
k: v
|
||||
for k, (v, msg) in __deprecated_attrs__.items()
|
||||
})
|
||||
|
||||
|
||||
# Pytest testing
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
|
||||
def _sanity_check():
|
||||
"""
|
||||
Quick sanity checks for common bugs caused by environment.
|
||||
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
||||
results under specific runtime conditions that are not necessarily
|
||||
achieved during test suite runs, and it is useful to catch those early.
|
||||
|
||||
See https://github.com/numpy/numpy/issues/8577 and other
|
||||
similar bug reports.
|
||||
|
||||
"""
|
||||
try:
|
||||
x = ones(2, dtype=float32)
|
||||
if not abs(x.dot(x) - 2.0) < 1e-5:
|
||||
raise AssertionError()
|
||||
except AssertionError:
|
||||
msg = ("The current Numpy installation ({!r}) fails to "
|
||||
"pass simple sanity checks. This can be caused for example "
|
||||
"by incorrect BLAS library being linked in, or by mixing "
|
||||
"package managers (pip, conda, apt, ...). Search closed "
|
||||
"numpy issues for similar problems.")
|
||||
raise RuntimeError(msg.format(__file__)) from None
|
||||
|
||||
_sanity_check()
|
||||
del _sanity_check
|
||||
|
||||
def _mac_os_check():
|
||||
"""
|
||||
Quick Sanity check for Mac OS look for accelerate build bugs.
|
||||
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
||||
"""
|
||||
try:
|
||||
c = array([3., 2., 1.])
|
||||
x = linspace(0, 2, 5)
|
||||
y = polyval(c, x)
|
||||
_ = polyfit(x, y, 2, cov=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
import sys
|
||||
if sys.platform == "darwin":
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
_mac_os_check()
|
||||
# Throw runtime error, if the test failed Check for warning and error_message
|
||||
error_message = ""
|
||||
if len(w) > 0:
|
||||
error_message = "{}: {}".format(w[-1].category.__name__, str(w[-1].message))
|
||||
msg = (
|
||||
"Polyfit sanity test emitted a warning, most likely due "
|
||||
"to using a buggy Accelerate backend. If you compiled "
|
||||
"yourself, more information is available at "
|
||||
"https://numpy.org/doc/stable/user/building.html#accelerated-blas-lapack-libraries "
|
||||
"Otherwise report this to the vendor "
|
||||
"that provided NumPy.\n{}\n".format(error_message))
|
||||
raise RuntimeError(msg)
|
||||
del _mac_os_check
|
||||
|
||||
# We usually use madvise hugepages support, but on some old kernels it
|
||||
# is slow and thus better avoided.
|
||||
# Specifically kernel version 4.6 had a bug fix which probably fixed this:
|
||||
# https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
||||
import os
|
||||
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
||||
if sys.platform == "linux" and use_hugepage is None:
|
||||
# If there is an issue with parsing the kernel version,
|
||||
# set use_hugepages to 0. Usage of LooseVersion will handle
|
||||
# the kernel version parsing better, but avoided since it
|
||||
# will increase the import time. See: #16679 for related discussion.
|
||||
try:
|
||||
use_hugepage = 1
|
||||
kernel_version = os.uname().release.split(".")[:2]
|
||||
kernel_version = tuple(int(v) for v in kernel_version)
|
||||
if kernel_version < (4, 6):
|
||||
use_hugepage = 0
|
||||
except ValueError:
|
||||
use_hugepages = 0
|
||||
elif use_hugepage is None:
|
||||
# This is not Linux, so it should not matter, just enable anyway
|
||||
use_hugepage = 1
|
||||
else:
|
||||
use_hugepage = int(use_hugepage)
|
||||
|
||||
# Note that this will currently only make a difference on Linux
|
||||
core.multiarray._set_madvise_hugepage(use_hugepage)
|
||||
|
||||
# Give a warning if NumPy is reloaded or imported on a sub-interpreter
|
||||
# We do this from python, since the C-module may not be reloaded and
|
||||
# it is tidier organized.
|
||||
core.multiarray._multiarray_umath._reload_guard()
|
||||
|
||||
from ._version import get_versions
|
||||
__version__ = get_versions()['version']
|
||||
del get_versions
|
3741
.venv/lib/python3.9/site-packages/numpy/__init__.pyi
Normal file
3741
.venv/lib/python3.9/site-packages/numpy/__init__.pyi
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
10
.venv/lib/python3.9/site-packages/numpy/_distributor_init.py
Normal file
10
.venv/lib/python3.9/site-packages/numpy/_distributor_init.py
Normal file
@@ -0,0 +1,10 @@
|
||||
""" Distributor init file
|
||||
|
||||
Distributors: you can add custom code here to support particular distributions
|
||||
of numpy.
|
||||
|
||||
For example, this is a good place to put any checks for hardware requirements.
|
||||
|
||||
The numpy standard source distribution will not put code in this file, so you
|
||||
can safely replace this file with your own version.
|
||||
"""
|
91
.venv/lib/python3.9/site-packages/numpy/_globals.py
Normal file
91
.venv/lib/python3.9/site-packages/numpy/_globals.py
Normal file
@@ -0,0 +1,91 @@
|
||||
"""
|
||||
Module defining global singleton classes.
|
||||
|
||||
This module raises a RuntimeError if an attempt to reload it is made. In that
|
||||
way the identities of the classes defined here are fixed and will remain so
|
||||
even if numpy itself is reloaded. In particular, a function like the following
|
||||
will still work correctly after numpy is reloaded::
|
||||
|
||||
def foo(arg=np._NoValue):
|
||||
if arg is np._NoValue:
|
||||
...
|
||||
|
||||
That was not the case when the singleton classes were defined in the numpy
|
||||
``__init__.py`` file. See gh-7844 for a discussion of the reload problem that
|
||||
motivated this module.
|
||||
|
||||
"""
|
||||
__ALL__ = [
|
||||
'ModuleDeprecationWarning', 'VisibleDeprecationWarning', '_NoValue'
|
||||
]
|
||||
|
||||
|
||||
# Disallow reloading this module so as to preserve the identities of the
|
||||
# classes defined here.
|
||||
if '_is_loaded' in globals():
|
||||
raise RuntimeError('Reloading numpy._globals is not allowed')
|
||||
_is_loaded = True
|
||||
|
||||
|
||||
class ModuleDeprecationWarning(DeprecationWarning):
|
||||
"""Module deprecation warning.
|
||||
|
||||
The nose tester turns ordinary Deprecation warnings into test failures.
|
||||
That makes it hard to deprecate whole modules, because they get
|
||||
imported by default. So this is a special Deprecation warning that the
|
||||
nose tester will let pass without making tests fail.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
ModuleDeprecationWarning.__module__ = 'numpy'
|
||||
|
||||
|
||||
class VisibleDeprecationWarning(UserWarning):
|
||||
"""Visible deprecation warning.
|
||||
|
||||
By default, python will not show deprecation warnings, so this class
|
||||
can be used when a very visible warning is helpful, for example because
|
||||
the usage is most likely a user bug.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
VisibleDeprecationWarning.__module__ = 'numpy'
|
||||
|
||||
|
||||
class _NoValueType:
|
||||
"""Special keyword value.
|
||||
|
||||
The instance of this class may be used as the default value assigned to a
|
||||
keyword if no other obvious default (e.g., `None`) is suitable,
|
||||
|
||||
Common reasons for using this keyword are:
|
||||
|
||||
- A new keyword is added to a function, and that function forwards its
|
||||
inputs to another function or method which can be defined outside of
|
||||
NumPy. For example, ``np.std(x)`` calls ``x.std``, so when a ``keepdims``
|
||||
keyword was added that could only be forwarded if the user explicitly
|
||||
specified ``keepdims``; downstream array libraries may not have added
|
||||
the same keyword, so adding ``x.std(..., keepdims=keepdims)``
|
||||
unconditionally could have broken previously working code.
|
||||
- A keyword is being deprecated, and a deprecation warning must only be
|
||||
emitted when the keyword is used.
|
||||
|
||||
"""
|
||||
__instance = None
|
||||
def __new__(cls):
|
||||
# ensure that only one instance exists
|
||||
if not cls.__instance:
|
||||
cls.__instance = super().__new__(cls)
|
||||
return cls.__instance
|
||||
|
||||
# needed for python 2 to preserve identity through a pickle
|
||||
def __reduce__(self):
|
||||
return (self.__class__, ())
|
||||
|
||||
def __repr__(self):
|
||||
return "<no value>"
|
||||
|
||||
|
||||
_NoValue = _NoValueType()
|
201
.venv/lib/python3.9/site-packages/numpy/_pytesttester.py
Normal file
201
.venv/lib/python3.9/site-packages/numpy/_pytesttester.py
Normal file
@@ -0,0 +1,201 @@
|
||||
"""
|
||||
Pytest test running.
|
||||
|
||||
This module implements the ``test()`` function for NumPy modules. The usual
|
||||
boiler plate for doing that is to put the following in the module
|
||||
``__init__.py`` file::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
|
||||
Warnings filtering and other runtime settings should be dealt with in the
|
||||
``pytest.ini`` file in the numpy repo root. The behavior of the test depends on
|
||||
whether or not that file is found as follows:
|
||||
|
||||
* ``pytest.ini`` is present (develop mode)
|
||||
All warnings except those explicitly filtered out are raised as error.
|
||||
* ``pytest.ini`` is absent (release mode)
|
||||
DeprecationWarnings and PendingDeprecationWarnings are ignored, other
|
||||
warnings are passed through.
|
||||
|
||||
In practice, tests run from the numpy repo are run in develop mode. That
|
||||
includes the standard ``python runtests.py`` invocation.
|
||||
|
||||
This module is imported by every numpy subpackage, so lies at the top level to
|
||||
simplify circular import issues. For the same reason, it contains no numpy
|
||||
imports at module scope, instead importing numpy within function calls.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
|
||||
__all__ = ['PytestTester']
|
||||
|
||||
|
||||
|
||||
def _show_numpy_info():
|
||||
import numpy as np
|
||||
|
||||
print("NumPy version %s" % np.__version__)
|
||||
relaxed_strides = np.ones((10, 1), order="C").flags.f_contiguous
|
||||
print("NumPy relaxed strides checking option:", relaxed_strides)
|
||||
info = np.lib.utils._opt_info()
|
||||
print("NumPy CPU features: ", (info if info else 'nothing enabled'))
|
||||
|
||||
|
||||
|
||||
class PytestTester:
|
||||
"""
|
||||
Pytest test runner.
|
||||
|
||||
A test function is typically added to a package's __init__.py like so::
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__).test
|
||||
del PytestTester
|
||||
|
||||
Calling this test function finds and runs all tests associated with the
|
||||
module and all its sub-modules.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
module_name : str
|
||||
Full path to the package to test.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
module_name : module name
|
||||
The name of the module to test.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Unlike the previous ``nose``-based implementation, this class is not
|
||||
publicly exposed as it performs some ``numpy``-specific warning
|
||||
suppression.
|
||||
|
||||
"""
|
||||
def __init__(self, module_name):
|
||||
self.module_name = module_name
|
||||
|
||||
def __call__(self, label='fast', verbose=1, extra_argv=None,
|
||||
doctests=False, coverage=False, durations=-1, tests=None):
|
||||
"""
|
||||
Run tests for module using pytest.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : {'fast', 'full'}, optional
|
||||
Identifies the tests to run. When set to 'fast', tests decorated
|
||||
with `pytest.mark.slow` are skipped, when 'full', the slow marker
|
||||
is ignored.
|
||||
verbose : int, optional
|
||||
Verbosity value for test outputs, in the range 1-3. Default is 1.
|
||||
extra_argv : list, optional
|
||||
List with any extra arguments to pass to pytests.
|
||||
doctests : bool, optional
|
||||
.. note:: Not supported
|
||||
coverage : bool, optional
|
||||
If True, report coverage of NumPy code. Default is False.
|
||||
Requires installation of (pip) pytest-cov.
|
||||
durations : int, optional
|
||||
If < 0, do nothing, If 0, report time of all tests, if > 0,
|
||||
report the time of the slowest `timer` tests. Default is -1.
|
||||
tests : test or list of tests
|
||||
Tests to be executed with pytest '--pyargs'
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : bool
|
||||
Return True on success, false otherwise.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Each NumPy module exposes `test` in its namespace to run all tests for
|
||||
it. For example, to run all tests for numpy.lib:
|
||||
|
||||
>>> np.lib.test() #doctest: +SKIP
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> result = np.lib.test() #doctest: +SKIP
|
||||
...
|
||||
1023 passed, 2 skipped, 6 deselected, 1 xfailed in 10.39 seconds
|
||||
>>> result
|
||||
True
|
||||
|
||||
"""
|
||||
import pytest
|
||||
import warnings
|
||||
|
||||
module = sys.modules[self.module_name]
|
||||
module_path = os.path.abspath(module.__path__[0])
|
||||
|
||||
# setup the pytest arguments
|
||||
pytest_args = ["-l"]
|
||||
|
||||
# offset verbosity. The "-q" cancels a "-v".
|
||||
pytest_args += ["-q"]
|
||||
|
||||
# Filter out distutils cpu warnings (could be localized to
|
||||
# distutils tests). ASV has problems with top level import,
|
||||
# so fetch module for suppression here.
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("always")
|
||||
from numpy.distutils import cpuinfo
|
||||
|
||||
# Filter out annoying import messages. Want these in both develop and
|
||||
# release mode.
|
||||
pytest_args += [
|
||||
"-W ignore:Not importing directory",
|
||||
"-W ignore:numpy.dtype size changed",
|
||||
"-W ignore:numpy.ufunc size changed",
|
||||
"-W ignore::UserWarning:cpuinfo",
|
||||
]
|
||||
|
||||
# When testing matrices, ignore their PendingDeprecationWarnings
|
||||
pytest_args += [
|
||||
"-W ignore:the matrix subclass is not",
|
||||
"-W ignore:Importing from numpy.matlib is",
|
||||
]
|
||||
|
||||
if doctests:
|
||||
raise ValueError("Doctests not supported")
|
||||
|
||||
if extra_argv:
|
||||
pytest_args += list(extra_argv)
|
||||
|
||||
if verbose > 1:
|
||||
pytest_args += ["-" + "v"*(verbose - 1)]
|
||||
|
||||
if coverage:
|
||||
pytest_args += ["--cov=" + module_path]
|
||||
|
||||
if label == "fast":
|
||||
# not importing at the top level to avoid circular import of module
|
||||
from numpy.testing import IS_PYPY
|
||||
if IS_PYPY:
|
||||
pytest_args += ["-m", "not slow and not slow_pypy"]
|
||||
else:
|
||||
pytest_args += ["-m", "not slow"]
|
||||
|
||||
elif label != "full":
|
||||
pytest_args += ["-m", label]
|
||||
|
||||
if durations >= 0:
|
||||
pytest_args += ["--durations=%s" % durations]
|
||||
|
||||
if tests is None:
|
||||
tests = [self.module_name]
|
||||
|
||||
pytest_args += ["--pyargs"] + list(tests)
|
||||
|
||||
# run tests.
|
||||
_show_numpy_info()
|
||||
|
||||
try:
|
||||
code = pytest.main(pytest_args)
|
||||
except SystemExit as exc:
|
||||
code = exc.code
|
||||
|
||||
return code == 0
|
21
.venv/lib/python3.9/site-packages/numpy/_version.py
Normal file
21
.venv/lib/python3.9/site-packages/numpy/_version.py
Normal file
@@ -0,0 +1,21 @@
|
||||
|
||||
# This file was generated by 'versioneer.py' (0.19) from
|
||||
# revision-control system data, or from the parent directory name of an
|
||||
# unpacked source archive. Distribution tarballs contain a pre-generated copy
|
||||
# of this file.
|
||||
|
||||
import json
|
||||
|
||||
version_json = '''
|
||||
{
|
||||
"date": "2021-08-15T12:15:47-0600",
|
||||
"dirty": false,
|
||||
"error": null,
|
||||
"full-revisionid": "2fe48d2d98a85c8ea3f3d5caffd952ea69e99335",
|
||||
"version": "1.21.2"
|
||||
}
|
||||
''' # END VERSION_JSON
|
||||
|
||||
|
||||
def get_versions():
|
||||
return json.loads(version_json)
|
59
.venv/lib/python3.9/site-packages/numpy/char.pyi
Normal file
59
.venv/lib/python3.9/site-packages/numpy/char.pyi
Normal file
@@ -0,0 +1,59 @@
|
||||
from typing import Any, List
|
||||
|
||||
from numpy import (
|
||||
chararray as chararray,
|
||||
)
|
||||
|
||||
__all__: List[str]
|
||||
|
||||
def equal(x1, x2): ...
|
||||
def not_equal(x1, x2): ...
|
||||
def greater_equal(x1, x2): ...
|
||||
def less_equal(x1, x2): ...
|
||||
def greater(x1, x2): ...
|
||||
def less(x1, x2): ...
|
||||
def str_len(a): ...
|
||||
def add(x1, x2): ...
|
||||
def multiply(a, i): ...
|
||||
def mod(a, values): ...
|
||||
def capitalize(a): ...
|
||||
def center(a, width, fillchar=...): ...
|
||||
def count(a, sub, start=..., end=...): ...
|
||||
def decode(a, encoding=..., errors=...): ...
|
||||
def encode(a, encoding=..., errors=...): ...
|
||||
def endswith(a, suffix, start=..., end=...): ...
|
||||
def expandtabs(a, tabsize=...): ...
|
||||
def find(a, sub, start=..., end=...): ...
|
||||
def index(a, sub, start=..., end=...): ...
|
||||
def isalnum(a): ...
|
||||
def isalpha(a): ...
|
||||
def isdigit(a): ...
|
||||
def islower(a): ...
|
||||
def isspace(a): ...
|
||||
def istitle(a): ...
|
||||
def isupper(a): ...
|
||||
def join(sep, seq): ...
|
||||
def ljust(a, width, fillchar=...): ...
|
||||
def lower(a): ...
|
||||
def lstrip(a, chars=...): ...
|
||||
def partition(a, sep): ...
|
||||
def replace(a, old, new, count=...): ...
|
||||
def rfind(a, sub, start=..., end=...): ...
|
||||
def rindex(a, sub, start=..., end=...): ...
|
||||
def rjust(a, width, fillchar=...): ...
|
||||
def rpartition(a, sep): ...
|
||||
def rsplit(a, sep=..., maxsplit=...): ...
|
||||
def rstrip(a, chars=...): ...
|
||||
def split(a, sep=..., maxsplit=...): ...
|
||||
def splitlines(a, keepends=...): ...
|
||||
def startswith(a, prefix, start=..., end=...): ...
|
||||
def strip(a, chars=...): ...
|
||||
def swapcase(a): ...
|
||||
def title(a): ...
|
||||
def translate(a, table, deletechars=...): ...
|
||||
def upper(a): ...
|
||||
def zfill(a, width): ...
|
||||
def isnumeric(a): ...
|
||||
def isdecimal(a): ...
|
||||
def array(obj, itemsize=..., copy=..., unicode=..., order=...): ...
|
||||
def asarray(obj, itemsize=..., unicode=..., order=...): ...
|
18
.venv/lib/python3.9/site-packages/numpy/compat/__init__.py
Normal file
18
.venv/lib/python3.9/site-packages/numpy/compat/__init__.py
Normal file
@@ -0,0 +1,18 @@
|
||||
"""
|
||||
Compatibility module.
|
||||
|
||||
This module contains duplicated code from Python itself or 3rd party
|
||||
extensions, which may be included for the following reasons:
|
||||
|
||||
* compatibility
|
||||
* we may only need a small subset of the copied library/module
|
||||
|
||||
"""
|
||||
from . import _inspect
|
||||
from . import py3k
|
||||
from ._inspect import getargspec, formatargspec
|
||||
from .py3k import *
|
||||
|
||||
__all__ = []
|
||||
__all__.extend(_inspect.__all__)
|
||||
__all__.extend(py3k.__all__)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
191
.venv/lib/python3.9/site-packages/numpy/compat/_inspect.py
Normal file
191
.venv/lib/python3.9/site-packages/numpy/compat/_inspect.py
Normal file
@@ -0,0 +1,191 @@
|
||||
"""Subset of inspect module from upstream python
|
||||
|
||||
We use this instead of upstream because upstream inspect is slow to import, and
|
||||
significantly contributes to numpy import times. Importing this copy has almost
|
||||
no overhead.
|
||||
|
||||
"""
|
||||
import types
|
||||
|
||||
__all__ = ['getargspec', 'formatargspec']
|
||||
|
||||
# ----------------------------------------------------------- type-checking
|
||||
def ismethod(object):
|
||||
"""Return true if the object is an instance method.
|
||||
|
||||
Instance method objects provide these attributes:
|
||||
__doc__ documentation string
|
||||
__name__ name with which this method was defined
|
||||
im_class class object in which this method belongs
|
||||
im_func function object containing implementation of method
|
||||
im_self instance to which this method is bound, or None
|
||||
|
||||
"""
|
||||
return isinstance(object, types.MethodType)
|
||||
|
||||
def isfunction(object):
|
||||
"""Return true if the object is a user-defined function.
|
||||
|
||||
Function objects provide these attributes:
|
||||
__doc__ documentation string
|
||||
__name__ name with which this function was defined
|
||||
func_code code object containing compiled function bytecode
|
||||
func_defaults tuple of any default values for arguments
|
||||
func_doc (same as __doc__)
|
||||
func_globals global namespace in which this function was defined
|
||||
func_name (same as __name__)
|
||||
|
||||
"""
|
||||
return isinstance(object, types.FunctionType)
|
||||
|
||||
def iscode(object):
|
||||
"""Return true if the object is a code object.
|
||||
|
||||
Code objects provide these attributes:
|
||||
co_argcount number of arguments (not including * or ** args)
|
||||
co_code string of raw compiled bytecode
|
||||
co_consts tuple of constants used in the bytecode
|
||||
co_filename name of file in which this code object was created
|
||||
co_firstlineno number of first line in Python source code
|
||||
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
|
||||
co_lnotab encoded mapping of line numbers to bytecode indices
|
||||
co_name name with which this code object was defined
|
||||
co_names tuple of names of local variables
|
||||
co_nlocals number of local variables
|
||||
co_stacksize virtual machine stack space required
|
||||
co_varnames tuple of names of arguments and local variables
|
||||
|
||||
"""
|
||||
return isinstance(object, types.CodeType)
|
||||
|
||||
# ------------------------------------------------ argument list extraction
|
||||
# These constants are from Python's compile.h.
|
||||
CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8
|
||||
|
||||
def getargs(co):
|
||||
"""Get information about the arguments accepted by a code object.
|
||||
|
||||
Three things are returned: (args, varargs, varkw), where 'args' is
|
||||
a list of argument names (possibly containing nested lists), and
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
|
||||
"""
|
||||
|
||||
if not iscode(co):
|
||||
raise TypeError('arg is not a code object')
|
||||
|
||||
nargs = co.co_argcount
|
||||
names = co.co_varnames
|
||||
args = list(names[:nargs])
|
||||
|
||||
# The following acrobatics are for anonymous (tuple) arguments.
|
||||
# Which we do not need to support, so remove to avoid importing
|
||||
# the dis module.
|
||||
for i in range(nargs):
|
||||
if args[i][:1] in ['', '.']:
|
||||
raise TypeError("tuple function arguments are not supported")
|
||||
varargs = None
|
||||
if co.co_flags & CO_VARARGS:
|
||||
varargs = co.co_varnames[nargs]
|
||||
nargs = nargs + 1
|
||||
varkw = None
|
||||
if co.co_flags & CO_VARKEYWORDS:
|
||||
varkw = co.co_varnames[nargs]
|
||||
return args, varargs, varkw
|
||||
|
||||
def getargspec(func):
|
||||
"""Get the names and default values of a function's arguments.
|
||||
|
||||
A tuple of four things is returned: (args, varargs, varkw, defaults).
|
||||
'args' is a list of the argument names (it may contain nested lists).
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
'defaults' is an n-tuple of the default values of the last n arguments.
|
||||
|
||||
"""
|
||||
|
||||
if ismethod(func):
|
||||
func = func.__func__
|
||||
if not isfunction(func):
|
||||
raise TypeError('arg is not a Python function')
|
||||
args, varargs, varkw = getargs(func.__code__)
|
||||
return args, varargs, varkw, func.__defaults__
|
||||
|
||||
def getargvalues(frame):
|
||||
"""Get information about arguments passed into a particular frame.
|
||||
|
||||
A tuple of four things is returned: (args, varargs, varkw, locals).
|
||||
'args' is a list of the argument names (it may contain nested lists).
|
||||
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
||||
'locals' is the locals dictionary of the given frame.
|
||||
|
||||
"""
|
||||
args, varargs, varkw = getargs(frame.f_code)
|
||||
return args, varargs, varkw, frame.f_locals
|
||||
|
||||
def joinseq(seq):
|
||||
if len(seq) == 1:
|
||||
return '(' + seq[0] + ',)'
|
||||
else:
|
||||
return '(' + ', '.join(seq) + ')'
|
||||
|
||||
def strseq(object, convert, join=joinseq):
|
||||
"""Recursively walk a sequence, stringifying each element.
|
||||
|
||||
"""
|
||||
if type(object) in [list, tuple]:
|
||||
return join([strseq(_o, convert, join) for _o in object])
|
||||
else:
|
||||
return convert(object)
|
||||
|
||||
def formatargspec(args, varargs=None, varkw=None, defaults=None,
|
||||
formatarg=str,
|
||||
formatvarargs=lambda name: '*' + name,
|
||||
formatvarkw=lambda name: '**' + name,
|
||||
formatvalue=lambda value: '=' + repr(value),
|
||||
join=joinseq):
|
||||
"""Format an argument spec from the 4 values returned by getargspec.
|
||||
|
||||
The first four arguments are (args, varargs, varkw, defaults). The
|
||||
other four arguments are the corresponding optional formatting functions
|
||||
that are called to turn names and values into strings. The ninth
|
||||
argument is an optional function to format the sequence of arguments.
|
||||
|
||||
"""
|
||||
specs = []
|
||||
if defaults:
|
||||
firstdefault = len(args) - len(defaults)
|
||||
for i in range(len(args)):
|
||||
spec = strseq(args[i], formatarg, join)
|
||||
if defaults and i >= firstdefault:
|
||||
spec = spec + formatvalue(defaults[i - firstdefault])
|
||||
specs.append(spec)
|
||||
if varargs is not None:
|
||||
specs.append(formatvarargs(varargs))
|
||||
if varkw is not None:
|
||||
specs.append(formatvarkw(varkw))
|
||||
return '(' + ', '.join(specs) + ')'
|
||||
|
||||
def formatargvalues(args, varargs, varkw, locals,
|
||||
formatarg=str,
|
||||
formatvarargs=lambda name: '*' + name,
|
||||
formatvarkw=lambda name: '**' + name,
|
||||
formatvalue=lambda value: '=' + repr(value),
|
||||
join=joinseq):
|
||||
"""Format an argument spec from the 4 values returned by getargvalues.
|
||||
|
||||
The first four arguments are (args, varargs, varkw, locals). The
|
||||
next four arguments are the corresponding optional formatting functions
|
||||
that are called to turn names and values into strings. The ninth
|
||||
argument is an optional function to format the sequence of arguments.
|
||||
|
||||
"""
|
||||
def convert(name, locals=locals,
|
||||
formatarg=formatarg, formatvalue=formatvalue):
|
||||
return formatarg(name) + formatvalue(locals[name])
|
||||
specs = [strseq(arg, convert, join) for arg in args]
|
||||
|
||||
if varargs:
|
||||
specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
|
||||
if varkw:
|
||||
specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
|
||||
return '(' + ', '.join(specs) + ')'
|
139
.venv/lib/python3.9/site-packages/numpy/compat/py3k.py
Normal file
139
.venv/lib/python3.9/site-packages/numpy/compat/py3k.py
Normal file
@@ -0,0 +1,139 @@
|
||||
"""
|
||||
Python 3.X compatibility tools.
|
||||
|
||||
While this file was originally intended for Python 2 -> 3 transition,
|
||||
it is now used to create a compatibility layer between different
|
||||
minor versions of Python 3.
|
||||
|
||||
While the active version of numpy may not support a given version of python, we
|
||||
allow downstream libraries to continue to use these shims for forward
|
||||
compatibility with numpy while they transition their code to newer versions of
|
||||
Python.
|
||||
"""
|
||||
__all__ = ['bytes', 'asbytes', 'isfileobj', 'getexception', 'strchar',
|
||||
'unicode', 'asunicode', 'asbytes_nested', 'asunicode_nested',
|
||||
'asstr', 'open_latin1', 'long', 'basestring', 'sixu',
|
||||
'integer_types', 'is_pathlib_path', 'npy_load_module', 'Path',
|
||||
'pickle', 'contextlib_nullcontext', 'os_fspath', 'os_PathLike']
|
||||
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
import io
|
||||
|
||||
import abc
|
||||
from abc import ABC as abc_ABC
|
||||
|
||||
try:
|
||||
import pickle5 as pickle
|
||||
except ImportError:
|
||||
import pickle
|
||||
|
||||
long = int
|
||||
integer_types = (int,)
|
||||
basestring = str
|
||||
unicode = str
|
||||
bytes = bytes
|
||||
|
||||
def asunicode(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
def asbytes(s):
|
||||
if isinstance(s, bytes):
|
||||
return s
|
||||
return str(s).encode('latin1')
|
||||
|
||||
def asstr(s):
|
||||
if isinstance(s, bytes):
|
||||
return s.decode('latin1')
|
||||
return str(s)
|
||||
|
||||
def isfileobj(f):
|
||||
return isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter))
|
||||
|
||||
def open_latin1(filename, mode='r'):
|
||||
return open(filename, mode=mode, encoding='iso-8859-1')
|
||||
|
||||
def sixu(s):
|
||||
return s
|
||||
|
||||
strchar = 'U'
|
||||
|
||||
def getexception():
|
||||
return sys.exc_info()[1]
|
||||
|
||||
def asbytes_nested(x):
|
||||
if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
|
||||
return [asbytes_nested(y) for y in x]
|
||||
else:
|
||||
return asbytes(x)
|
||||
|
||||
def asunicode_nested(x):
|
||||
if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
|
||||
return [asunicode_nested(y) for y in x]
|
||||
else:
|
||||
return asunicode(x)
|
||||
|
||||
def is_pathlib_path(obj):
|
||||
"""
|
||||
Check whether obj is a `pathlib.Path` object.
|
||||
|
||||
Prefer using ``isinstance(obj, os.PathLike)`` instead of this function.
|
||||
"""
|
||||
return isinstance(obj, Path)
|
||||
|
||||
# from Python 3.7
|
||||
class contextlib_nullcontext:
|
||||
"""Context manager that does no additional processing.
|
||||
|
||||
Used as a stand-in for a normal context manager, when a particular
|
||||
block of code is only sometimes used with a normal context manager:
|
||||
|
||||
cm = optional_cm if condition else nullcontext()
|
||||
with cm:
|
||||
# Perform operation, using optional_cm if condition is True
|
||||
|
||||
.. note::
|
||||
Prefer using `contextlib.nullcontext` instead of this context manager.
|
||||
"""
|
||||
|
||||
def __init__(self, enter_result=None):
|
||||
self.enter_result = enter_result
|
||||
|
||||
def __enter__(self):
|
||||
return self.enter_result
|
||||
|
||||
def __exit__(self, *excinfo):
|
||||
pass
|
||||
|
||||
|
||||
def npy_load_module(name, fn, info=None):
|
||||
"""
|
||||
Load a module.
|
||||
|
||||
.. versionadded:: 1.11.2
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
Full module name.
|
||||
fn : str
|
||||
Path to module file.
|
||||
info : tuple, optional
|
||||
Only here for backward compatibility with Python 2.*.
|
||||
|
||||
Returns
|
||||
-------
|
||||
mod : module
|
||||
|
||||
"""
|
||||
# Explicitly lazy import this to avoid paying the cost
|
||||
# of importing importlib at startup
|
||||
from importlib.machinery import SourceFileLoader
|
||||
return SourceFileLoader(name, fn).load_module()
|
||||
|
||||
|
||||
os_fspath = os.fspath
|
||||
os_PathLike = os.PathLike
|
10
.venv/lib/python3.9/site-packages/numpy/compat/setup.py
Normal file
10
.venv/lib/python3.9/site-packages/numpy/compat/setup.py
Normal file
@@ -0,0 +1,10 @@
|
||||
def configuration(parent_package='',top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
|
||||
config = Configuration('compat', parent_package, top_path)
|
||||
config.add_subpackage('tests')
|
||||
return config
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,19 @@
|
||||
from os.path import join
|
||||
|
||||
from numpy.compat import isfileobj
|
||||
from numpy.testing import assert_
|
||||
from numpy.testing import tempdir
|
||||
|
||||
|
||||
def test_isfileobj():
|
||||
with tempdir(prefix="numpy_test_compat_") as folder:
|
||||
filename = join(folder, 'a.bin')
|
||||
|
||||
with open(filename, 'wb') as f:
|
||||
assert_(isfileobj(f))
|
||||
|
||||
with open(filename, 'ab') as f:
|
||||
assert_(isfileobj(f))
|
||||
|
||||
with open(filename, 'rb') as f:
|
||||
assert_(isfileobj(f))
|
119
.venv/lib/python3.9/site-packages/numpy/conftest.py
Normal file
119
.venv/lib/python3.9/site-packages/numpy/conftest.py
Normal file
@@ -0,0 +1,119 @@
|
||||
"""
|
||||
Pytest configuration and fixtures for the Numpy test suite.
|
||||
"""
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import hypothesis
|
||||
import pytest
|
||||
import numpy
|
||||
|
||||
from numpy.core._multiarray_tests import get_fpu_mode
|
||||
|
||||
|
||||
_old_fpu_mode = None
|
||||
_collect_results = {}
|
||||
|
||||
# Use a known and persistent tmpdir for hypothesis' caches, which
|
||||
# can be automatically cleared by the OS or user.
|
||||
hypothesis.configuration.set_hypothesis_home_dir(
|
||||
os.path.join(tempfile.gettempdir(), ".hypothesis")
|
||||
)
|
||||
|
||||
# We register two custom profiles for Numpy - for details see
|
||||
# https://hypothesis.readthedocs.io/en/latest/settings.html
|
||||
# The first is designed for our own CI runs; the latter also
|
||||
# forces determinism and is designed for use via np.test()
|
||||
hypothesis.settings.register_profile(
|
||||
name="numpy-profile", deadline=None, print_blob=True,
|
||||
)
|
||||
hypothesis.settings.register_profile(
|
||||
name="np.test() profile",
|
||||
deadline=None, print_blob=True, database=None, derandomize=True,
|
||||
suppress_health_check=hypothesis.HealthCheck.all(),
|
||||
)
|
||||
# Note that the default profile is chosen based on the presence
|
||||
# of pytest.ini, but can be overriden by passing the
|
||||
# --hypothesis-profile=NAME argument to pytest.
|
||||
_pytest_ini = os.path.join(os.path.dirname(__file__), "..", "pytest.ini")
|
||||
hypothesis.settings.load_profile(
|
||||
"numpy-profile" if os.path.isfile(_pytest_ini) else "np.test() profile"
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
config.addinivalue_line("markers",
|
||||
"valgrind_error: Tests that are known to error under valgrind.")
|
||||
config.addinivalue_line("markers",
|
||||
"leaks_references: Tests that are known to leak references.")
|
||||
config.addinivalue_line("markers",
|
||||
"slow: Tests that are very slow.")
|
||||
config.addinivalue_line("markers",
|
||||
"slow_pypy: Tests that are very slow on pypy.")
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption("--available-memory", action="store", default=None,
|
||||
help=("Set amount of memory available for running the "
|
||||
"test suite. This can result to tests requiring "
|
||||
"especially large amounts of memory to be skipped. "
|
||||
"Equivalent to setting environment variable "
|
||||
"NPY_AVAILABLE_MEM. Default: determined"
|
||||
"automatically."))
|
||||
|
||||
|
||||
def pytest_sessionstart(session):
|
||||
available_mem = session.config.getoption('available_memory')
|
||||
if available_mem is not None:
|
||||
os.environ['NPY_AVAILABLE_MEM'] = available_mem
|
||||
|
||||
|
||||
#FIXME when yield tests are gone.
|
||||
@pytest.hookimpl()
|
||||
def pytest_itemcollected(item):
|
||||
"""
|
||||
Check FPU precision mode was not changed during test collection.
|
||||
|
||||
The clumsy way we do it here is mainly necessary because numpy
|
||||
still uses yield tests, which can execute code at test collection
|
||||
time.
|
||||
"""
|
||||
global _old_fpu_mode
|
||||
|
||||
mode = get_fpu_mode()
|
||||
|
||||
if _old_fpu_mode is None:
|
||||
_old_fpu_mode = mode
|
||||
elif mode != _old_fpu_mode:
|
||||
_collect_results[item] = (_old_fpu_mode, mode)
|
||||
_old_fpu_mode = mode
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def check_fpu_mode(request):
|
||||
"""
|
||||
Check FPU precision mode was not changed during the test.
|
||||
"""
|
||||
old_mode = get_fpu_mode()
|
||||
yield
|
||||
new_mode = get_fpu_mode()
|
||||
|
||||
if old_mode != new_mode:
|
||||
raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
|
||||
" during the test".format(old_mode, new_mode))
|
||||
|
||||
collect_result = _collect_results.get(request.node)
|
||||
if collect_result is not None:
|
||||
old_mode, new_mode = collect_result
|
||||
raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
|
||||
" when collecting the test".format(old_mode,
|
||||
new_mode))
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def add_np(doctest_namespace):
|
||||
doctest_namespace['np'] = numpy
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def env_setup(monkeypatch):
|
||||
monkeypatch.setenv('PYTHONHASHSEED', '0')
|
166
.venv/lib/python3.9/site-packages/numpy/core/__init__.py
Normal file
166
.venv/lib/python3.9/site-packages/numpy/core/__init__.py
Normal file
@@ -0,0 +1,166 @@
|
||||
"""
|
||||
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
|
||||
|
||||
Please note that this module is private. All functions and objects
|
||||
are available in the main ``numpy`` namespace - use that instead.
|
||||
|
||||
"""
|
||||
|
||||
from numpy.version import version as __version__
|
||||
|
||||
import os
|
||||
|
||||
# disables OpenBLAS affinity setting of the main thread that limits
|
||||
# python threads or processes to one core
|
||||
env_added = []
|
||||
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
|
||||
if envkey not in os.environ:
|
||||
os.environ[envkey] = '1'
|
||||
env_added.append(envkey)
|
||||
|
||||
try:
|
||||
from . import multiarray
|
||||
except ImportError as exc:
|
||||
import sys
|
||||
msg = """
|
||||
|
||||
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
|
||||
|
||||
Importing the numpy C-extensions failed. This error can happen for
|
||||
many reasons, often due to issues with your setup or how NumPy was
|
||||
installed.
|
||||
|
||||
We have compiled some common reasons and troubleshooting tips at:
|
||||
|
||||
https://numpy.org/devdocs/user/troubleshooting-importerror.html
|
||||
|
||||
Please note and check the following:
|
||||
|
||||
* The Python version is: Python%d.%d from "%s"
|
||||
* The NumPy version is: "%s"
|
||||
|
||||
and make sure that they are the versions you expect.
|
||||
Please carefully study the documentation linked above for further help.
|
||||
|
||||
Original error was: %s
|
||||
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
|
||||
__version__, exc)
|
||||
raise ImportError(msg)
|
||||
finally:
|
||||
for envkey in env_added:
|
||||
del os.environ[envkey]
|
||||
del envkey
|
||||
del env_added
|
||||
del os
|
||||
|
||||
from . import umath
|
||||
|
||||
# Check that multiarray,umath are pure python modules wrapping
|
||||
# _multiarray_umath and not either of the old c-extension modules
|
||||
if not (hasattr(multiarray, '_multiarray_umath') and
|
||||
hasattr(umath, '_multiarray_umath')):
|
||||
import sys
|
||||
path = sys.modules['numpy'].__path__
|
||||
msg = ("Something is wrong with the numpy installation. "
|
||||
"While importing we detected an older version of "
|
||||
"numpy in {}. One method of fixing this is to repeatedly uninstall "
|
||||
"numpy until none is found, then reinstall this version.")
|
||||
raise ImportError(msg.format(path))
|
||||
|
||||
from . import numerictypes as nt
|
||||
multiarray.set_typeDict(nt.sctypeDict)
|
||||
from . import numeric
|
||||
from .numeric import *
|
||||
from . import fromnumeric
|
||||
from .fromnumeric import *
|
||||
from . import defchararray as char
|
||||
from . import records as rec
|
||||
from .records import record, recarray, format_parser
|
||||
from .memmap import *
|
||||
from .defchararray import chararray
|
||||
from . import function_base
|
||||
from .function_base import *
|
||||
from . import machar
|
||||
from .machar import *
|
||||
from . import getlimits
|
||||
from .getlimits import *
|
||||
from . import shape_base
|
||||
from .shape_base import *
|
||||
from . import einsumfunc
|
||||
from .einsumfunc import *
|
||||
del nt
|
||||
|
||||
from .fromnumeric import amax as max, amin as min, round_ as round
|
||||
from .numeric import absolute as abs
|
||||
|
||||
# do this after everything else, to minimize the chance of this misleadingly
|
||||
# appearing in an import-time traceback
|
||||
from . import _add_newdocs
|
||||
from . import _add_newdocs_scalars
|
||||
# add these for module-freeze analysis (like PyInstaller)
|
||||
from . import _dtype_ctypes
|
||||
from . import _internal
|
||||
from . import _dtype
|
||||
from . import _methods
|
||||
|
||||
__all__ = ['char', 'rec', 'memmap']
|
||||
__all__ += numeric.__all__
|
||||
__all__ += fromnumeric.__all__
|
||||
__all__ += ['record', 'recarray', 'format_parser']
|
||||
__all__ += ['chararray']
|
||||
__all__ += function_base.__all__
|
||||
__all__ += machar.__all__
|
||||
__all__ += getlimits.__all__
|
||||
__all__ += shape_base.__all__
|
||||
__all__ += einsumfunc.__all__
|
||||
|
||||
# We used to use `np.core._ufunc_reconstruct` to unpickle. This is unnecessary,
|
||||
# but old pickles saved before 1.20 will be using it, and there is no reason
|
||||
# to break loading them.
|
||||
def _ufunc_reconstruct(module, name):
|
||||
# The `fromlist` kwarg is required to ensure that `mod` points to the
|
||||
# inner-most module rather than the parent package when module name is
|
||||
# nested. This makes it possible to pickle non-toplevel ufuncs such as
|
||||
# scipy.special.expit for instance.
|
||||
mod = __import__(module, fromlist=[name])
|
||||
return getattr(mod, name)
|
||||
|
||||
|
||||
def _ufunc_reduce(func):
|
||||
# Report the `__name__`. pickle will try to find the module. Note that
|
||||
# pickle supports for this `__name__` to be a `__qualname__`. It may
|
||||
# make sense to add a `__qualname__` to ufuncs, to allow this more
|
||||
# explicitly (Numba has ufuncs as attributes).
|
||||
# See also: https://github.com/dask/distributed/issues/3450
|
||||
return func.__name__
|
||||
|
||||
|
||||
def _DType_reconstruct(scalar_type):
|
||||
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
|
||||
# and it should eventually be replaced with a better solution, e.g. when
|
||||
# DTypes become HeapTypes.
|
||||
return type(dtype(scalar_type))
|
||||
|
||||
|
||||
def _DType_reduce(DType):
|
||||
# To pickle a DType without having to add top-level names, pickle the
|
||||
# scalar type for now (and assume that reconstruction will be possible).
|
||||
if DType is dtype:
|
||||
return "dtype" # must pickle `np.dtype` as a singleton.
|
||||
scalar_type = DType.type # pickle the scalar type for reconstruction
|
||||
return _DType_reconstruct, (scalar_type,)
|
||||
|
||||
|
||||
import copyreg
|
||||
|
||||
copyreg.pickle(ufunc, _ufunc_reduce)
|
||||
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
|
||||
|
||||
# Unclutter namespace (must keep _*_reconstruct for unpickling)
|
||||
del copyreg
|
||||
del _ufunc_reduce
|
||||
del _DType_reduce
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
@@ -0,0 +1,2 @@
|
||||
# NOTE: The `np.core` namespace is deliberately kept empty due to it
|
||||
# being private (despite the lack of leading underscore)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
6530
.venv/lib/python3.9/site-packages/numpy/core/_add_newdocs.py
Normal file
6530
.venv/lib/python3.9/site-packages/numpy/core/_add_newdocs.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,259 @@
|
||||
"""
|
||||
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
|
||||
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
|
||||
platform-dependent information.
|
||||
"""
|
||||
from numpy.core import dtype
|
||||
from numpy.core import numerictypes as _numerictypes
|
||||
from numpy.core.function_base import add_newdoc
|
||||
import platform
|
||||
|
||||
##############################################################################
|
||||
#
|
||||
# Documentation for concrete scalar classes
|
||||
#
|
||||
##############################################################################
|
||||
|
||||
def numeric_type_aliases(aliases):
|
||||
def type_aliases_gen():
|
||||
for alias, doc in aliases:
|
||||
try:
|
||||
alias_type = getattr(_numerictypes, alias)
|
||||
except AttributeError:
|
||||
# The set of aliases that actually exist varies between platforms
|
||||
pass
|
||||
else:
|
||||
yield (alias_type, alias, doc)
|
||||
return list(type_aliases_gen())
|
||||
|
||||
|
||||
possible_aliases = numeric_type_aliases([
|
||||
('int8', '8-bit signed integer (``-128`` to ``127``)'),
|
||||
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
|
||||
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
|
||||
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
|
||||
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
|
||||
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
|
||||
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
|
||||
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
|
||||
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
|
||||
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
|
||||
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
|
||||
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
|
||||
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
|
||||
('float96', '96-bit extended-precision floating-point number type'),
|
||||
('float128', '128-bit extended-precision floating-point number type'),
|
||||
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
|
||||
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
|
||||
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
|
||||
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
|
||||
])
|
||||
|
||||
|
||||
|
||||
|
||||
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
|
||||
# note: `:field: value` is rST syntax which renders as field lists.
|
||||
o = getattr(_numerictypes, obj)
|
||||
|
||||
character_code = dtype(o).char
|
||||
canonical_name_doc = "" if obj == o.__name__ else ":Canonical name: `numpy.{}`\n ".format(obj)
|
||||
alias_doc = ''.join(":Alias: `numpy.{}`\n ".format(alias) for alias in fixed_aliases)
|
||||
alias_doc += ''.join(":Alias on this platform ({} {}): `numpy.{}`: {}.\n ".format(platform.system(), platform.machine(), alias, doc)
|
||||
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
|
||||
docstring = """
|
||||
{doc}
|
||||
|
||||
:Character code: ``'{character_code}'``
|
||||
{canonical_name_doc}{alias_doc}
|
||||
""".format(doc=doc.strip(), character_code=character_code,
|
||||
canonical_name_doc=canonical_name_doc, alias_doc=alias_doc)
|
||||
|
||||
add_newdoc('numpy.core.numerictypes', obj, docstring)
|
||||
|
||||
|
||||
add_newdoc_for_scalar_type('bool_', ['bool8'],
|
||||
"""
|
||||
Boolean type (True or False), stored as a byte.
|
||||
|
||||
.. warning::
|
||||
|
||||
The :class:`bool_` type is not a subclass of the :class:`int_` type
|
||||
(the :class:`bool_` is not even a number type). This is different
|
||||
than Python's default implementation of :class:`bool` as a
|
||||
sub-class of :class:`int`.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('byte', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('short', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('intc', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``int``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('int_', [],
|
||||
"""
|
||||
Signed integer type, compatible with Python `int` and C ``long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longlong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ubyte', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ushort', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uintc', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned int``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uint', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ulonglong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``unsigned long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('half', [],
|
||||
"""
|
||||
Half-precision floating-point number type.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('single', [],
|
||||
"""
|
||||
Single-precision floating-point number type, compatible with C ``float``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('double', ['float_'],
|
||||
"""
|
||||
Double-precision floating-point number type, compatible with Python `float`
|
||||
and C ``double``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longdouble', ['longfloat'],
|
||||
"""
|
||||
Extended-precision floating-point number type, compatible with C
|
||||
``long double`` but not necessarily with IEEE 754 quadruple-precision.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
|
||||
"""
|
||||
Complex number type composed of two single-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
|
||||
"""
|
||||
Complex number type composed of two double-precision floating-point
|
||||
numbers, compatible with Python `complex`.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
|
||||
"""
|
||||
Complex number type composed of two extended-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('object_', [],
|
||||
"""
|
||||
Any Python object.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('str_', ['unicode_'],
|
||||
r"""
|
||||
A unicode string.
|
||||
|
||||
When used in arrays, this type strips trailing null codepoints.
|
||||
|
||||
Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
|
||||
contents as UCS4:
|
||||
|
||||
>>> m = memoryview(np.str_("abc"))
|
||||
>>> m.format
|
||||
'3w'
|
||||
>>> m.tobytes()
|
||||
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('bytes_', ['string_'],
|
||||
r"""
|
||||
A byte string.
|
||||
|
||||
When used in arrays, this type strips trailing null bytes.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('void', [],
|
||||
r"""
|
||||
Either an opaque sequence of bytes, or a structure.
|
||||
|
||||
>>> np.void(b'abcd')
|
||||
void(b'\x61\x62\x63\x64')
|
||||
|
||||
Structured `void` scalars can only be constructed via extraction from :ref:`structured_arrays`:
|
||||
|
||||
>>> arr = np.array((1, 2), dtype=[('x', np.int8), ('y', np.int8)])
|
||||
>>> arr[()]
|
||||
(1, 2) # looks like a tuple, but is `np.void`
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('datetime64', [],
|
||||
"""
|
||||
If created from a 64-bit integer, it represents an offset from
|
||||
``1970-01-01T00:00:00``.
|
||||
If created from string, the string can be in ISO 8601 date
|
||||
or datetime format.
|
||||
|
||||
>>> np.datetime64(10, 'Y')
|
||||
numpy.datetime64('1980')
|
||||
>>> np.datetime64('1980', 'Y')
|
||||
numpy.datetime64('1980')
|
||||
>>> np.datetime64(10, 'D')
|
||||
numpy.datetime64('1970-01-11')
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('timedelta64', [],
|
||||
"""
|
||||
A timedelta stored as a 64-bit integer.
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
# TODO: work out how to put this on the base class, np.floating
|
||||
for float_name in ('half', 'single', 'double', 'longdouble'):
|
||||
add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
|
||||
"""
|
||||
{ftype}.as_integer_ratio() -> (int, int)
|
||||
|
||||
Return a pair of integers, whose ratio is exactly equal to the original
|
||||
floating point number, and with a positive denominator.
|
||||
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
|
||||
|
||||
>>> np.{ftype}(10.0).as_integer_ratio()
|
||||
(10, 1)
|
||||
>>> np.{ftype}(0.0).as_integer_ratio()
|
||||
(0, 1)
|
||||
>>> np.{ftype}(-.25).as_integer_ratio()
|
||||
(-1, 4)
|
||||
""".format(ftype=float_name)))
|
140
.venv/lib/python3.9/site-packages/numpy/core/_asarray.py
Normal file
140
.venv/lib/python3.9/site-packages/numpy/core/_asarray.py
Normal file
@@ -0,0 +1,140 @@
|
||||
"""
|
||||
Functions in the ``as*array`` family that promote array-likes into arrays.
|
||||
|
||||
`require` fits this category despite its name not matching this pattern.
|
||||
"""
|
||||
from .overrides import (
|
||||
array_function_dispatch,
|
||||
set_array_function_like_doc,
|
||||
set_module,
|
||||
)
|
||||
from .multiarray import array, asanyarray
|
||||
|
||||
|
||||
__all__ = ["require"]
|
||||
|
||||
|
||||
|
||||
def _require_dispatcher(a, dtype=None, requirements=None, *, like=None):
|
||||
return (like,)
|
||||
|
||||
|
||||
@set_array_function_like_doc
|
||||
@set_module('numpy')
|
||||
def require(a, dtype=None, requirements=None, *, like=None):
|
||||
"""
|
||||
Return an ndarray of the provided type that satisfies requirements.
|
||||
|
||||
This function is useful to be sure that an array with the correct flags
|
||||
is returned for passing to compiled code (perhaps through ctypes).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The object to be converted to a type-and-requirement-satisfying array.
|
||||
dtype : data-type
|
||||
The required data-type. If None preserve the current dtype. If your
|
||||
application requires the data to be in native byteorder, include
|
||||
a byteorder specification as a part of the dtype specification.
|
||||
requirements : str or list of str
|
||||
The requirements list can be any of the following
|
||||
|
||||
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
||||
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
||||
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
||||
* 'WRITEABLE' ('W') - ensure a writable array
|
||||
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
||||
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
||||
${ARRAY_FUNCTION_LIKE}
|
||||
|
||||
.. versionadded:: 1.20.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Array with specified requirements and type if given.
|
||||
|
||||
See Also
|
||||
--------
|
||||
asarray : Convert input to an ndarray.
|
||||
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
||||
ascontiguousarray : Convert input to a contiguous array.
|
||||
asfortranarray : Convert input to an ndarray with column-major
|
||||
memory order.
|
||||
ndarray.flags : Information about the memory layout of the array.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The returned array will be guaranteed to have the listed requirements
|
||||
by making a copy if needed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> x = np.arange(6).reshape(2,3)
|
||||
>>> x.flags
|
||||
C_CONTIGUOUS : True
|
||||
F_CONTIGUOUS : False
|
||||
OWNDATA : False
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
UPDATEIFCOPY : False
|
||||
|
||||
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
||||
>>> y.flags
|
||||
C_CONTIGUOUS : False
|
||||
F_CONTIGUOUS : True
|
||||
OWNDATA : True
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
UPDATEIFCOPY : False
|
||||
|
||||
"""
|
||||
if like is not None:
|
||||
return _require_with_like(
|
||||
a,
|
||||
dtype=dtype,
|
||||
requirements=requirements,
|
||||
like=like,
|
||||
)
|
||||
|
||||
possible_flags = {'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
||||
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
||||
'A': 'A', 'ALIGNED': 'A',
|
||||
'W': 'W', 'WRITEABLE': 'W',
|
||||
'O': 'O', 'OWNDATA': 'O',
|
||||
'E': 'E', 'ENSUREARRAY': 'E'}
|
||||
if not requirements:
|
||||
return asanyarray(a, dtype=dtype)
|
||||
else:
|
||||
requirements = {possible_flags[x.upper()] for x in requirements}
|
||||
|
||||
if 'E' in requirements:
|
||||
requirements.remove('E')
|
||||
subok = False
|
||||
else:
|
||||
subok = True
|
||||
|
||||
order = 'A'
|
||||
if requirements >= {'C', 'F'}:
|
||||
raise ValueError('Cannot specify both "C" and "F" order')
|
||||
elif 'F' in requirements:
|
||||
order = 'F'
|
||||
requirements.remove('F')
|
||||
elif 'C' in requirements:
|
||||
order = 'C'
|
||||
requirements.remove('C')
|
||||
|
||||
arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
|
||||
|
||||
for prop in requirements:
|
||||
if not arr.flags[prop]:
|
||||
arr = arr.copy(order)
|
||||
break
|
||||
return arr
|
||||
|
||||
|
||||
_require_with_like = array_function_dispatch(
|
||||
_require_dispatcher
|
||||
)(require)
|
81
.venv/lib/python3.9/site-packages/numpy/core/_asarray.pyi
Normal file
81
.venv/lib/python3.9/site-packages/numpy/core/_asarray.pyi
Normal file
@@ -0,0 +1,81 @@
|
||||
import sys
|
||||
from typing import TypeVar, Union, Iterable, overload
|
||||
|
||||
from numpy import ndarray, _OrderKACF
|
||||
from numpy.typing import ArrayLike, DTypeLike
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import Literal
|
||||
else:
|
||||
from typing_extensions import Literal
|
||||
|
||||
_ArrayType = TypeVar("_ArrayType", bound=ndarray)
|
||||
|
||||
# TODO: The following functions are now defined in C, so should be defined
|
||||
# in a (not yet existing) `multiarray.pyi`.
|
||||
# (with the exception of `require`)
|
||||
|
||||
def asarray(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
order: _OrderKACF = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
||||
@overload
|
||||
def asanyarray(
|
||||
a: _ArrayType,
|
||||
dtype: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def asanyarray(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
order: _OrderKACF = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
||||
def ascontiguousarray(
|
||||
a: object, dtype: DTypeLike = ..., *, like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
||||
def asfortranarray(
|
||||
a: object, dtype: DTypeLike = ..., *, like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
||||
|
||||
_Requirements = Literal[
|
||||
"C", "C_CONTIGUOUS", "CONTIGUOUS",
|
||||
"F", "F_CONTIGUOUS", "FORTRAN",
|
||||
"A", "ALIGNED",
|
||||
"W", "WRITEABLE",
|
||||
"O", "OWNDATA"
|
||||
]
|
||||
_E = Literal["E", "ENSUREARRAY"]
|
||||
_RequirementsWithE = Union[_Requirements, _E]
|
||||
|
||||
@overload
|
||||
def require(
|
||||
a: _ArrayType,
|
||||
dtype: None = ...,
|
||||
requirements: Union[None, _Requirements, Iterable[_Requirements]] = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: Union[_E, Iterable[_RequirementsWithE]] = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: Union[None, _Requirements, Iterable[_Requirements]] = ...,
|
||||
*,
|
||||
like: ArrayLike = ...
|
||||
) -> ndarray: ...
|
342
.venv/lib/python3.9/site-packages/numpy/core/_dtype.py
Normal file
342
.venv/lib/python3.9/site-packages/numpy/core/_dtype.py
Normal file
@@ -0,0 +1,342 @@
|
||||
"""
|
||||
A place for code to be called from the implementation of np.dtype
|
||||
|
||||
String handling is much easier to do correctly in python.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
_kind_to_stem = {
|
||||
'u': 'uint',
|
||||
'i': 'int',
|
||||
'c': 'complex',
|
||||
'f': 'float',
|
||||
'b': 'bool',
|
||||
'V': 'void',
|
||||
'O': 'object',
|
||||
'M': 'datetime',
|
||||
'm': 'timedelta',
|
||||
'S': 'bytes',
|
||||
'U': 'str',
|
||||
}
|
||||
|
||||
|
||||
def _kind_name(dtype):
|
||||
try:
|
||||
return _kind_to_stem[dtype.kind]
|
||||
except KeyError as e:
|
||||
raise RuntimeError(
|
||||
"internal dtype error, unknown kind {!r}"
|
||||
.format(dtype.kind)
|
||||
) from None
|
||||
|
||||
|
||||
def __str__(dtype):
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=True)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
|
||||
return dtype.str
|
||||
else:
|
||||
return dtype.name
|
||||
|
||||
|
||||
def __repr__(dtype):
|
||||
arg_str = _construction_repr(dtype, include_align=False)
|
||||
if dtype.isalignedstruct:
|
||||
arg_str = arg_str + ", align=True"
|
||||
return "dtype({})".format(arg_str)
|
||||
|
||||
|
||||
def _unpack_field(dtype, offset, title=None):
|
||||
"""
|
||||
Helper function to normalize the items in dtype.fields.
|
||||
|
||||
Call as:
|
||||
|
||||
dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
"""
|
||||
return dtype, offset, title
|
||||
|
||||
|
||||
def _isunsized(dtype):
|
||||
# PyDataType_ISUNSIZED
|
||||
return dtype.itemsize == 0
|
||||
|
||||
|
||||
def _construction_repr(dtype, include_align=False, short=False):
|
||||
"""
|
||||
Creates a string repr of the dtype, excluding the 'dtype()' part
|
||||
surrounding the object. This object may be a string, a list, or
|
||||
a dict depending on the nature of the dtype. This
|
||||
is the object passed as the first parameter to the dtype
|
||||
constructor, and if no additional constructor parameters are
|
||||
given, will reproduce the exact memory layout.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
short : bool
|
||||
If true, this creates a shorter repr using 'kind' and 'itemsize', instead
|
||||
of the longer type name.
|
||||
|
||||
include_align : bool
|
||||
If true, this includes the 'align=True' parameter
|
||||
inside the struct dtype construction dict when needed. Use this flag
|
||||
if you want a proper repr string without the 'dtype()' part around it.
|
||||
|
||||
If false, this does not preserve the
|
||||
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
|
||||
struct arrays like the regular repr does, because the 'align'
|
||||
flag is not part of first dtype constructor parameter. This
|
||||
mode is intended for a full 'repr', where the 'align=True' is
|
||||
provided as the second parameter.
|
||||
"""
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=include_align)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
else:
|
||||
return _scalar_str(dtype, short=short)
|
||||
|
||||
|
||||
def _scalar_str(dtype, short):
|
||||
byteorder = _byte_order_str(dtype)
|
||||
|
||||
if dtype.type == np.bool_:
|
||||
if short:
|
||||
return "'?'"
|
||||
else:
|
||||
return "'bool'"
|
||||
|
||||
elif dtype.type == np.object_:
|
||||
# The object reference may be different sizes on different
|
||||
# platforms, so it should never include the itemsize here.
|
||||
return "'O'"
|
||||
|
||||
elif dtype.type == np.string_:
|
||||
if _isunsized(dtype):
|
||||
return "'S'"
|
||||
else:
|
||||
return "'S%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.unicode_:
|
||||
if _isunsized(dtype):
|
||||
return "'%sU'" % byteorder
|
||||
else:
|
||||
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
|
||||
|
||||
# unlike the other types, subclasses of void are preserved - but
|
||||
# historically the repr does not actually reveal the subclass
|
||||
elif issubclass(dtype.type, np.void):
|
||||
if _isunsized(dtype):
|
||||
return "'V'"
|
||||
else:
|
||||
return "'V%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.datetime64:
|
||||
return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif dtype.type == np.timedelta64:
|
||||
return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif np.issubdtype(dtype, np.number):
|
||||
# Short repr with endianness, like '<f8'
|
||||
if short or dtype.byteorder not in ('=', '|'):
|
||||
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
|
||||
|
||||
# Longer repr, like 'float64'
|
||||
else:
|
||||
return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
|
||||
|
||||
elif dtype.isbuiltin == 2:
|
||||
return dtype.type.__name__
|
||||
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Internal error: NumPy dtype unrecognized type number")
|
||||
|
||||
|
||||
def _byte_order_str(dtype):
|
||||
""" Normalize byteorder to '<' or '>' """
|
||||
# hack to obtain the native and swapped byte order characters
|
||||
swapped = np.dtype(int).newbyteorder('S')
|
||||
native = swapped.newbyteorder('S')
|
||||
|
||||
byteorder = dtype.byteorder
|
||||
if byteorder == '=':
|
||||
return native.byteorder
|
||||
if byteorder == 'S':
|
||||
# TODO: this path can never be reached
|
||||
return swapped.byteorder
|
||||
elif byteorder == '|':
|
||||
return ''
|
||||
else:
|
||||
return byteorder
|
||||
|
||||
|
||||
def _datetime_metadata_str(dtype):
|
||||
# TODO: this duplicates the C metastr_to_unicode functionality
|
||||
unit, count = np.datetime_data(dtype)
|
||||
if unit == 'generic':
|
||||
return ''
|
||||
elif count == 1:
|
||||
return '[{}]'.format(unit)
|
||||
else:
|
||||
return '[{}{}]'.format(count, unit)
|
||||
|
||||
|
||||
def _struct_dict_str(dtype, includealignedflag):
|
||||
# unpack the fields dictionary into ls
|
||||
names = dtype.names
|
||||
fld_dtypes = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
fld_dtypes.append(fld_dtype)
|
||||
offsets.append(offset)
|
||||
titles.append(title)
|
||||
|
||||
# Build up a string to make the dictionary
|
||||
|
||||
# First, the names
|
||||
ret = "{'names':["
|
||||
ret += ",".join(repr(name) for name in names)
|
||||
|
||||
# Second, the formats
|
||||
ret += "], 'formats':["
|
||||
ret += ",".join(
|
||||
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
|
||||
|
||||
# Third, the offsets
|
||||
ret += "], 'offsets':["
|
||||
ret += ",".join("%d" % offset for offset in offsets)
|
||||
|
||||
# Fourth, the titles
|
||||
if any(title is not None for title in titles):
|
||||
ret += "], 'titles':["
|
||||
ret += ",".join(repr(title) for title in titles)
|
||||
|
||||
# Fifth, the itemsize
|
||||
ret += "], 'itemsize':%d" % dtype.itemsize
|
||||
|
||||
if (includealignedflag and dtype.isalignedstruct):
|
||||
# Finally, the aligned flag
|
||||
ret += ", 'aligned':True}"
|
||||
else:
|
||||
ret += "}"
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def _is_packed(dtype):
|
||||
"""
|
||||
Checks whether the structured data type in 'dtype'
|
||||
has a simple layout, where all the fields are in order,
|
||||
and follow each other with no alignment padding.
|
||||
|
||||
When this returns true, the dtype can be reconstructed
|
||||
from a list of the field names and dtypes with no additional
|
||||
dtype parameters.
|
||||
|
||||
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
|
||||
"""
|
||||
total_offset = 0
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
if fld_offset != total_offset:
|
||||
return False
|
||||
total_offset += fld_dtype.itemsize
|
||||
if total_offset != dtype.itemsize:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def _struct_list_str(dtype):
|
||||
items = []
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
|
||||
item = "("
|
||||
if title is not None:
|
||||
item += "({!r}, {!r}), ".format(title, name)
|
||||
else:
|
||||
item += "{!r}, ".format(name)
|
||||
# Special case subarray handling here
|
||||
if fld_dtype.subdtype is not None:
|
||||
base, shape = fld_dtype.subdtype
|
||||
item += "{}, {}".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
else:
|
||||
item += _construction_repr(fld_dtype, short=True)
|
||||
|
||||
item += ")"
|
||||
items.append(item)
|
||||
|
||||
return "[" + ", ".join(items) + "]"
|
||||
|
||||
|
||||
def _struct_str(dtype, include_align):
|
||||
# The list str representation can't include the 'align=' flag,
|
||||
# so if it is requested and the struct has the aligned flag set,
|
||||
# we must use the dict str instead.
|
||||
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
|
||||
sub = _struct_list_str(dtype)
|
||||
|
||||
else:
|
||||
sub = _struct_dict_str(dtype, include_align)
|
||||
|
||||
# If the data type isn't the default, void, show it
|
||||
if dtype.type != np.void:
|
||||
return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
|
||||
else:
|
||||
return sub
|
||||
|
||||
|
||||
def _subarray_str(dtype):
|
||||
base, shape = dtype.subdtype
|
||||
return "({}, {})".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
|
||||
|
||||
def _name_includes_bit_suffix(dtype):
|
||||
if dtype.type == np.object_:
|
||||
# pointer size varies by system, best to omit it
|
||||
return False
|
||||
elif dtype.type == np.bool_:
|
||||
# implied
|
||||
return False
|
||||
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
|
||||
# unspecified
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def _name_get(dtype):
|
||||
# provides dtype.name.__get__, documented as returning a "bit name"
|
||||
|
||||
if dtype.isbuiltin == 2:
|
||||
# user dtypes don't promise to do anything special
|
||||
return dtype.type.__name__
|
||||
|
||||
if issubclass(dtype.type, np.void):
|
||||
# historically, void subclasses preserve their name, eg `record64`
|
||||
name = dtype.type.__name__
|
||||
else:
|
||||
name = _kind_name(dtype)
|
||||
|
||||
# append bit counts
|
||||
if _name_includes_bit_suffix(dtype):
|
||||
name += "{}".format(dtype.itemsize * 8)
|
||||
|
||||
# append metadata to datetimes
|
||||
if dtype.type in (np.datetime64, np.timedelta64):
|
||||
name += _datetime_metadata_str(dtype)
|
||||
|
||||
return name
|
117
.venv/lib/python3.9/site-packages/numpy/core/_dtype_ctypes.py
Normal file
117
.venv/lib/python3.9/site-packages/numpy/core/_dtype_ctypes.py
Normal file
@@ -0,0 +1,117 @@
|
||||
"""
|
||||
Conversion from ctypes to dtype.
|
||||
|
||||
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
|
||||
something like::
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
# needed to ensure that the shape of `t` is within memoryview.format
|
||||
class DummyStruct(ctypes.Structure):
|
||||
_fields_ = [('a', t)]
|
||||
|
||||
# empty to avoid memory allocation
|
||||
ctype_0 = (DummyStruct * 0)()
|
||||
mv = memoryview(ctype_0)
|
||||
|
||||
# convert the struct, and slice back out the field
|
||||
return _dtype_from_pep3118(mv.format)['a']
|
||||
|
||||
Unfortunately, this fails because:
|
||||
|
||||
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
|
||||
* PEP3118 cannot represent unions, but both numpy and ctypes can
|
||||
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
|
||||
"""
|
||||
|
||||
# We delay-import ctypes for distributions that do not include it.
|
||||
# While this module is not used unless the user passes in ctypes
|
||||
# members, it is eagerly imported from numpy/core/__init__.py.
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _from_ctypes_array(t):
|
||||
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
|
||||
|
||||
|
||||
def _from_ctypes_structure(t):
|
||||
for item in t._fields_:
|
||||
if len(item) > 2:
|
||||
raise TypeError(
|
||||
"ctypes bitfields have no dtype equivalent")
|
||||
|
||||
if hasattr(t, "_pack_"):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
current_offset = 0
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
# Each type has a default offset, this is platform dependent for some types.
|
||||
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
|
||||
current_offset = ((current_offset + effective_pack - 1) // effective_pack) * effective_pack
|
||||
offsets.append(current_offset)
|
||||
current_offset += ctypes.sizeof(ftyp)
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
else:
|
||||
fields = []
|
||||
for fname, ftyp in t._fields_:
|
||||
fields.append((fname, dtype_from_ctypes_type(ftyp)))
|
||||
|
||||
# by default, ctypes structs are aligned
|
||||
return np.dtype(fields, align=True)
|
||||
|
||||
|
||||
def _from_ctypes_scalar(t):
|
||||
"""
|
||||
Return the dtype type with endianness included if it's the case
|
||||
"""
|
||||
if getattr(t, '__ctype_be__', None) is t:
|
||||
return np.dtype('>' + t._type_)
|
||||
elif getattr(t, '__ctype_le__', None) is t:
|
||||
return np.dtype('<' + t._type_)
|
||||
else:
|
||||
return np.dtype(t._type_)
|
||||
|
||||
|
||||
def _from_ctypes_union(t):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
offsets.append(0) # Union fields are offset to 0
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
"""
|
||||
Construct a dtype object from a ctypes type
|
||||
"""
|
||||
import _ctypes
|
||||
if issubclass(t, _ctypes.Array):
|
||||
return _from_ctypes_array(t)
|
||||
elif issubclass(t, _ctypes._Pointer):
|
||||
raise TypeError("ctypes pointers have no dtype equivalent")
|
||||
elif issubclass(t, _ctypes.Structure):
|
||||
return _from_ctypes_structure(t)
|
||||
elif issubclass(t, _ctypes.Union):
|
||||
return _from_ctypes_union(t)
|
||||
elif isinstance(getattr(t, '_type_', None), str):
|
||||
return _from_ctypes_scalar(t)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Unknown ctypes type {}".format(t.__name__))
|
197
.venv/lib/python3.9/site-packages/numpy/core/_exceptions.py
Normal file
197
.venv/lib/python3.9/site-packages/numpy/core/_exceptions.py
Normal file
@@ -0,0 +1,197 @@
|
||||
"""
|
||||
Various richly-typed exceptions, that also help us deal with string formatting
|
||||
in python where it's easier.
|
||||
|
||||
By putting the formatting in `__str__`, we also avoid paying the cost for
|
||||
users who silence the exceptions.
|
||||
"""
|
||||
from numpy.core.overrides import set_module
|
||||
|
||||
def _unpack_tuple(tup):
|
||||
if len(tup) == 1:
|
||||
return tup[0]
|
||||
else:
|
||||
return tup
|
||||
|
||||
|
||||
def _display_as_base(cls):
|
||||
"""
|
||||
A decorator that makes an exception class look like its base.
|
||||
|
||||
We use this to hide subclasses that are implementation details - the user
|
||||
should catch the base type, which is what the traceback will show them.
|
||||
|
||||
Classes decorated with this decorator are subject to removal without a
|
||||
deprecation warning.
|
||||
"""
|
||||
assert issubclass(cls, Exception)
|
||||
cls.__name__ = cls.__base__.__name__
|
||||
return cls
|
||||
|
||||
|
||||
class UFuncTypeError(TypeError):
|
||||
""" Base class for all ufunc exceptions """
|
||||
def __init__(self, ufunc):
|
||||
self.ufunc = ufunc
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncBinaryResolutionError(UFuncTypeError):
|
||||
""" Thrown when a binary resolution fails """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc)
|
||||
self.dtypes = tuple(dtypes)
|
||||
assert len(self.dtypes) == 2
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, *self.dtypes
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncNoLoopError(UFuncTypeError):
|
||||
""" Thrown when a ufunc loop cannot be found """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc)
|
||||
self.dtypes = tuple(dtypes)
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} did not contain a loop with signature matching types "
|
||||
"{!r} -> {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__,
|
||||
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
|
||||
_unpack_tuple(self.dtypes[self.ufunc.nin:])
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncCastingError(UFuncTypeError):
|
||||
def __init__(self, ufunc, casting, from_, to):
|
||||
super().__init__(ufunc)
|
||||
self.casting = casting
|
||||
self.from_ = from_
|
||||
self.to = to
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncInputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc input cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.in_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one input exists
|
||||
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc output cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.out_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one output exists
|
||||
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
# Exception used in shares_memory()
|
||||
@set_module('numpy')
|
||||
class TooHardError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class AxisError(ValueError, IndexError):
|
||||
""" Axis supplied was invalid. """
|
||||
def __init__(self, axis, ndim=None, msg_prefix=None):
|
||||
# single-argument form just delegates to base class
|
||||
if ndim is None and msg_prefix is None:
|
||||
msg = axis
|
||||
|
||||
# do the string formatting here, to save work in the C code
|
||||
else:
|
||||
msg = ("axis {} is out of bounds for array of dimension {}"
|
||||
.format(axis, ndim))
|
||||
if msg_prefix is not None:
|
||||
msg = "{}: {}".format(msg_prefix, msg)
|
||||
|
||||
super().__init__(msg)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _ArrayMemoryError(MemoryError):
|
||||
""" Thrown when an array cannot be allocated"""
|
||||
def __init__(self, shape, dtype):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
|
||||
@property
|
||||
def _total_size(self):
|
||||
num_bytes = self.dtype.itemsize
|
||||
for dim in self.shape:
|
||||
num_bytes *= dim
|
||||
return num_bytes
|
||||
|
||||
@staticmethod
|
||||
def _size_to_string(num_bytes):
|
||||
""" Convert a number of bytes into a binary size string """
|
||||
|
||||
# https://en.wikipedia.org/wiki/Binary_prefix
|
||||
LOG2_STEP = 10
|
||||
STEP = 1024
|
||||
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
||||
|
||||
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
||||
unit_val = 1 << (unit_i * LOG2_STEP)
|
||||
n_units = num_bytes / unit_val
|
||||
del unit_val
|
||||
|
||||
# ensure we pick a unit that is correct after rounding
|
||||
if round(n_units) == STEP:
|
||||
unit_i += 1
|
||||
n_units /= STEP
|
||||
|
||||
# deal with sizes so large that we don't have units for them
|
||||
if unit_i >= len(units):
|
||||
new_unit_i = len(units) - 1
|
||||
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
||||
unit_i = new_unit_i
|
||||
|
||||
unit_name = units[unit_i]
|
||||
# format with a sensible number of digits
|
||||
if unit_i == 0:
|
||||
# no decimal point on bytes
|
||||
return '{:.0f} {}'.format(n_units, unit_name)
|
||||
elif round(n_units) < 1000:
|
||||
# 3 significant figures, if none are dropped to the left of the .
|
||||
return '{:#.3g} {}'.format(n_units, unit_name)
|
||||
else:
|
||||
# just give all the digits otherwise
|
||||
return '{:#.0f} {}'.format(n_units, unit_name)
|
||||
|
||||
def __str__(self):
|
||||
size_str = self._size_to_string(self._total_size)
|
||||
return (
|
||||
"Unable to allocate {} for an array with shape {} and data type {}"
|
||||
.format(size_str, self.shape, self.dtype)
|
||||
)
|
910
.venv/lib/python3.9/site-packages/numpy/core/_internal.py
Normal file
910
.venv/lib/python3.9/site-packages/numpy/core/_internal.py
Normal file
@@ -0,0 +1,910 @@
|
||||
"""
|
||||
A place for internal code
|
||||
|
||||
Some things are more easily handled Python.
|
||||
|
||||
"""
|
||||
import ast
|
||||
import re
|
||||
import sys
|
||||
import platform
|
||||
import warnings
|
||||
|
||||
from .multiarray import dtype, array, ndarray
|
||||
try:
|
||||
import ctypes
|
||||
except ImportError:
|
||||
ctypes = None
|
||||
|
||||
IS_PYPY = platform.python_implementation() == 'PyPy'
|
||||
|
||||
if sys.byteorder == 'little':
|
||||
_nbo = '<'
|
||||
else:
|
||||
_nbo = '>'
|
||||
|
||||
def _makenames_list(adict, align):
|
||||
allfields = []
|
||||
|
||||
for fname, obj in adict.items():
|
||||
n = len(obj)
|
||||
if not isinstance(obj, tuple) or n not in (2, 3):
|
||||
raise ValueError("entry not a 2- or 3- tuple")
|
||||
if n > 2 and obj[2] == fname:
|
||||
continue
|
||||
num = int(obj[1])
|
||||
if num < 0:
|
||||
raise ValueError("invalid offset.")
|
||||
format = dtype(obj[0], align=align)
|
||||
if n > 2:
|
||||
title = obj[2]
|
||||
else:
|
||||
title = None
|
||||
allfields.append((fname, format, num, title))
|
||||
# sort by offsets
|
||||
allfields.sort(key=lambda x: x[2])
|
||||
names = [x[0] for x in allfields]
|
||||
formats = [x[1] for x in allfields]
|
||||
offsets = [x[2] for x in allfields]
|
||||
titles = [x[3] for x in allfields]
|
||||
|
||||
return names, formats, offsets, titles
|
||||
|
||||
# Called in PyArray_DescrConverter function when
|
||||
# a dictionary without "names" and "formats"
|
||||
# fields is used as a data-type descriptor.
|
||||
def _usefields(adict, align):
|
||||
try:
|
||||
names = adict[-1]
|
||||
except KeyError:
|
||||
names = None
|
||||
if names is None:
|
||||
names, formats, offsets, titles = _makenames_list(adict, align)
|
||||
else:
|
||||
formats = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
res = adict[name]
|
||||
formats.append(res[0])
|
||||
offsets.append(res[1])
|
||||
if len(res) > 2:
|
||||
titles.append(res[2])
|
||||
else:
|
||||
titles.append(None)
|
||||
|
||||
return dtype({"names": names,
|
||||
"formats": formats,
|
||||
"offsets": offsets,
|
||||
"titles": titles}, align)
|
||||
|
||||
|
||||
# construct an array_protocol descriptor list
|
||||
# from the fields attribute of a descriptor
|
||||
# This calls itself recursively but should eventually hit
|
||||
# a descriptor that has no fields and then return
|
||||
# a simple typestring
|
||||
|
||||
def _array_descr(descriptor):
|
||||
fields = descriptor.fields
|
||||
if fields is None:
|
||||
subdtype = descriptor.subdtype
|
||||
if subdtype is None:
|
||||
if descriptor.metadata is None:
|
||||
return descriptor.str
|
||||
else:
|
||||
new = descriptor.metadata.copy()
|
||||
if new:
|
||||
return (descriptor.str, new)
|
||||
else:
|
||||
return descriptor.str
|
||||
else:
|
||||
return (_array_descr(subdtype[0]), subdtype[1])
|
||||
|
||||
names = descriptor.names
|
||||
ordered_fields = [fields[x] + (x,) for x in names]
|
||||
result = []
|
||||
offset = 0
|
||||
for field in ordered_fields:
|
||||
if field[1] > offset:
|
||||
num = field[1] - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
offset += num
|
||||
elif field[1] < offset:
|
||||
raise ValueError(
|
||||
"dtype.descr is not defined for types with overlapping or "
|
||||
"out-of-order fields")
|
||||
if len(field) > 3:
|
||||
name = (field[2], field[3])
|
||||
else:
|
||||
name = field[2]
|
||||
if field[0].subdtype:
|
||||
tup = (name, _array_descr(field[0].subdtype[0]),
|
||||
field[0].subdtype[1])
|
||||
else:
|
||||
tup = (name, _array_descr(field[0]))
|
||||
offset += field[0].itemsize
|
||||
result.append(tup)
|
||||
|
||||
if descriptor.itemsize > offset:
|
||||
num = descriptor.itemsize - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
|
||||
return result
|
||||
|
||||
# Build a new array from the information in a pickle.
|
||||
# Note that the name numpy.core._internal._reconstruct is embedded in
|
||||
# pickles of ndarrays made with NumPy before release 1.0
|
||||
# so don't remove the name here, or you'll
|
||||
# break backward compatibility.
|
||||
def _reconstruct(subtype, shape, dtype):
|
||||
return ndarray.__new__(subtype, shape, dtype)
|
||||
|
||||
|
||||
# format_re was originally from numarray by J. Todd Miller
|
||||
|
||||
format_re = re.compile(r'(?P<order1>[<>|=]?)'
|
||||
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
|
||||
r'(?P<order2>[<>|=]?)'
|
||||
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
|
||||
sep_re = re.compile(r'\s*,\s*')
|
||||
space_re = re.compile(r'\s+$')
|
||||
|
||||
# astr is a string (perhaps comma separated)
|
||||
|
||||
_convorder = {'=': _nbo}
|
||||
|
||||
def _commastring(astr):
|
||||
startindex = 0
|
||||
result = []
|
||||
while startindex < len(astr):
|
||||
mo = format_re.match(astr, pos=startindex)
|
||||
try:
|
||||
(order1, repeats, order2, dtype) = mo.groups()
|
||||
except (TypeError, AttributeError):
|
||||
raise ValueError(
|
||||
f'format number {len(result)+1} of "{astr}" is not recognized'
|
||||
) from None
|
||||
startindex = mo.end()
|
||||
# Separator or ending padding
|
||||
if startindex < len(astr):
|
||||
if space_re.match(astr, pos=startindex):
|
||||
startindex = len(astr)
|
||||
else:
|
||||
mo = sep_re.match(astr, pos=startindex)
|
||||
if not mo:
|
||||
raise ValueError(
|
||||
'format number %d of "%s" is not recognized' %
|
||||
(len(result)+1, astr))
|
||||
startindex = mo.end()
|
||||
|
||||
if order2 == '':
|
||||
order = order1
|
||||
elif order1 == '':
|
||||
order = order2
|
||||
else:
|
||||
order1 = _convorder.get(order1, order1)
|
||||
order2 = _convorder.get(order2, order2)
|
||||
if (order1 != order2):
|
||||
raise ValueError(
|
||||
'inconsistent byte-order specification %s and %s' %
|
||||
(order1, order2))
|
||||
order = order1
|
||||
|
||||
if order in ('|', '=', _nbo):
|
||||
order = ''
|
||||
dtype = order + dtype
|
||||
if (repeats == ''):
|
||||
newitem = dtype
|
||||
else:
|
||||
newitem = (dtype, ast.literal_eval(repeats))
|
||||
result.append(newitem)
|
||||
|
||||
return result
|
||||
|
||||
class dummy_ctype:
|
||||
def __init__(self, cls):
|
||||
self._cls = cls
|
||||
def __mul__(self, other):
|
||||
return self
|
||||
def __call__(self, *other):
|
||||
return self._cls(other)
|
||||
def __eq__(self, other):
|
||||
return self._cls == other._cls
|
||||
def __ne__(self, other):
|
||||
return self._cls != other._cls
|
||||
|
||||
def _getintp_ctype():
|
||||
val = _getintp_ctype.cache
|
||||
if val is not None:
|
||||
return val
|
||||
if ctypes is None:
|
||||
import numpy as np
|
||||
val = dummy_ctype(np.intp)
|
||||
else:
|
||||
char = dtype('p').char
|
||||
if char == 'i':
|
||||
val = ctypes.c_int
|
||||
elif char == 'l':
|
||||
val = ctypes.c_long
|
||||
elif char == 'q':
|
||||
val = ctypes.c_longlong
|
||||
else:
|
||||
val = ctypes.c_long
|
||||
_getintp_ctype.cache = val
|
||||
return val
|
||||
_getintp_ctype.cache = None
|
||||
|
||||
# Used for .ctypes attribute of ndarray
|
||||
|
||||
class _missing_ctypes:
|
||||
def cast(self, num, obj):
|
||||
return num.value
|
||||
|
||||
class c_void_p:
|
||||
def __init__(self, ptr):
|
||||
self.value = ptr
|
||||
|
||||
|
||||
class _ctypes:
|
||||
def __init__(self, array, ptr=None):
|
||||
self._arr = array
|
||||
|
||||
if ctypes:
|
||||
self._ctypes = ctypes
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
else:
|
||||
# fake a pointer-like object that holds onto the reference
|
||||
self._ctypes = _missing_ctypes()
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
self._data._objects = array
|
||||
|
||||
if self._arr.ndim == 0:
|
||||
self._zerod = True
|
||||
else:
|
||||
self._zerod = False
|
||||
|
||||
def data_as(self, obj):
|
||||
"""
|
||||
Return the data pointer cast to a particular c-types object.
|
||||
For example, calling ``self._as_parameter_`` is equivalent to
|
||||
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
|
||||
pointer to a ctypes array of floating-point data:
|
||||
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
|
||||
|
||||
The returned pointer will keep a reference to the array.
|
||||
"""
|
||||
# _ctypes.cast function causes a circular reference of self._data in
|
||||
# self._data._objects. Attributes of self._data cannot be released
|
||||
# until gc.collect is called. Make a copy of the pointer first then let
|
||||
# it hold the array reference. This is a workaround to circumvent the
|
||||
# CPython bug https://bugs.python.org/issue12836
|
||||
ptr = self._ctypes.cast(self._data, obj)
|
||||
ptr._arr = self._arr
|
||||
return ptr
|
||||
|
||||
def shape_as(self, obj):
|
||||
"""
|
||||
Return the shape tuple as an array of some other c-types
|
||||
type. For example: ``self.shape_as(ctypes.c_short)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.shape)
|
||||
|
||||
def strides_as(self, obj):
|
||||
"""
|
||||
Return the strides tuple as an array of some other
|
||||
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.strides)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
"""
|
||||
A pointer to the memory area of the array as a Python integer.
|
||||
This memory area may contain data that is not aligned, or not in correct
|
||||
byte-order. The memory area may not even be writeable. The array
|
||||
flags and data-type of this array should be respected when passing this
|
||||
attribute to arbitrary C-code to avoid trouble that can include Python
|
||||
crashing. User Beware! The value of this attribute is exactly the same
|
||||
as ``self._array_interface_['data'][0]``.
|
||||
|
||||
Note that unlike ``data_as``, a reference will not be kept to the array:
|
||||
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
|
||||
pointer to a deallocated array, and should be spelt
|
||||
``(a + b).ctypes.data_as(ctypes.c_void_p)``
|
||||
"""
|
||||
return self._data.value
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the C-integer corresponding to ``dtype('p')`` on this
|
||||
platform. This base-type could be `ctypes.c_int`, `ctypes.c_long`, or
|
||||
`ctypes.c_longlong` depending on the platform.
|
||||
The c_intp type is defined accordingly in `numpy.ctypeslib`.
|
||||
The ctypes array contains the shape of the underlying array.
|
||||
"""
|
||||
return self.shape_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def strides(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the same as for the shape attribute. This ctypes array
|
||||
contains the strides information from the underlying array. This strides
|
||||
information is important for showing how many bytes must be jumped to
|
||||
get to the next element in the array.
|
||||
"""
|
||||
return self.strides_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def _as_parameter_(self):
|
||||
"""
|
||||
Overrides the ctypes semi-magic method
|
||||
|
||||
Enables `c_func(some_array.ctypes)`
|
||||
"""
|
||||
return self.data_as(ctypes.c_void_p)
|
||||
|
||||
# Numpy 1.21.0, 2021-05-18
|
||||
|
||||
def get_data(self):
|
||||
"""Deprecated getter for the `_ctypes.data` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_data" is deprecated. Use "data" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.data
|
||||
|
||||
def get_shape(self):
|
||||
"""Deprecated getter for the `_ctypes.shape` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.shape
|
||||
|
||||
def get_strides(self):
|
||||
"""Deprecated getter for the `_ctypes.strides` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.strides
|
||||
|
||||
def get_as_parameter(self):
|
||||
"""Deprecated getter for the `_ctypes._as_parameter_` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn(
|
||||
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
|
||||
DeprecationWarning, stacklevel=2,
|
||||
)
|
||||
return self._as_parameter_
|
||||
|
||||
|
||||
def _newnames(datatype, order):
|
||||
"""
|
||||
Given a datatype and an order object, return a new names tuple, with the
|
||||
order indicated
|
||||
"""
|
||||
oldnames = datatype.names
|
||||
nameslist = list(oldnames)
|
||||
if isinstance(order, str):
|
||||
order = [order]
|
||||
seen = set()
|
||||
if isinstance(order, (list, tuple)):
|
||||
for name in order:
|
||||
try:
|
||||
nameslist.remove(name)
|
||||
except ValueError:
|
||||
if name in seen:
|
||||
raise ValueError(f"duplicate field name: {name}") from None
|
||||
else:
|
||||
raise ValueError(f"unknown field name: {name}") from None
|
||||
seen.add(name)
|
||||
return tuple(list(order) + nameslist)
|
||||
raise ValueError(f"unsupported order value: {order}")
|
||||
|
||||
def _copy_fields(ary):
|
||||
"""Return copy of structured array with padding between fields removed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ary : ndarray
|
||||
Structured array from which to remove padding bytes
|
||||
|
||||
Returns
|
||||
-------
|
||||
ary_copy : ndarray
|
||||
Copy of ary with padding bytes removed
|
||||
"""
|
||||
dt = ary.dtype
|
||||
copy_dtype = {'names': dt.names,
|
||||
'formats': [dt.fields[name][0] for name in dt.names]}
|
||||
return array(ary, dtype=copy_dtype, copy=True)
|
||||
|
||||
def _getfield_is_safe(oldtype, newtype, offset):
|
||||
""" Checks safety of getfield for object arrays.
|
||||
|
||||
As in _view_is_safe, we need to check that memory containing objects is not
|
||||
reinterpreted as a non-object datatype and vice versa.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of the original ndarray.
|
||||
newtype : data-type
|
||||
Data type of the field being accessed by ndarray.getfield
|
||||
offset : int
|
||||
Offset of the field being accessed by ndarray.getfield
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the field access is invalid
|
||||
|
||||
"""
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
if offset == 0 and newtype == oldtype:
|
||||
return
|
||||
if oldtype.names is not None:
|
||||
for name in oldtype.names:
|
||||
if (oldtype.fields[name][1] == offset and
|
||||
oldtype.fields[name][0] == newtype):
|
||||
return
|
||||
raise TypeError("Cannot get/set field of an object array")
|
||||
return
|
||||
|
||||
def _view_is_safe(oldtype, newtype):
|
||||
""" Checks safety of a view involving object arrays, for example when
|
||||
doing::
|
||||
|
||||
np.zeros(10, dtype=oldtype).view(newtype)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of original ndarray
|
||||
newtype : data-type
|
||||
Data type of the view
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the new type is incompatible with the old type.
|
||||
|
||||
"""
|
||||
|
||||
# if the types are equivalent, there is no problem.
|
||||
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
|
||||
if oldtype == newtype:
|
||||
return
|
||||
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
raise TypeError("Cannot change data-type for object array.")
|
||||
return
|
||||
|
||||
# Given a string containing a PEP 3118 format specifier,
|
||||
# construct a NumPy dtype
|
||||
|
||||
_pep3118_native_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'h',
|
||||
'H': 'H',
|
||||
'i': 'i',
|
||||
'I': 'I',
|
||||
'l': 'l',
|
||||
'L': 'L',
|
||||
'q': 'q',
|
||||
'Q': 'Q',
|
||||
'e': 'e',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'g': 'g',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
'Zg': 'G',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
|
||||
|
||||
_pep3118_standard_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'i2',
|
||||
'H': 'u2',
|
||||
'i': 'i4',
|
||||
'I': 'u4',
|
||||
'l': 'i4',
|
||||
'L': 'u4',
|
||||
'q': 'i8',
|
||||
'Q': 'u8',
|
||||
'e': 'f2',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
|
||||
|
||||
_pep3118_unsupported_map = {
|
||||
'u': 'UCS-2 strings',
|
||||
'&': 'pointers',
|
||||
't': 'bitfields',
|
||||
'X': 'function pointers',
|
||||
}
|
||||
|
||||
class _Stream:
|
||||
def __init__(self, s):
|
||||
self.s = s
|
||||
self.byteorder = '@'
|
||||
|
||||
def advance(self, n):
|
||||
res = self.s[:n]
|
||||
self.s = self.s[n:]
|
||||
return res
|
||||
|
||||
def consume(self, c):
|
||||
if self.s[:len(c)] == c:
|
||||
self.advance(len(c))
|
||||
return True
|
||||
return False
|
||||
|
||||
def consume_until(self, c):
|
||||
if callable(c):
|
||||
i = 0
|
||||
while i < len(self.s) and not c(self.s[i]):
|
||||
i = i + 1
|
||||
return self.advance(i)
|
||||
else:
|
||||
i = self.s.index(c)
|
||||
res = self.advance(i)
|
||||
self.advance(len(c))
|
||||
return res
|
||||
|
||||
@property
|
||||
def next(self):
|
||||
return self.s[0]
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self.s)
|
||||
|
||||
|
||||
def _dtype_from_pep3118(spec):
|
||||
stream = _Stream(spec)
|
||||
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
|
||||
return dtype
|
||||
|
||||
def __dtype_from_pep3118(stream, is_subdtype):
|
||||
field_spec = dict(
|
||||
names=[],
|
||||
formats=[],
|
||||
offsets=[],
|
||||
itemsize=0
|
||||
)
|
||||
offset = 0
|
||||
common_alignment = 1
|
||||
is_padding = False
|
||||
|
||||
# Parse spec
|
||||
while stream:
|
||||
value = None
|
||||
|
||||
# End of structure, bail out to upper level
|
||||
if stream.consume('}'):
|
||||
break
|
||||
|
||||
# Sub-arrays (1)
|
||||
shape = None
|
||||
if stream.consume('('):
|
||||
shape = stream.consume_until(')')
|
||||
shape = tuple(map(int, shape.split(',')))
|
||||
|
||||
# Byte order
|
||||
if stream.next in ('@', '=', '<', '>', '^', '!'):
|
||||
byteorder = stream.advance(1)
|
||||
if byteorder == '!':
|
||||
byteorder = '>'
|
||||
stream.byteorder = byteorder
|
||||
|
||||
# Byte order characters also control native vs. standard type sizes
|
||||
if stream.byteorder in ('@', '^'):
|
||||
type_map = _pep3118_native_map
|
||||
type_map_chars = _pep3118_native_typechars
|
||||
else:
|
||||
type_map = _pep3118_standard_map
|
||||
type_map_chars = _pep3118_standard_typechars
|
||||
|
||||
# Item sizes
|
||||
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
|
||||
if itemsize_str:
|
||||
itemsize = int(itemsize_str)
|
||||
else:
|
||||
itemsize = 1
|
||||
|
||||
# Data types
|
||||
is_padding = False
|
||||
|
||||
if stream.consume('T{'):
|
||||
value, align = __dtype_from_pep3118(
|
||||
stream, is_subdtype=True)
|
||||
elif stream.next in type_map_chars:
|
||||
if stream.next == 'Z':
|
||||
typechar = stream.advance(2)
|
||||
else:
|
||||
typechar = stream.advance(1)
|
||||
|
||||
is_padding = (typechar == 'x')
|
||||
dtypechar = type_map[typechar]
|
||||
if dtypechar in 'USV':
|
||||
dtypechar += '%d' % itemsize
|
||||
itemsize = 1
|
||||
numpy_byteorder = {'@': '=', '^': '='}.get(
|
||||
stream.byteorder, stream.byteorder)
|
||||
value = dtype(numpy_byteorder + dtypechar)
|
||||
align = value.alignment
|
||||
elif stream.next in _pep3118_unsupported_map:
|
||||
desc = _pep3118_unsupported_map[stream.next]
|
||||
raise NotImplementedError(
|
||||
"Unrepresentable PEP 3118 data type {!r} ({})"
|
||||
.format(stream.next, desc))
|
||||
else:
|
||||
raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
|
||||
|
||||
#
|
||||
# Native alignment may require padding
|
||||
#
|
||||
# Here we assume that the presence of a '@' character implicitly implies
|
||||
# that the start of the array is *already* aligned.
|
||||
#
|
||||
extra_offset = 0
|
||||
if stream.byteorder == '@':
|
||||
start_padding = (-offset) % align
|
||||
intra_padding = (-value.itemsize) % align
|
||||
|
||||
offset += start_padding
|
||||
|
||||
if intra_padding != 0:
|
||||
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
|
||||
# Inject internal padding to the end of the sub-item
|
||||
value = _add_trailing_padding(value, intra_padding)
|
||||
else:
|
||||
# We can postpone the injection of internal padding,
|
||||
# as the item appears at most once
|
||||
extra_offset += intra_padding
|
||||
|
||||
# Update common alignment
|
||||
common_alignment = _lcm(align, common_alignment)
|
||||
|
||||
# Convert itemsize to sub-array
|
||||
if itemsize != 1:
|
||||
value = dtype((value, (itemsize,)))
|
||||
|
||||
# Sub-arrays (2)
|
||||
if shape is not None:
|
||||
value = dtype((value, shape))
|
||||
|
||||
# Field name
|
||||
if stream.consume(':'):
|
||||
name = stream.consume_until(':')
|
||||
else:
|
||||
name = None
|
||||
|
||||
if not (is_padding and name is None):
|
||||
if name is not None and name in field_spec['names']:
|
||||
raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format")
|
||||
field_spec['names'].append(name)
|
||||
field_spec['formats'].append(value)
|
||||
field_spec['offsets'].append(offset)
|
||||
|
||||
offset += value.itemsize
|
||||
offset += extra_offset
|
||||
|
||||
field_spec['itemsize'] = offset
|
||||
|
||||
# extra final padding for aligned types
|
||||
if stream.byteorder == '@':
|
||||
field_spec['itemsize'] += (-offset) % common_alignment
|
||||
|
||||
# Check if this was a simple 1-item type, and unwrap it
|
||||
if (field_spec['names'] == [None]
|
||||
and field_spec['offsets'][0] == 0
|
||||
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
|
||||
and not is_subdtype):
|
||||
ret = field_spec['formats'][0]
|
||||
else:
|
||||
_fix_names(field_spec)
|
||||
ret = dtype(field_spec)
|
||||
|
||||
# Finished
|
||||
return ret, common_alignment
|
||||
|
||||
def _fix_names(field_spec):
|
||||
""" Replace names which are None with the next unused f%d name """
|
||||
names = field_spec['names']
|
||||
for i, name in enumerate(names):
|
||||
if name is not None:
|
||||
continue
|
||||
|
||||
j = 0
|
||||
while True:
|
||||
name = f'f{j}'
|
||||
if name not in names:
|
||||
break
|
||||
j = j + 1
|
||||
names[i] = name
|
||||
|
||||
def _add_trailing_padding(value, padding):
|
||||
"""Inject the specified number of padding bytes at the end of a dtype"""
|
||||
if value.fields is None:
|
||||
field_spec = dict(
|
||||
names=['f0'],
|
||||
formats=[value],
|
||||
offsets=[0],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
else:
|
||||
fields = value.fields
|
||||
names = value.names
|
||||
field_spec = dict(
|
||||
names=names,
|
||||
formats=[fields[name][0] for name in names],
|
||||
offsets=[fields[name][1] for name in names],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
|
||||
field_spec['itemsize'] += padding
|
||||
return dtype(field_spec)
|
||||
|
||||
def _prod(a):
|
||||
p = 1
|
||||
for x in a:
|
||||
p *= x
|
||||
return p
|
||||
|
||||
def _gcd(a, b):
|
||||
"""Calculate the greatest common divisor of a and b"""
|
||||
while b:
|
||||
a, b = b, a % b
|
||||
return a
|
||||
|
||||
def _lcm(a, b):
|
||||
return a // _gcd(a, b) * b
|
||||
|
||||
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
|
||||
['{}={!r}'.format(k, v)
|
||||
for k, v in kwargs.items()])
|
||||
args = inputs + kwargs.get('out', ())
|
||||
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
|
||||
return ('operand type(s) all returned NotImplemented from '
|
||||
'__array_ufunc__({!r}, {!r}, {}): {}'
|
||||
.format(ufunc, method, args_string, types_string))
|
||||
|
||||
|
||||
def array_function_errmsg_formatter(public_api, types):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
|
||||
return ("no implementation found for '{}' on types that implement "
|
||||
'__array_function__: {}'.format(func_name, list(types)))
|
||||
|
||||
|
||||
def _ufunc_doc_signature_formatter(ufunc):
|
||||
"""
|
||||
Builds a signature string which resembles PEP 457
|
||||
|
||||
This is used to construct the first line of the docstring
|
||||
"""
|
||||
|
||||
# input arguments are simple
|
||||
if ufunc.nin == 1:
|
||||
in_args = 'x'
|
||||
else:
|
||||
in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
|
||||
|
||||
# output arguments are both keyword or positional
|
||||
if ufunc.nout == 0:
|
||||
out_args = ', /, out=()'
|
||||
elif ufunc.nout == 1:
|
||||
out_args = ', /, out=None'
|
||||
else:
|
||||
out_args = '[, {positional}], / [, out={default}]'.format(
|
||||
positional=', '.join(
|
||||
'out{}'.format(i+1) for i in range(ufunc.nout)),
|
||||
default=repr((None,)*ufunc.nout)
|
||||
)
|
||||
|
||||
# keyword only args depend on whether this is a gufunc
|
||||
kwargs = (
|
||||
", casting='same_kind'"
|
||||
", order='K'"
|
||||
", dtype=None"
|
||||
", subok=True"
|
||||
)
|
||||
|
||||
# NOTE: gufuncs may or may not support the `axis` parameter
|
||||
if ufunc.signature is None:
|
||||
kwargs = f", where=True{kwargs}[, signature, extobj]"
|
||||
else:
|
||||
kwargs += "[, signature, extobj, axes, axis]"
|
||||
|
||||
# join all the parts together
|
||||
return '{name}({in_args}{out_args}, *{kwargs})'.format(
|
||||
name=ufunc.__name__,
|
||||
in_args=in_args,
|
||||
out_args=out_args,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
||||
|
||||
def npy_ctypes_check(cls):
|
||||
# determine if a class comes from ctypes, in order to work around
|
||||
# a bug in the buffer protocol for those objects, bpo-10746
|
||||
try:
|
||||
# ctypes class are new-style, so have an __mro__. This probably fails
|
||||
# for ctypes classes with multiple inheritance.
|
||||
if IS_PYPY:
|
||||
# (..., _ctypes.basics._CData, Bufferable, object)
|
||||
ctype_base = cls.__mro__[-3]
|
||||
else:
|
||||
# # (..., _ctypes._CData, object)
|
||||
ctype_base = cls.__mro__[-2]
|
||||
# right now, they're part of the _ctypes module
|
||||
return '_ctypes' in ctype_base.__module__
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
class recursive:
|
||||
'''
|
||||
A decorator class for recursive nested functions.
|
||||
Naive recursive nested functions hold a reference to themselves:
|
||||
|
||||
def outer(*args):
|
||||
def stringify_leaky(arg0, *arg1):
|
||||
if len(arg1) > 0:
|
||||
return stringify_leaky(*arg1) # <- HERE
|
||||
return str(arg0)
|
||||
stringify_leaky(*args)
|
||||
|
||||
This design pattern creates a reference cycle that is difficult for a
|
||||
garbage collector to resolve. The decorator class prevents the
|
||||
cycle by passing the nested function in as an argument `self`:
|
||||
|
||||
def outer(*args):
|
||||
@recursive
|
||||
def stringify(self, arg0, *arg1):
|
||||
if len(arg1) > 0:
|
||||
return self(*arg1)
|
||||
return str(arg0)
|
||||
stringify(*args)
|
||||
|
||||
'''
|
||||
def __init__(self, func):
|
||||
self.func = func
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.func(self, *args, **kwargs)
|
||||
|
35
.venv/lib/python3.9/site-packages/numpy/core/_internal.pyi
Normal file
35
.venv/lib/python3.9/site-packages/numpy/core/_internal.pyi
Normal file
@@ -0,0 +1,35 @@
|
||||
from typing import Any, TypeVar, Type, overload, Optional, Generic
|
||||
import ctypes as ct
|
||||
|
||||
from numpy import ndarray
|
||||
|
||||
_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
|
||||
_CT = TypeVar("_CT", bound=ct._CData)
|
||||
_PT = TypeVar("_PT", bound=Optional[int])
|
||||
|
||||
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
|
||||
# for 0D arrays once we've got shape-support
|
||||
|
||||
class _ctypes(Generic[_PT]):
|
||||
@overload
|
||||
def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
|
||||
@overload
|
||||
def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
|
||||
|
||||
# NOTE: In practice `shape` and `strides` return one of the concrete
|
||||
# platform dependant array-types (`c_int`, `c_long` or `c_longlong`)
|
||||
# corresponding to C's `int_ptr_t`, as determined by `_getintp_ctype`
|
||||
# TODO: Hook this in to the mypy plugin so that a more appropiate
|
||||
# `ctypes._SimpleCData[int]` sub-type can be returned
|
||||
@property
|
||||
def data(self) -> _PT: ...
|
||||
@property
|
||||
def shape(self) -> ct.Array[ct.c_int64]: ...
|
||||
@property
|
||||
def strides(self) -> ct.Array[ct.c_int64]: ...
|
||||
@property
|
||||
def _as_parameter_(self) -> ct.c_void_p: ...
|
||||
|
||||
def data_as(self, obj: Type[_CastT]) -> _CastT: ...
|
||||
def shape_as(self, obj: Type[_CT]) -> ct.Array[_CT]: ...
|
||||
def strides_as(self, obj: Type[_CT]) -> ct.Array[_CT]: ...
|
290
.venv/lib/python3.9/site-packages/numpy/core/_methods.py
Normal file
290
.venv/lib/python3.9/site-packages/numpy/core/_methods.py
Normal file
@@ -0,0 +1,290 @@
|
||||
"""
|
||||
Array methods which are called by both the C-code for the method
|
||||
and the Python code for the NumPy-namespace function
|
||||
|
||||
"""
|
||||
import warnings
|
||||
from contextlib import nullcontext
|
||||
|
||||
from numpy.core import multiarray as mu
|
||||
from numpy.core import umath as um
|
||||
from numpy.core.multiarray import asanyarray
|
||||
from numpy.core import numerictypes as nt
|
||||
from numpy.core import _exceptions
|
||||
from numpy._globals import _NoValue
|
||||
from numpy.compat import pickle, os_fspath
|
||||
|
||||
# save those O(100) nanoseconds!
|
||||
umr_maximum = um.maximum.reduce
|
||||
umr_minimum = um.minimum.reduce
|
||||
umr_sum = um.add.reduce
|
||||
umr_prod = um.multiply.reduce
|
||||
umr_any = um.logical_or.reduce
|
||||
umr_all = um.logical_and.reduce
|
||||
|
||||
# Complex types to -> (2,)float view for fast-path computation in _var()
|
||||
_complex_to_float = {
|
||||
nt.dtype(nt.csingle) : nt.dtype(nt.single),
|
||||
nt.dtype(nt.cdouble) : nt.dtype(nt.double),
|
||||
}
|
||||
# Special case for windows: ensure double takes precedence
|
||||
if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
|
||||
_complex_to_float.update({
|
||||
nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
|
||||
})
|
||||
|
||||
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
|
||||
# small reductions
|
||||
def _amax(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_maximum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _amin(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_minimum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_sum(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_prod(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_any(a, axis, dtype, out, keepdims)
|
||||
return umr_any(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_all(a, axis, dtype, out, keepdims)
|
||||
return umr_all(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _count_reduce_items(arr, axis, keepdims=False, where=True):
|
||||
# fast-path for the default case
|
||||
if where is True:
|
||||
# no boolean mask given, calculate items according to axis
|
||||
if axis is None:
|
||||
axis = tuple(range(arr.ndim))
|
||||
elif not isinstance(axis, tuple):
|
||||
axis = (axis,)
|
||||
items = nt.intp(1)
|
||||
for ax in axis:
|
||||
items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
|
||||
else:
|
||||
# TODO: Optimize case when `where` is broadcast along a non-reduction
|
||||
# axis and full sum is more excessive than needed.
|
||||
|
||||
# guarded to protect circular imports
|
||||
from numpy.lib.stride_tricks import broadcast_to
|
||||
# count True values in (potentially broadcasted) boolean mask
|
||||
items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
|
||||
keepdims)
|
||||
return items
|
||||
|
||||
# Numpy 1.17.0, 2019-02-24
|
||||
# Various clip behavior deprecations, marked with _clip_dep as a prefix.
|
||||
|
||||
def _clip_dep_is_scalar_nan(a):
|
||||
# guarded to protect circular imports
|
||||
from numpy.core.fromnumeric import ndim
|
||||
if ndim(a) != 0:
|
||||
return False
|
||||
try:
|
||||
return um.isnan(a)
|
||||
except TypeError:
|
||||
return False
|
||||
|
||||
def _clip_dep_is_byte_swapped(a):
|
||||
if isinstance(a, mu.ndarray):
|
||||
return not a.dtype.isnative
|
||||
return False
|
||||
|
||||
def _clip_dep_invoke_with_casting(ufunc, *args, out=None, casting=None, **kwargs):
|
||||
# normal path
|
||||
if casting is not None:
|
||||
return ufunc(*args, out=out, casting=casting, **kwargs)
|
||||
|
||||
# try to deal with broken casting rules
|
||||
try:
|
||||
return ufunc(*args, out=out, **kwargs)
|
||||
except _exceptions._UFuncOutputCastingError as e:
|
||||
# Numpy 1.17.0, 2019-02-24
|
||||
warnings.warn(
|
||||
"Converting the output of clip from {!r} to {!r} is deprecated. "
|
||||
"Pass `casting=\"unsafe\"` explicitly to silence this warning, or "
|
||||
"correct the type of the variables.".format(e.from_, e.to),
|
||||
DeprecationWarning,
|
||||
stacklevel=2
|
||||
)
|
||||
return ufunc(*args, out=out, casting="unsafe", **kwargs)
|
||||
|
||||
def _clip(a, min=None, max=None, out=None, *, casting=None, **kwargs):
|
||||
if min is None and max is None:
|
||||
raise ValueError("One of max or min must be given")
|
||||
|
||||
# Numpy 1.17.0, 2019-02-24
|
||||
# This deprecation probably incurs a substantial slowdown for small arrays,
|
||||
# it will be good to get rid of it.
|
||||
if not _clip_dep_is_byte_swapped(a) and not _clip_dep_is_byte_swapped(out):
|
||||
using_deprecated_nan = False
|
||||
if _clip_dep_is_scalar_nan(min):
|
||||
min = -float('inf')
|
||||
using_deprecated_nan = True
|
||||
if _clip_dep_is_scalar_nan(max):
|
||||
max = float('inf')
|
||||
using_deprecated_nan = True
|
||||
if using_deprecated_nan:
|
||||
warnings.warn(
|
||||
"Passing `np.nan` to mean no clipping in np.clip has always "
|
||||
"been unreliable, and is now deprecated. "
|
||||
"In future, this will always return nan, like it already does "
|
||||
"when min or max are arrays that contain nan. "
|
||||
"To skip a bound, pass either None or an np.inf of an "
|
||||
"appropriate sign.",
|
||||
DeprecationWarning,
|
||||
stacklevel=2
|
||||
)
|
||||
|
||||
if min is None:
|
||||
return _clip_dep_invoke_with_casting(
|
||||
um.minimum, a, max, out=out, casting=casting, **kwargs)
|
||||
elif max is None:
|
||||
return _clip_dep_invoke_with_casting(
|
||||
um.maximum, a, min, out=out, casting=casting, **kwargs)
|
||||
else:
|
||||
return _clip_dep_invoke_with_casting(
|
||||
um.clip, a, min, max, out=out, casting=casting, **kwargs)
|
||||
|
||||
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
arr = asanyarray(a)
|
||||
|
||||
is_float16_result = False
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
|
||||
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None:
|
||||
if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
|
||||
dtype = mu.dtype('f8')
|
||||
elif issubclass(arr.dtype.type, nt.float16):
|
||||
dtype = mu.dtype('f4')
|
||||
is_float16_result = True
|
||||
|
||||
ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
|
||||
if isinstance(ret, mu.ndarray):
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
if is_float16_result and out is None:
|
||||
ret = arr.dtype.type(ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
if is_float16_result:
|
||||
ret = arr.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True):
|
||||
arr = asanyarray(a)
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
# Make this warning show up on top.
|
||||
if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
|
||||
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
|
||||
stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
|
||||
dtype = mu.dtype('f8')
|
||||
|
||||
# Compute the mean.
|
||||
# Note that if dtype is not of inexact type then arraymean will
|
||||
# not be either.
|
||||
arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
|
||||
# The shape of rcount has to match arrmean to not change the shape of out
|
||||
# in broadcasting. Otherwise, it cannot be stored back to arrmean.
|
||||
if rcount.ndim == 0:
|
||||
# fast-path for default case when where is True
|
||||
div = rcount
|
||||
else:
|
||||
# matching rcount to arrmean when where is specified as array
|
||||
div = rcount.reshape(arrmean.shape)
|
||||
if isinstance(arrmean, mu.ndarray):
|
||||
arrmean = um.true_divide(arrmean, div, out=arrmean, casting='unsafe',
|
||||
subok=False)
|
||||
else:
|
||||
arrmean = arrmean.dtype.type(arrmean / rcount)
|
||||
|
||||
# Compute sum of squared deviations from mean
|
||||
# Note that x may not be inexact and that we need it to be an array,
|
||||
# not a scalar.
|
||||
x = asanyarray(arr - arrmean)
|
||||
|
||||
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
|
||||
x = um.multiply(x, x, out=x)
|
||||
# Fast-paths for built-in complex types
|
||||
elif x.dtype in _complex_to_float:
|
||||
xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
|
||||
um.multiply(xv, xv, out=xv)
|
||||
x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
|
||||
# Most general case; includes handling object arrays containing imaginary
|
||||
# numbers and complex types with non-native byteorder
|
||||
else:
|
||||
x = um.multiply(x, um.conjugate(x), out=x).real
|
||||
|
||||
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
|
||||
|
||||
# Compute degrees of freedom and make sure it is not negative.
|
||||
rcount = um.maximum(rcount - ddof, 0)
|
||||
|
||||
# divide by degrees of freedom
|
||||
if isinstance(ret, mu.ndarray):
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True):
|
||||
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
||||
keepdims=keepdims, where=where)
|
||||
|
||||
if isinstance(ret, mu.ndarray):
|
||||
ret = um.sqrt(ret, out=ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(um.sqrt(ret))
|
||||
else:
|
||||
ret = um.sqrt(ret)
|
||||
|
||||
return ret
|
||||
|
||||
def _ptp(a, axis=None, out=None, keepdims=False):
|
||||
return um.subtract(
|
||||
umr_maximum(a, axis, None, out, keepdims),
|
||||
umr_minimum(a, axis, None, None, keepdims),
|
||||
out
|
||||
)
|
||||
|
||||
def _dump(self, file, protocol=2):
|
||||
if hasattr(file, 'write'):
|
||||
ctx = nullcontext(file)
|
||||
else:
|
||||
ctx = open(os_fspath(file), "wb")
|
||||
with ctx as f:
|
||||
pickle.dump(self, f, protocol=protocol)
|
||||
|
||||
def _dumps(self, protocol=2):
|
||||
return pickle.dumps(self, protocol=protocol)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
100
.venv/lib/python3.9/site-packages/numpy/core/_string_helpers.py
Normal file
100
.venv/lib/python3.9/site-packages/numpy/core/_string_helpers.py
Normal file
@@ -0,0 +1,100 @@
|
||||
"""
|
||||
String-handling utilities to avoid locale-dependence.
|
||||
|
||||
Used primarily to generate type name aliases.
|
||||
"""
|
||||
# "import string" is costly to import!
|
||||
# Construct the translation tables directly
|
||||
# "A" = chr(65), "a" = chr(97)
|
||||
_all_chars = [chr(_m) for _m in range(256)]
|
||||
_ascii_upper = _all_chars[65:65+26]
|
||||
_ascii_lower = _all_chars[97:97+26]
|
||||
LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:])
|
||||
UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:])
|
||||
|
||||
|
||||
def english_lower(s):
|
||||
""" Apply English case rules to convert ASCII strings to all lower case.
|
||||
|
||||
This is an internal utility function to replace calls to str.lower() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
lowered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_lower
|
||||
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
|
||||
>>> english_lower('')
|
||||
''
|
||||
"""
|
||||
lowered = s.translate(LOWER_TABLE)
|
||||
return lowered
|
||||
|
||||
|
||||
def english_upper(s):
|
||||
""" Apply English case rules to convert ASCII strings to all upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.upper() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
uppered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_upper
|
||||
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
|
||||
>>> english_upper('')
|
||||
''
|
||||
"""
|
||||
uppered = s.translate(UPPER_TABLE)
|
||||
return uppered
|
||||
|
||||
|
||||
def english_capitalize(s):
|
||||
""" Apply English case rules to convert the first character of an ASCII
|
||||
string to upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.capitalize()
|
||||
such that we can avoid changing behavior with changing locales.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
capitalized : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy.core.numerictypes import english_capitalize
|
||||
>>> english_capitalize('int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('Int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('')
|
||||
''
|
||||
"""
|
||||
if s:
|
||||
return english_upper(s[0]) + s[1:]
|
||||
else:
|
||||
return s
|
Binary file not shown.
244
.venv/lib/python3.9/site-packages/numpy/core/_type_aliases.py
Normal file
244
.venv/lib/python3.9/site-packages/numpy/core/_type_aliases.py
Normal file
@@ -0,0 +1,244 @@
|
||||
"""
|
||||
Due to compatibility, numpy has a very large number of different naming
|
||||
conventions for the scalar types (those subclassing from `numpy.generic`).
|
||||
This file produces a convoluted set of dictionaries mapping names to types,
|
||||
and sometimes other mappings too.
|
||||
|
||||
.. data:: allTypes
|
||||
A dictionary of names to types that will be exposed as attributes through
|
||||
``np.core.numerictypes.*``
|
||||
|
||||
.. data:: sctypeDict
|
||||
Similar to `allTypes`, but maps a broader set of aliases to their types.
|
||||
|
||||
.. data:: sctypes
|
||||
A dictionary keyed by a "type group" string, providing a list of types
|
||||
under that group.
|
||||
|
||||
"""
|
||||
|
||||
from numpy.compat import unicode
|
||||
from numpy.core._string_helpers import english_lower
|
||||
from numpy.core.multiarray import typeinfo, dtype
|
||||
from numpy.core._dtype import _kind_name
|
||||
|
||||
|
||||
sctypeDict = {} # Contains all leaf-node scalar types with aliases
|
||||
allTypes = {} # Collect the types we will add to the module
|
||||
|
||||
|
||||
# separate the actual type info from the abstract base classes
|
||||
_abstract_types = {}
|
||||
_concrete_typeinfo = {}
|
||||
for k, v in typeinfo.items():
|
||||
# make all the keys lowercase too
|
||||
k = english_lower(k)
|
||||
if isinstance(v, type):
|
||||
_abstract_types[k] = v
|
||||
else:
|
||||
_concrete_typeinfo[k] = v
|
||||
|
||||
_concrete_types = {v.type for k, v in _concrete_typeinfo.items()}
|
||||
|
||||
|
||||
def _bits_of(obj):
|
||||
try:
|
||||
info = next(v for v in _concrete_typeinfo.values() if v.type is obj)
|
||||
except StopIteration:
|
||||
if obj in _abstract_types.values():
|
||||
msg = "Cannot count the bits of an abstract type"
|
||||
raise ValueError(msg) from None
|
||||
|
||||
# some third-party type - make a best-guess
|
||||
return dtype(obj).itemsize * 8
|
||||
else:
|
||||
return info.bits
|
||||
|
||||
|
||||
def bitname(obj):
|
||||
"""Return a bit-width name for a given type object"""
|
||||
bits = _bits_of(obj)
|
||||
dt = dtype(obj)
|
||||
char = dt.kind
|
||||
base = _kind_name(dt)
|
||||
|
||||
if base == 'object':
|
||||
bits = 0
|
||||
|
||||
if bits != 0:
|
||||
char = "%s%d" % (char, bits // 8)
|
||||
|
||||
return base, bits, char
|
||||
|
||||
|
||||
def _add_types():
|
||||
for name, info in _concrete_typeinfo.items():
|
||||
# define C-name and insert typenum and typechar references also
|
||||
allTypes[name] = info.type
|
||||
sctypeDict[name] = info.type
|
||||
sctypeDict[info.char] = info.type
|
||||
sctypeDict[info.num] = info.type
|
||||
|
||||
for name, cls in _abstract_types.items():
|
||||
allTypes[name] = cls
|
||||
_add_types()
|
||||
|
||||
# This is the priority order used to assign the bit-sized NPY_INTxx names, which
|
||||
# must match the order in npy_common.h in order for NPY_INTxx and np.intxx to be
|
||||
# consistent.
|
||||
# If two C types have the same size, then the earliest one in this list is used
|
||||
# as the sized name.
|
||||
_int_ctypes = ['long', 'longlong', 'int', 'short', 'byte']
|
||||
_uint_ctypes = list('u' + t for t in _int_ctypes)
|
||||
|
||||
def _add_aliases():
|
||||
for name, info in _concrete_typeinfo.items():
|
||||
# these are handled by _add_integer_aliases
|
||||
if name in _int_ctypes or name in _uint_ctypes:
|
||||
continue
|
||||
|
||||
# insert bit-width version for this class (if relevant)
|
||||
base, bit, char = bitname(info.type)
|
||||
|
||||
myname = "%s%d" % (base, bit)
|
||||
|
||||
# ensure that (c)longdouble does not overwrite the aliases assigned to
|
||||
# (c)double
|
||||
if name in ('longdouble', 'clongdouble') and myname in allTypes:
|
||||
continue
|
||||
|
||||
allTypes[myname] = info.type
|
||||
|
||||
# add mapping for both the bit name and the numarray name
|
||||
sctypeDict[myname] = info.type
|
||||
|
||||
# add forward, reverse, and string mapping to numarray
|
||||
sctypeDict[char] = info.type
|
||||
|
||||
# Add deprecated numeric-style type aliases manually, at some point
|
||||
# we may want to deprecate the lower case "bytes0" version as well.
|
||||
for name in ["Bytes0", "Datetime64", "Str0", "Uint32", "Uint64"]:
|
||||
if english_lower(name) not in allTypes:
|
||||
# Only one of Uint32 or Uint64, aliases of `np.uintp`, was (and is) defined, note that this
|
||||
# is not UInt32/UInt64 (capital i), which is removed.
|
||||
continue
|
||||
allTypes[name] = allTypes[english_lower(name)]
|
||||
sctypeDict[name] = sctypeDict[english_lower(name)]
|
||||
|
||||
_add_aliases()
|
||||
|
||||
def _add_integer_aliases():
|
||||
seen_bits = set()
|
||||
for i_ctype, u_ctype in zip(_int_ctypes, _uint_ctypes):
|
||||
i_info = _concrete_typeinfo[i_ctype]
|
||||
u_info = _concrete_typeinfo[u_ctype]
|
||||
bits = i_info.bits # same for both
|
||||
|
||||
for info, charname, intname in [
|
||||
(i_info,'i%d' % (bits//8,), 'int%d' % bits),
|
||||
(u_info,'u%d' % (bits//8,), 'uint%d' % bits)]:
|
||||
if bits not in seen_bits:
|
||||
# sometimes two different types have the same number of bits
|
||||
# if so, the one iterated over first takes precedence
|
||||
allTypes[intname] = info.type
|
||||
sctypeDict[intname] = info.type
|
||||
sctypeDict[charname] = info.type
|
||||
|
||||
seen_bits.add(bits)
|
||||
|
||||
_add_integer_aliases()
|
||||
|
||||
# We use these later
|
||||
void = allTypes['void']
|
||||
|
||||
#
|
||||
# Rework the Python names (so that float and complex and int are consistent
|
||||
# with Python usage)
|
||||
#
|
||||
def _set_up_aliases():
|
||||
type_pairs = [('complex_', 'cdouble'),
|
||||
('int0', 'intp'),
|
||||
('uint0', 'uintp'),
|
||||
('single', 'float'),
|
||||
('csingle', 'cfloat'),
|
||||
('singlecomplex', 'cfloat'),
|
||||
('float_', 'double'),
|
||||
('intc', 'int'),
|
||||
('uintc', 'uint'),
|
||||
('int_', 'long'),
|
||||
('uint', 'ulong'),
|
||||
('cfloat', 'cdouble'),
|
||||
('longfloat', 'longdouble'),
|
||||
('clongfloat', 'clongdouble'),
|
||||
('longcomplex', 'clongdouble'),
|
||||
('bool_', 'bool'),
|
||||
('bytes_', 'string'),
|
||||
('string_', 'string'),
|
||||
('str_', 'unicode'),
|
||||
('unicode_', 'unicode'),
|
||||
('object_', 'object')]
|
||||
for alias, t in type_pairs:
|
||||
allTypes[alias] = allTypes[t]
|
||||
sctypeDict[alias] = sctypeDict[t]
|
||||
# Remove aliases overriding python types and modules
|
||||
to_remove = ['ulong', 'object', 'int', 'float',
|
||||
'complex', 'bool', 'string', 'datetime', 'timedelta',
|
||||
'bytes', 'str']
|
||||
|
||||
for t in to_remove:
|
||||
try:
|
||||
del allTypes[t]
|
||||
del sctypeDict[t]
|
||||
except KeyError:
|
||||
pass
|
||||
_set_up_aliases()
|
||||
|
||||
|
||||
sctypes = {'int': [],
|
||||
'uint':[],
|
||||
'float':[],
|
||||
'complex':[],
|
||||
'others':[bool, object, bytes, unicode, void]}
|
||||
|
||||
def _add_array_type(typename, bits):
|
||||
try:
|
||||
t = allTypes['%s%d' % (typename, bits)]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
sctypes[typename].append(t)
|
||||
|
||||
def _set_array_types():
|
||||
ibytes = [1, 2, 4, 8, 16, 32, 64]
|
||||
fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
|
||||
for bytes in ibytes:
|
||||
bits = 8*bytes
|
||||
_add_array_type('int', bits)
|
||||
_add_array_type('uint', bits)
|
||||
for bytes in fbytes:
|
||||
bits = 8*bytes
|
||||
_add_array_type('float', bits)
|
||||
_add_array_type('complex', 2*bits)
|
||||
_gi = dtype('p')
|
||||
if _gi.type not in sctypes['int']:
|
||||
indx = 0
|
||||
sz = _gi.itemsize
|
||||
_lst = sctypes['int']
|
||||
while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
|
||||
indx += 1
|
||||
sctypes['int'].insert(indx, _gi.type)
|
||||
sctypes['uint'].insert(indx, dtype('P').type)
|
||||
_set_array_types()
|
||||
|
||||
|
||||
# Add additional strings to the sctypeDict
|
||||
_toadd = ['int', 'float', 'complex', 'bool', 'object',
|
||||
'str', 'bytes', ('a', 'bytes_')]
|
||||
|
||||
for name in _toadd:
|
||||
if isinstance(name, tuple):
|
||||
sctypeDict[name[0]] = allTypes[name[1]]
|
||||
else:
|
||||
sctypeDict[name] = allTypes['%s_' % name]
|
||||
|
||||
del _toadd, name
|
@@ -0,0 +1,19 @@
|
||||
import sys
|
||||
from typing import Dict, Union, Type, List
|
||||
|
||||
from numpy import generic, signedinteger, unsignedinteger, floating, complexfloating
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import TypedDict
|
||||
else:
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
class _SCTypes(TypedDict):
|
||||
int: List[Type[signedinteger]]
|
||||
uint: List[Type[unsignedinteger]]
|
||||
float: List[Type[floating]]
|
||||
complex: List[Type[complexfloating]]
|
||||
others: List[type]
|
||||
|
||||
sctypeDict: Dict[Union[int, str], Type[generic]]
|
||||
sctypes: _SCTypes
|
446
.venv/lib/python3.9/site-packages/numpy/core/_ufunc_config.py
Normal file
446
.venv/lib/python3.9/site-packages/numpy/core/_ufunc_config.py
Normal file
@@ -0,0 +1,446 @@
|
||||
"""
|
||||
Functions for changing global ufunc configuration
|
||||
|
||||
This provides helpers which wrap `umath.geterrobj` and `umath.seterrobj`
|
||||
"""
|
||||
import collections.abc
|
||||
import contextlib
|
||||
|
||||
from .overrides import set_module
|
||||
from .umath import (
|
||||
UFUNC_BUFSIZE_DEFAULT,
|
||||
ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG, ERR_DEFAULT,
|
||||
SHIFT_DIVIDEBYZERO, SHIFT_OVERFLOW, SHIFT_UNDERFLOW, SHIFT_INVALID,
|
||||
)
|
||||
from . import umath
|
||||
|
||||
__all__ = [
|
||||
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
|
||||
"errstate",
|
||||
]
|
||||
|
||||
_errdict = {"ignore": ERR_IGNORE,
|
||||
"warn": ERR_WARN,
|
||||
"raise": ERR_RAISE,
|
||||
"call": ERR_CALL,
|
||||
"print": ERR_PRINT,
|
||||
"log": ERR_LOG}
|
||||
|
||||
_errdict_rev = {value: key for key, value in _errdict.items()}
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
|
||||
"""
|
||||
Set how floating-point errors are handled.
|
||||
|
||||
Note that operations on integer scalar types (such as `int16`) are
|
||||
handled like floating point, and are affected by these settings.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Set treatment for all types of floating-point errors at once:
|
||||
|
||||
- ignore: Take no action when the exception occurs.
|
||||
- warn: Print a `RuntimeWarning` (via the Python `warnings` module).
|
||||
- raise: Raise a `FloatingPointError`.
|
||||
- call: Call a function specified using the `seterrcall` function.
|
||||
- print: Print a warning directly to ``stdout``.
|
||||
- log: Record error in a Log object specified by `seterrcall`.
|
||||
|
||||
The default is not to change the current behavior.
|
||||
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for division by zero.
|
||||
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point overflow.
|
||||
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point underflow.
|
||||
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for invalid floating-point operation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
old_settings : dict
|
||||
Dictionary containing the old settings.
|
||||
|
||||
See also
|
||||
--------
|
||||
seterrcall : Set a callback function for the 'call' mode.
|
||||
geterr, geterrcall, errstate
|
||||
|
||||
Notes
|
||||
-----
|
||||
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
|
||||
|
||||
- Division by zero: infinite result obtained from finite numbers.
|
||||
- Overflow: result too large to be expressed.
|
||||
- Underflow: result so close to zero that some precision
|
||||
was lost.
|
||||
- Invalid operation: result is not an expressible number, typically
|
||||
indicates that a NaN was produced.
|
||||
|
||||
.. [1] https://en.wikipedia.org/wiki/IEEE_754
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> old_settings = np.seterr(all='ignore') #seterr to known value
|
||||
>>> np.seterr(over='raise')
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
>>> np.seterr(**old_settings) # reset to default
|
||||
{'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
>>> old_settings = np.seterr(all='warn', over='raise')
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
FloatingPointError: overflow encountered in short_scalars
|
||||
|
||||
>>> old_settings = np.seterr(all='print')
|
||||
>>> np.geterr()
|
||||
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
|
||||
"""
|
||||
|
||||
pyvals = umath.geterrobj()
|
||||
old = geterr()
|
||||
|
||||
if divide is None:
|
||||
divide = all or old['divide']
|
||||
if over is None:
|
||||
over = all or old['over']
|
||||
if under is None:
|
||||
under = all or old['under']
|
||||
if invalid is None:
|
||||
invalid = all or old['invalid']
|
||||
|
||||
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
|
||||
(_errdict[over] << SHIFT_OVERFLOW) +
|
||||
(_errdict[under] << SHIFT_UNDERFLOW) +
|
||||
(_errdict[invalid] << SHIFT_INVALID))
|
||||
|
||||
pyvals[1] = maskvalue
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterr():
|
||||
"""
|
||||
Get the current way of handling floating-point errors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : dict
|
||||
A dictionary with keys "divide", "over", "under", and "invalid",
|
||||
whose values are from the strings "ignore", "print", "log", "warn",
|
||||
"raise", and "call". The keys represent possible floating-point
|
||||
exceptions, and the values define how these exceptions are handled.
|
||||
|
||||
See Also
|
||||
--------
|
||||
geterrcall, seterr, seterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
|
||||
>>> np.arange(3.) / np.arange(3.)
|
||||
array([nan, 1., 1.])
|
||||
|
||||
>>> oldsettings = np.seterr(all='warn', over='raise')
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'raise', 'under': 'warn', 'invalid': 'warn'}
|
||||
>>> np.arange(3.) / np.arange(3.)
|
||||
array([nan, 1., 1.])
|
||||
|
||||
"""
|
||||
maskvalue = umath.geterrobj()[1]
|
||||
mask = 7
|
||||
res = {}
|
||||
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
|
||||
res['divide'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_OVERFLOW) & mask
|
||||
res['over'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
|
||||
res['under'] = _errdict_rev[val]
|
||||
val = (maskvalue >> SHIFT_INVALID) & mask
|
||||
res['invalid'] = _errdict_rev[val]
|
||||
return res
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def setbufsize(size):
|
||||
"""
|
||||
Set the size of the buffer used in ufuncs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : int
|
||||
Size of buffer.
|
||||
|
||||
"""
|
||||
if size > 10e6:
|
||||
raise ValueError("Buffer size, %s, is too big." % size)
|
||||
if size < 5:
|
||||
raise ValueError("Buffer size, %s, is too small." % size)
|
||||
if size % 16 != 0:
|
||||
raise ValueError("Buffer size, %s, is not a multiple of 16." % size)
|
||||
|
||||
pyvals = umath.geterrobj()
|
||||
old = getbufsize()
|
||||
pyvals[0] = size
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def getbufsize():
|
||||
"""
|
||||
Return the size of the buffer used in ufuncs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
getbufsize : int
|
||||
Size of ufunc buffer in bytes.
|
||||
|
||||
"""
|
||||
return umath.geterrobj()[0]
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterrcall(func):
|
||||
"""
|
||||
Set the floating-point error callback function or log object.
|
||||
|
||||
There are two ways to capture floating-point error messages. The first
|
||||
is to set the error-handler to 'call', using `seterr`. Then, set
|
||||
the function to call using this function.
|
||||
|
||||
The second is to set the error-handler to 'log', using `seterr`.
|
||||
Floating-point errors then trigger a call to the 'write' method of
|
||||
the provided object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable f(err, flag) or object with write method
|
||||
Function to call upon floating-point errors ('call'-mode) or
|
||||
object whose 'write' method is used to log such message ('log'-mode).
|
||||
|
||||
The call function takes two arguments. The first is a string describing
|
||||
the type of error (such as "divide by zero", "overflow", "underflow",
|
||||
or "invalid value"), and the second is the status flag. The flag is a
|
||||
byte, whose four least-significant bits indicate the type of error, one
|
||||
of "divide", "over", "under", "invalid"::
|
||||
|
||||
[0 0 0 0 divide over under invalid]
|
||||
|
||||
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
|
||||
|
||||
If an object is provided, its write method should take one argument,
|
||||
a string.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : callable, log instance or None
|
||||
The old error handler.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, geterrcall
|
||||
|
||||
Examples
|
||||
--------
|
||||
Callback upon error:
|
||||
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
...
|
||||
|
||||
>>> saved_handler = np.seterrcall(err_handler)
|
||||
>>> save_err = np.seterr(all='call')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(saved_handler)
|
||||
<function err_handler at 0x...>
|
||||
>>> np.seterr(**save_err)
|
||||
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
|
||||
|
||||
Log error message:
|
||||
|
||||
>>> class Log:
|
||||
... def write(self, msg):
|
||||
... print("LOG: %s" % msg)
|
||||
...
|
||||
|
||||
>>> log = Log()
|
||||
>>> saved_handler = np.seterrcall(log)
|
||||
>>> save_err = np.seterr(all='log')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
LOG: Warning: divide by zero encountered in true_divide
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(saved_handler)
|
||||
<numpy.core.numeric.Log object at 0x...>
|
||||
>>> np.seterr(**save_err)
|
||||
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
|
||||
|
||||
"""
|
||||
if func is not None and not isinstance(func, collections.abc.Callable):
|
||||
if (not hasattr(func, 'write') or
|
||||
not isinstance(func.write, collections.abc.Callable)):
|
||||
raise ValueError("Only callable can be used as callback")
|
||||
pyvals = umath.geterrobj()
|
||||
old = geterrcall()
|
||||
pyvals[2] = func
|
||||
umath.seterrobj(pyvals)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterrcall():
|
||||
"""
|
||||
Return the current callback function used on floating-point errors.
|
||||
|
||||
When the error handling for a floating-point error (one of "divide",
|
||||
"over", "under", or "invalid") is set to 'call' or 'log', the function
|
||||
that is called or the log instance that is written to is returned by
|
||||
`geterrcall`. This function or log instance has been set with
|
||||
`seterrcall`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
errobj : callable, log instance or None
|
||||
The current error handler. If no handler was set through `seterrcall`,
|
||||
``None`` is returned.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterrcall, seterr, geterr
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.geterrcall() # we did not yet set a handler, returns None
|
||||
|
||||
>>> oldsettings = np.seterr(all='call')
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
>>> oldhandler = np.seterrcall(err_handler)
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> cur_handler = np.geterrcall()
|
||||
>>> cur_handler is err_handler
|
||||
True
|
||||
|
||||
"""
|
||||
return umath.geterrobj()[2]
|
||||
|
||||
|
||||
class _unspecified:
|
||||
pass
|
||||
|
||||
|
||||
_Unspecified = _unspecified()
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class errstate(contextlib.ContextDecorator):
|
||||
"""
|
||||
errstate(**kwargs)
|
||||
|
||||
Context manager for floating-point error handling.
|
||||
|
||||
Using an instance of `errstate` as a context manager allows statements in
|
||||
that context to execute with a known error handling behavior. Upon entering
|
||||
the context the error handling is set with `seterr` and `seterrcall`, and
|
||||
upon exiting it is reset to what it was before.
|
||||
|
||||
.. versionchanged:: 1.17.0
|
||||
`errstate` is also usable as a function decorator, saving
|
||||
a level of indentation if an entire function is wrapped.
|
||||
See :py:class:`contextlib.ContextDecorator` for more information.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kwargs : {divide, over, under, invalid}
|
||||
Keyword arguments. The valid keywords are the possible floating-point
|
||||
exceptions. Each keyword should have a string value that defines the
|
||||
treatment for the particular error. Possible values are
|
||||
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, seterrcall, geterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
|
||||
|
||||
>>> np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
>>> with np.errstate(divide='warn'):
|
||||
... np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
|
||||
>>> np.sqrt(-1)
|
||||
nan
|
||||
>>> with np.errstate(invalid='raise'):
|
||||
... np.sqrt(-1)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 2, in <module>
|
||||
FloatingPointError: invalid value encountered in sqrt
|
||||
|
||||
Outside the context the error handling behavior has not changed:
|
||||
|
||||
>>> np.geterr()
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, *, call=_Unspecified, **kwargs):
|
||||
self.call = call
|
||||
self.kwargs = kwargs
|
||||
|
||||
def __enter__(self):
|
||||
self.oldstate = seterr(**self.kwargs)
|
||||
if self.call is not _Unspecified:
|
||||
self.oldcall = seterrcall(self.call)
|
||||
|
||||
def __exit__(self, *exc_info):
|
||||
seterr(**self.oldstate)
|
||||
if self.call is not _Unspecified:
|
||||
seterrcall(self.oldcall)
|
||||
|
||||
|
||||
def _setdef():
|
||||
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
|
||||
umath.seterrobj(defval)
|
||||
|
||||
|
||||
# set the default values
|
||||
_setdef()
|
@@ -0,0 +1,43 @@
|
||||
import sys
|
||||
from typing import Optional, Union, Callable, Any
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import Literal, Protocol, TypedDict
|
||||
else:
|
||||
from typing_extensions import Literal, Protocol, TypedDict
|
||||
|
||||
_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
|
||||
_ErrFunc = Callable[[str, int], Any]
|
||||
|
||||
class _SupportsWrite(Protocol):
|
||||
def write(self, __msg: str) -> Any: ...
|
||||
|
||||
class _ErrDict(TypedDict):
|
||||
divide: _ErrKind
|
||||
over: _ErrKind
|
||||
under: _ErrKind
|
||||
invalid: _ErrKind
|
||||
|
||||
class _ErrDictOptional(TypedDict, total=False):
|
||||
all: Optional[_ErrKind]
|
||||
divide: Optional[_ErrKind]
|
||||
over: Optional[_ErrKind]
|
||||
under: Optional[_ErrKind]
|
||||
invalid: Optional[_ErrKind]
|
||||
|
||||
def seterr(
|
||||
all: Optional[_ErrKind] = ...,
|
||||
divide: Optional[_ErrKind] = ...,
|
||||
over: Optional[_ErrKind] = ...,
|
||||
under: Optional[_ErrKind] = ...,
|
||||
invalid: Optional[_ErrKind] = ...,
|
||||
) -> _ErrDict: ...
|
||||
def geterr() -> _ErrDict: ...
|
||||
def setbufsize(size: int) -> int: ...
|
||||
def getbufsize() -> int: ...
|
||||
def seterrcall(
|
||||
func: Union[None, _ErrFunc, _SupportsWrite]
|
||||
) -> Union[None, _ErrFunc, _SupportsWrite]: ...
|
||||
def geterrcall() -> Union[None, _ErrFunc, _SupportsWrite]: ...
|
||||
|
||||
# See `numpy/__init__.pyi` for the `errstate` class
|
Binary file not shown.
1664
.venv/lib/python3.9/site-packages/numpy/core/arrayprint.py
Normal file
1664
.venv/lib/python3.9/site-packages/numpy/core/arrayprint.py
Normal file
File diff suppressed because it is too large
Load Diff
147
.venv/lib/python3.9/site-packages/numpy/core/arrayprint.pyi
Normal file
147
.venv/lib/python3.9/site-packages/numpy/core/arrayprint.pyi
Normal file
@@ -0,0 +1,147 @@
|
||||
import sys
|
||||
from types import TracebackType
|
||||
from typing import Any, Optional, Callable, Union, Type
|
||||
|
||||
# Using a private class is by no means ideal, but it is simply a consquence
|
||||
# of a `contextlib.context` returning an instance of aformentioned class
|
||||
from contextlib import _GeneratorContextManager
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
generic,
|
||||
bool_,
|
||||
integer,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
floating,
|
||||
complexfloating,
|
||||
void,
|
||||
str_,
|
||||
bytes_,
|
||||
longdouble,
|
||||
clongdouble,
|
||||
)
|
||||
from numpy.typing import ArrayLike, _CharLike_co, _FloatLike_co
|
||||
|
||||
if sys.version_info > (3, 8):
|
||||
from typing import Literal, TypedDict, SupportsIndex
|
||||
else:
|
||||
from typing_extensions import Literal, TypedDict, SupportsIndex
|
||||
|
||||
_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
|
||||
|
||||
class _FormatDict(TypedDict, total=False):
|
||||
bool: Callable[[bool_], str]
|
||||
int: Callable[[integer[Any]], str]
|
||||
timedelta: Callable[[timedelta64], str]
|
||||
datetime: Callable[[datetime64], str]
|
||||
float: Callable[[floating[Any]], str]
|
||||
longfloat: Callable[[longdouble], str]
|
||||
complexfloat: Callable[[complexfloating[Any, Any]], str]
|
||||
longcomplexfloat: Callable[[clongdouble], str]
|
||||
void: Callable[[void], str]
|
||||
numpystr: Callable[[_CharLike_co], str]
|
||||
object: Callable[[object], str]
|
||||
all: Callable[[object], str]
|
||||
int_kind: Callable[[integer[Any]], str]
|
||||
float_kind: Callable[[floating[Any]], str]
|
||||
complex_kind: Callable[[complexfloating[Any, Any]], str]
|
||||
str_kind: Callable[[_CharLike_co], str]
|
||||
|
||||
class _FormatOptions(TypedDict):
|
||||
precision: int
|
||||
threshold: int
|
||||
edgeitems: int
|
||||
linewidth: int
|
||||
suppress: bool
|
||||
nanstr: str
|
||||
infstr: str
|
||||
formatter: Optional[_FormatDict]
|
||||
sign: Literal["-", "+", " "]
|
||||
floatmode: _FloatMode
|
||||
legacy: Literal[False, "1.13"]
|
||||
|
||||
def set_printoptions(
|
||||
precision: Optional[SupportsIndex] = ...,
|
||||
threshold: Optional[int] = ...,
|
||||
edgeitems: Optional[int] = ...,
|
||||
linewidth: Optional[int] = ...,
|
||||
suppress: Optional[bool] = ...,
|
||||
nanstr: Optional[str] = ...,
|
||||
infstr: Optional[str] = ...,
|
||||
formatter: Optional[_FormatDict] = ...,
|
||||
sign: Optional[Literal["-", "+", " "]] = ...,
|
||||
floatmode: Optional[_FloatMode] = ...,
|
||||
*,
|
||||
legacy: Optional[Literal[False, "1.13"]] = ...
|
||||
) -> None: ...
|
||||
def get_printoptions() -> _FormatOptions: ...
|
||||
def array2string(
|
||||
a: ndarray[Any, Any],
|
||||
max_line_width: Optional[int] = ...,
|
||||
precision: Optional[SupportsIndex] = ...,
|
||||
suppress_small: Optional[bool] = ...,
|
||||
separator: str = ...,
|
||||
prefix: str = ...,
|
||||
# NOTE: With the `style` argument being deprecated,
|
||||
# all arguments between `formatter` and `suffix` are de facto
|
||||
# keyworld-only arguments
|
||||
*,
|
||||
formatter: Optional[_FormatDict] = ...,
|
||||
threshold: Optional[int] = ...,
|
||||
edgeitems: Optional[int] = ...,
|
||||
sign: Optional[Literal["-", "+", " "]] = ...,
|
||||
floatmode: Optional[_FloatMode] = ...,
|
||||
suffix: str = ...,
|
||||
legacy: Optional[Literal[False, "1.13"]] = ...,
|
||||
) -> str: ...
|
||||
def format_float_scientific(
|
||||
x: _FloatLike_co,
|
||||
precision: Optional[int] = ...,
|
||||
unique: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: Optional[int] = ...,
|
||||
exp_digits: Optional[int] = ...,
|
||||
min_digits: Optional[int] = ...,
|
||||
) -> str: ...
|
||||
def format_float_positional(
|
||||
x: _FloatLike_co,
|
||||
precision: Optional[int] = ...,
|
||||
unique: bool = ...,
|
||||
fractional: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: Optional[int] = ...,
|
||||
pad_right: Optional[int] = ...,
|
||||
min_digits: Optional[int] = ...,
|
||||
) -> str: ...
|
||||
def array_repr(
|
||||
arr: ndarray[Any, Any],
|
||||
max_line_width: Optional[int] = ...,
|
||||
precision: Optional[SupportsIndex] = ...,
|
||||
suppress_small: Optional[bool] = ...,
|
||||
) -> str: ...
|
||||
def array_str(
|
||||
a: ndarray[Any, Any],
|
||||
max_line_width: Optional[int] = ...,
|
||||
precision: Optional[SupportsIndex] = ...,
|
||||
suppress_small: Optional[bool] = ...,
|
||||
) -> str: ...
|
||||
def set_string_function(
|
||||
f: Optional[Callable[[ndarray[Any, Any]], str]], repr: bool = ...
|
||||
) -> None: ...
|
||||
def printoptions(
|
||||
precision: Optional[SupportsIndex] = ...,
|
||||
threshold: Optional[int] = ...,
|
||||
edgeitems: Optional[int] = ...,
|
||||
linewidth: Optional[int] = ...,
|
||||
suppress: Optional[bool] = ...,
|
||||
nanstr: Optional[str] = ...,
|
||||
infstr: Optional[str] = ...,
|
||||
formatter: Optional[_FormatDict] = ...,
|
||||
sign: Optional[Literal["-", "+", " "]] = ...,
|
||||
floatmode: Optional[_FloatMode] = ...,
|
||||
*,
|
||||
legacy: Optional[Literal[False, "1.13"]] = ...
|
||||
) -> _GeneratorContextManager[_FormatOptions]: ...
|
13
.venv/lib/python3.9/site-packages/numpy/core/cversions.py
Normal file
13
.venv/lib/python3.9/site-packages/numpy/core/cversions.py
Normal file
@@ -0,0 +1,13 @@
|
||||
"""Simple script to compute the api hash of the current API.
|
||||
|
||||
The API has is defined by numpy_api_order and ufunc_api_order.
|
||||
|
||||
"""
|
||||
from os.path import dirname
|
||||
|
||||
from code_generators.genapi import fullapi_hash
|
||||
from code_generators.numpy_api import full_api
|
||||
|
||||
if __name__ == '__main__':
|
||||
curdir = dirname(__file__)
|
||||
print(fullapi_hash(full_api))
|
2795
.venv/lib/python3.9/site-packages/numpy/core/defchararray.py
Normal file
2795
.venv/lib/python3.9/site-packages/numpy/core/defchararray.py
Normal file
File diff suppressed because it is too large
Load Diff
1431
.venv/lib/python3.9/site-packages/numpy/core/einsumfunc.py
Normal file
1431
.venv/lib/python3.9/site-packages/numpy/core/einsumfunc.py
Normal file
File diff suppressed because it is too large
Load Diff
142
.venv/lib/python3.9/site-packages/numpy/core/einsumfunc.pyi
Normal file
142
.venv/lib/python3.9/site-packages/numpy/core/einsumfunc.pyi
Normal file
@@ -0,0 +1,142 @@
|
||||
import sys
|
||||
from typing import List, TypeVar, Optional, Any, overload, Union, Tuple, Sequence
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
bool_,
|
||||
unsignedinteger,
|
||||
signedinteger,
|
||||
floating,
|
||||
complexfloating,
|
||||
number,
|
||||
_OrderKACF,
|
||||
)
|
||||
from numpy.typing import (
|
||||
_ArrayLikeBool_co,
|
||||
_ArrayLikeUInt_co,
|
||||
_ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
_DTypeLikeBool,
|
||||
_DTypeLikeUInt,
|
||||
_DTypeLikeInt,
|
||||
_DTypeLikeFloat,
|
||||
_DTypeLikeComplex,
|
||||
_DTypeLikeComplex_co,
|
||||
)
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import Literal
|
||||
else:
|
||||
from typing_extensions import Literal
|
||||
|
||||
_ArrayType = TypeVar(
|
||||
"_ArrayType",
|
||||
bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
|
||||
)
|
||||
|
||||
_OptimizeKind = Union[
|
||||
None, bool, Literal["greedy", "optimal"], Sequence[Any]
|
||||
]
|
||||
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
|
||||
_CastingUnsafe = Literal["unsafe"]
|
||||
|
||||
__all__: List[str]
|
||||
|
||||
# TODO: Properly handle the `casting`-based combinatorics
|
||||
# TODO: We need to evaluate the content `__subscripts` in order
|
||||
# to identify whether or an array or scalar is returned. At a cursory
|
||||
# glance this seems like something that can quite easilly be done with
|
||||
# a mypy plugin.
|
||||
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeBool_co,
|
||||
out: None = ...,
|
||||
dtype: Optional[_DTypeLikeBool] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeUInt_co,
|
||||
out: None = ...,
|
||||
dtype: Optional[_DTypeLikeUInt] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeInt_co,
|
||||
out: None = ...,
|
||||
dtype: Optional[_DTypeLikeInt] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeFloat_co,
|
||||
out: None = ...,
|
||||
dtype: Optional[_DTypeLikeFloat] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: None = ...,
|
||||
dtype: Optional[_DTypeLikeComplex] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: Any,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: Optional[_DTypeLikeComplex_co] = ...,
|
||||
out: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: _ArrayType,
|
||||
dtype: Optional[_DTypeLikeComplex_co] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def einsum(
|
||||
__subscripts: str,
|
||||
*operands: Any,
|
||||
out: _ArrayType,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: Optional[_DTypeLikeComplex_co] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
|
||||
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
|
||||
# It is therefore excluded from the signatures below.
|
||||
# NOTE: In practice the list consists of a `str` (first element)
|
||||
# and a variable number of integer tuples.
|
||||
def einsum_path(
|
||||
__subscripts: str,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Tuple[List[Any], str]: ...
|
3789
.venv/lib/python3.9/site-packages/numpy/core/fromnumeric.py
Normal file
3789
.venv/lib/python3.9/site-packages/numpy/core/fromnumeric.py
Normal file
File diff suppressed because it is too large
Load Diff
361
.venv/lib/python3.9/site-packages/numpy/core/fromnumeric.pyi
Normal file
361
.venv/lib/python3.9/site-packages/numpy/core/fromnumeric.pyi
Normal file
@@ -0,0 +1,361 @@
|
||||
import sys
|
||||
import datetime as dt
|
||||
from typing import Optional, Union, Sequence, Tuple, Any, overload, TypeVar
|
||||
|
||||
from numpy import (
|
||||
ndarray,
|
||||
number,
|
||||
integer,
|
||||
intp,
|
||||
bool_,
|
||||
generic,
|
||||
_OrderKACF,
|
||||
_OrderACF,
|
||||
_ModeKind,
|
||||
_PartitionKind,
|
||||
_SortKind,
|
||||
_SortSide,
|
||||
)
|
||||
from numpy.typing import (
|
||||
DTypeLike,
|
||||
ArrayLike,
|
||||
_ShapeLike,
|
||||
_Shape,
|
||||
_ArrayLikeBool_co,
|
||||
_ArrayLikeInt_co,
|
||||
_NumberLike_co,
|
||||
)
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
from typing import Literal
|
||||
else:
|
||||
from typing_extensions import Literal
|
||||
|
||||
# Various annotations for scalars
|
||||
|
||||
# While dt.datetime and dt.timedelta are not technically part of NumPy,
|
||||
# they are one of the rare few builtin scalars which serve as valid return types.
|
||||
# See https://github.com/numpy/numpy-stubs/pull/67#discussion_r412604113.
|
||||
_ScalarNumpy = Union[generic, dt.datetime, dt.timedelta]
|
||||
_ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, complex]
|
||||
_Scalar = Union[_ScalarBuiltin, _ScalarNumpy]
|
||||
|
||||
# Integers and booleans can generally be used interchangeably
|
||||
_ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic)
|
||||
|
||||
_Number = TypeVar("_Number", bound=number)
|
||||
|
||||
# The signature of take() follows a common theme with its overloads:
|
||||
# 1. A generic comes in; the same generic comes out
|
||||
# 2. A scalar comes in; a generic comes out
|
||||
# 3. An array-like object comes in; some keyword ensures that a generic comes out
|
||||
# 4. An array-like object comes in; an ndarray or generic comes out
|
||||
def take(
|
||||
a: ArrayLike,
|
||||
indices: _ArrayLikeInt_co,
|
||||
axis: Optional[int] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
mode: _ModeKind = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def reshape(
|
||||
a: ArrayLike,
|
||||
newshape: _ShapeLike,
|
||||
order: _OrderACF = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def choose(
|
||||
a: _ArrayLikeInt_co,
|
||||
choices: ArrayLike,
|
||||
out: Optional[ndarray] = ...,
|
||||
mode: _ModeKind = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def repeat(
|
||||
a: ArrayLike,
|
||||
repeats: _ArrayLikeInt_co,
|
||||
axis: Optional[int] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def put(
|
||||
a: ndarray,
|
||||
ind: _ArrayLikeInt_co,
|
||||
v: ArrayLike,
|
||||
mode: _ModeKind = ...,
|
||||
) -> None: ...
|
||||
|
||||
def swapaxes(
|
||||
a: ArrayLike,
|
||||
axis1: int,
|
||||
axis2: int,
|
||||
) -> ndarray: ...
|
||||
|
||||
def transpose(
|
||||
a: ArrayLike,
|
||||
axes: Union[None, Sequence[int], ndarray] = ...
|
||||
) -> ndarray: ...
|
||||
|
||||
def partition(
|
||||
a: ArrayLike,
|
||||
kth: _ArrayLikeInt_co,
|
||||
axis: Optional[int] = ...,
|
||||
kind: _PartitionKind = ...,
|
||||
order: Union[None, str, Sequence[str]] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def argpartition(
|
||||
a: ArrayLike,
|
||||
kth: _ArrayLikeInt_co,
|
||||
axis: Optional[int] = ...,
|
||||
kind: _PartitionKind = ...,
|
||||
order: Union[None, str, Sequence[str]] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def sort(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
kind: Optional[_SortKind] = ...,
|
||||
order: Union[None, str, Sequence[str]] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def argsort(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
kind: Optional[_SortKind] = ...,
|
||||
order: Union[None, str, Sequence[str]] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
@overload
|
||||
def argmax(
|
||||
a: ArrayLike,
|
||||
axis: None = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> intp: ...
|
||||
@overload
|
||||
def argmax(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def argmin(
|
||||
a: ArrayLike,
|
||||
axis: None = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> intp: ...
|
||||
@overload
|
||||
def argmin(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def searchsorted(
|
||||
a: ArrayLike,
|
||||
v: _Scalar,
|
||||
side: _SortSide = ...,
|
||||
sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array
|
||||
) -> intp: ...
|
||||
@overload
|
||||
def searchsorted(
|
||||
a: ArrayLike,
|
||||
v: ArrayLike,
|
||||
side: _SortSide = ...,
|
||||
sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array
|
||||
) -> ndarray: ...
|
||||
|
||||
def resize(
|
||||
a: ArrayLike,
|
||||
new_shape: _ShapeLike,
|
||||
) -> ndarray: ...
|
||||
|
||||
@overload
|
||||
def squeeze(
|
||||
a: _ScalarGeneric,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
) -> _ScalarGeneric: ...
|
||||
@overload
|
||||
def squeeze(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def diagonal(
|
||||
a: ArrayLike,
|
||||
offset: int = ...,
|
||||
axis1: int = ...,
|
||||
axis2: int = ..., # >= 2D array
|
||||
) -> ndarray: ...
|
||||
|
||||
def trace(
|
||||
a: ArrayLike, # >= 2D array
|
||||
offset: int = ...,
|
||||
axis1: int = ...,
|
||||
axis2: int = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ...
|
||||
|
||||
def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ...
|
||||
|
||||
def shape(a: ArrayLike) -> _Shape: ...
|
||||
|
||||
def compress(
|
||||
condition: ArrayLike, # 1D bool array
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
@overload
|
||||
def clip(
|
||||
a: ArrayLike,
|
||||
a_min: ArrayLike,
|
||||
a_max: Optional[ArrayLike],
|
||||
out: Optional[ndarray] = ...,
|
||||
**kwargs: Any,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def clip(
|
||||
a: ArrayLike,
|
||||
a_min: None,
|
||||
a_max: ArrayLike,
|
||||
out: Optional[ndarray] = ...,
|
||||
**kwargs: Any,
|
||||
) -> Any: ...
|
||||
|
||||
def sum(
|
||||
a: ArrayLike,
|
||||
axis: _ShapeLike = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: _NumberLike_co = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def all(
|
||||
a: ArrayLike,
|
||||
axis: None = ...,
|
||||
out: None = ...,
|
||||
keepdims: Literal[False] = ...,
|
||||
) -> bool_: ...
|
||||
@overload
|
||||
def all(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def any(
|
||||
a: ArrayLike,
|
||||
axis: None = ...,
|
||||
out: None = ...,
|
||||
keepdims: Literal[False] = ...,
|
||||
) -> bool_: ...
|
||||
@overload
|
||||
def any(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def cumsum(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def ptp(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def amax(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: _NumberLike_co = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def amin(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: _NumberLike_co = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
# TODO: `np.prod()``: For object arrays `initial` does not necessarily
|
||||
# have to be a numerical scalar.
|
||||
# The only requirement is that it is compatible
|
||||
# with the `.__mul__()` method(s) of the passed array's elements.
|
||||
|
||||
# Note that the same situation holds for all wrappers around
|
||||
# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
|
||||
def prod(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
initial: _NumberLike_co = ...,
|
||||
where: _ArrayLikeBool_co = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def cumprod(
|
||||
a: ArrayLike,
|
||||
axis: Optional[int] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> ndarray: ...
|
||||
|
||||
def ndim(a: ArrayLike) -> int: ...
|
||||
|
||||
def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ...
|
||||
|
||||
def around(
|
||||
a: ArrayLike,
|
||||
decimals: int = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def mean(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def std(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
ddof: int = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def var(
|
||||
a: ArrayLike,
|
||||
axis: Optional[_ShapeLike] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
out: Optional[ndarray] = ...,
|
||||
ddof: int = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user