import math from numpy import array as a import numpy as np from PIL import Image im = Image.open("debug.bmp") gray = im.convert('LA') asnumpy_gray = np.asarray(gray) image = np.asarray(im) bnsdfcnsd = np.asarray(im) sobel_0 = [ [-0.125, 0, 0.125], [-0.25, 0, 0.25], [-0.125, 0, 0.125] ] sobel_1 = [ [-0.125, -0.25, -0.125], [0, 0, 0], [0.125, 0.25, 0.125] ] edge_values = a([ a([0, 1, 0.5, 0.8]), a([0.5, 0.2, 0.3, 0.4]), a([1, 0.5, 0.6, 0.7]), a([0.2, 0.1, 0.1, 0.1]) ]) asnumpy_gray = a([a([pixel[0] for pixel in row]) for row in asnumpy_gray]) image = [row.tolist() for row in image] def get_minimal_energy_map_vertical(edge_values_): minimal_energy_map = np.zeros(shape=edge_values_.shape) minimal_energy_map[-1] = edge_values_[-1] for i in range(-2, -len(edge_values_) - 1, -1): for j in range(len(edge_values_[0])): if j == 0: minimal_energy_map[i][j] = edge_values_[i][j] + min(minimal_energy_map[i + 1][j:j + 2]) elif j == len(edge_values_[0]) - 1: minimal_energy_map[i][j] = edge_values_[i][j] + min(minimal_energy_map[i + 1][j - 1:j + 1]) else: minimal_energy_map[i][j] = edge_values_[i][j] + min(minimal_energy_map[i + 1][j - 1:j + 2]) return minimal_energy_map def seam_carve_vertical(image, minimal_energy_map): seam = np.zeros(len(minimal_energy_map), dtype=np.int32) seam[0] = (minimal_energy_map[0].tolist()).index(min(minimal_energy_map[0])) for i in range(len(minimal_energy_map) - 1): j = seam[i] if j == 0: sub_array = minimal_energy_map[i + 1][:2].tolist() seam[i + 1] = sub_array.index(min(sub_array)) elif j == len(minimal_energy_map[0]) - 1: sub_array = minimal_energy_map[i + 1][-2:].tolist() seam[i + 1] = j + sub_array.index(min(sub_array)) - 1 else: sub_array = minimal_energy_map[i + 1][j - 1:j + 2].tolist() seam[i + 1] = j + sub_array.index(min(sub_array)) - 1 for i in range(len(seam)): #image[i] = image[i][:seam[i]] + image[i][seam[i] + 1:] image[i][seam[i]] = [255, 0, 0] return a([a(row, dtype=np.uint8) for row in image], dtype=np.uint8) def get_edges_values(input): img1 = np.zeros(shape=asnumpy_gray.shape) for y in range(1, len(img1) - 1): for x in range(1, len(img1[y]) - 1): inx0 = 0. inx1 = 0. for ax in range(-1, 2): for b in range(-1, 2): try: inx0 += asnumpy_gray[y + ax][x + b] * sobel_0[ax + 1][b + 1] inx1 += asnumpy_gray[y + ax][x + b] * sobel_1[ax + 1][b + 1] except: pass img1[y][x] = math.sqrt(inx0 ** 2 + inx1 ** 2) return img1 def dostuff(input): for y in range(len(input)): for x in range(len(input[y])): input[y][x] = (((input[y][x] - -9635.0) * (255 - 0)) / (255 - -9635.0)) + 0 return input for i in range(1): print(i) #tmp = get_minimal_energy_map_vertical(get_edges_values(asnumpy_gray)) tmp = get_edges_values(asnumpy_gray) tmp = dostuff(tmp) image = seam_carve_vertical(image, tmp) out = Image.fromarray(tmp) image = [row.tolist() for row in image] gray = out.convert('LA') asnumpy_gray = np.asarray(gray) asnumpy_gray = a([a([pixel[0] for pixel in row]) for row in asnumpy_gray]) print("done!") out.show()