import cv2 import mediapipe as mp import time import math import threading import pyautogui cap = cv2.VideoCapture(0) pyautogui.PAUSE = 0.01 mpHands = mp.solutions.hands hands = mpHands.Hands(max_num_hands=1, min_tracking_confidence=0.95, min_detection_confidence=0.90) mpDraw = mp.solutions.drawing_utils mov_dis = 0.2379 click_dis = 0.2823 sensitivity = 3.5 testing8_12 = [] testing0_5 = [] testing3_5 = [] def get_distance(first, second, height, width): dist_x = (results.multi_hand_landmarks[0].landmark[first].x - results.multi_hand_landmarks[0].landmark[ second].x) * width dist_y = (results.multi_hand_landmarks[0].landmark[first].y - results.multi_hand_landmarks[0].landmark[ second].y) * height return math.sqrt(abs(dist_x ** 2 + dist_y ** 2)) def dist(point1, point2, pointa, pointb, pointc, pointd): dis12 = get_distance(point1, point2, h, w) distab = get_distance(pointa, pointb, h, w) distcd = get_distance(pointc, pointd, h, w) testing8_12.append(dis12) testing0_5.append(distab) testing3_5.append(distcd) print(f"8-12: {round(sum(testing8_12)/len(testing8_12), 2)} | 0-5 {round(sum(testing0_5)/len(testing0_5), 2)} | 3-5 {round(sum(testing3_5)/len(testing3_5), 2)}") x, y = None, None click = False while True: success, img = cap.read() h, w, c = img.shape imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) results = hands.process(imgRGB) if results.multi_hand_landmarks: dist_palm = round(get_distance(0, 5, h, w)) if not x and not y: x, y = results.multi_hand_landmarks[0].landmark[4].x * w, results.multi_hand_landmarks[0].landmark[4].y * h dis_1 = get_distance(12, 8, h, w) cv2.putText(img, f"""MOVE: {round(dis_1)}/{round(mov_dis * dist_palm, 2)} - {"true" if dis_1 < mov_dis * dist_palm else "false"}""", (0, 15), cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2) cv2.putText(img, f"""CLICK: {round(get_distance(5, 3, h, w))}/{round(click_dis * dist_palm, 2)} - {"true" if get_distance(5, 3, h, w) < click_dis * dist_palm else "false"}""", (0, 40), cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2) cv2.putText(img, f"""DRAG: {"true" if dis_1 < mov_dis * dist_palm and get_distance(5, 3, h, w) < click_dis * dist_palm else "false"}""", (0, 65), cv2.FONT_HERSHEY_PLAIN, 1.5, (255, 0, 255), thickness=2) for handLms in results.multi_hand_landmarks: mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS) if dis_1 < mov_dis * dist_palm and get_distance(5, 3, h, w) < click_dis * dist_palm: pyautogui.mouseDown() pyautogui.moveRel(-(results.multi_hand_landmarks[0].landmark[8].x * w - x) * sensitivity, (results.multi_hand_landmarks[0].landmark[8].y * h - y) * sensitivity, duration=0.001) elif dis_1 < mov_dis * dist_palm: pyautogui.mouseUp() pyautogui.moveRel(-(results.multi_hand_landmarks[0].landmark[8].x * w - x) * sensitivity, (results.multi_hand_landmarks[0].landmark[8].y * h - y) * sensitivity, duration=0.001) elif get_distance(5, 3, h, w) < click_dis * dist_palm and not click: pyautogui.mouseUp() pyautogui.click() click = True else: pyautogui.mouseUp() click = False x, y = results.multi_hand_landmarks[0].landmark[8].x * w, results.multi_hand_landmarks[0].landmark[8].y * h dist(8, 12, 0, 5, 3, 5) else: x, y = None, None cv2.imshow("Image", img) cv2.waitKey(1)