Files
brnQuanFW/ui/main.c
Armel FAUVEAU 60bdac6a73 Fix tab
2025-02-09 03:53:55 +01:00

1516 lines
48 KiB
C

/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include <stdlib.h> // abs()
#include "app/chFrScanner.h"
#include "app/dtmf.h"
#ifdef ENABLE_AM_FIX
#include "am_fix.h"
#endif
#include "bitmaps.h"
#include "board.h"
#include "driver/bk4819.h"
#include "driver/st7565.h"
#include "external/printf/printf.h"
#include "functions.h"
#include "helper/battery.h"
#include "misc.h"
#include "radio.h"
#include "settings.h"
#include "ui/helper.h"
#include "ui/inputbox.h"
#include "ui/main.h"
#include "ui/ui.h"
#include "audio.h"
#ifdef ENABLE_FEAT_F4HWN
#include "driver/system.h"
#endif
center_line_t center_line = CENTER_LINE_NONE;
#ifdef ENABLE_FEAT_F4HWN
static int8_t RxBlink;
static int8_t RxBlinkLed = 0;
static int8_t RxBlinkLedCounter;
static int8_t RxLine;
static uint32_t RxOnVfofrequency;
bool isMainOnlyInputDTMF = false;
static bool isMainOnly()
{
return (gEeprom.DUAL_WATCH == DUAL_WATCH_OFF) && (gEeprom.CROSS_BAND_RX_TX == CROSS_BAND_OFF);
}
#endif
const int8_t dBmCorrTable[7] = {
-15, // band 1
-25, // band 2
-20, // band 3
-4, // band 4
-7, // band 5
-6, // band 6
-1 // band 7
};
const char *VfoStateStr[] = {
[VFO_STATE_NORMAL]="",
[VFO_STATE_BUSY]="BUSY",
[VFO_STATE_BAT_LOW]="BAT LOW",
[VFO_STATE_TX_DISABLE]="TX DISABLE",
[VFO_STATE_TIMEOUT]="TIMEOUT",
[VFO_STATE_ALARM]="ALARM",
[VFO_STATE_VOLTAGE_HIGH]="VOLT HIGH"
};
// ***************************************************************************
static void DrawSmallAntennaAndBars(uint8_t *p, unsigned int level)
{
if(level>6)
level = 6;
memcpy(p, BITMAP_Antenna, ARRAY_SIZE(BITMAP_Antenna));
for(uint8_t i = 1; i <= level; i++) {
char bar = (0xff << (6-i)) & 0x7F;
memset(p + 2 + i*3, bar, 2);
}
}
#if defined ENABLE_AUDIO_BAR || defined ENABLE_RSSI_BAR
static void DrawLevelBar(uint8_t xpos, uint8_t line, uint8_t level, uint8_t bars)
{
#ifndef ENABLE_FEAT_F4HWN
const char hollowBar[] = {
0b01111111,
0b01000001,
0b01000001,
0b01111111
};
#endif
uint8_t *p_line = gFrameBuffer[line];
level = MIN(level, bars);
for(uint8_t i = 0; i < level; i++) {
#ifdef ENABLE_FEAT_F4HWN
if(gSetting_set_met)
{
const char hollowBar[] = {
0b01111111,
0b01000001,
0b01000001,
0b01111111
};
if(i < bars - 4) {
for(uint8_t j = 0; j < 4; j++)
p_line[xpos + i * 5 + j] = (~(0x7F >> (i + 1))) & 0x7F;
}
else {
memcpy(p_line + (xpos + i * 5), &hollowBar, ARRAY_SIZE(hollowBar));
}
}
else
{
const char hollowBar[] = {
0b00111110,
0b00100010,
0b00100010,
0b00111110
};
const char simpleBar[] = {
0b00111110,
0b00111110,
0b00111110,
0b00111110
};
if(i < bars - 4) {
memcpy(p_line + (xpos + i * 5), &simpleBar, ARRAY_SIZE(simpleBar));
}
else {
memcpy(p_line + (xpos + i * 5), &hollowBar, ARRAY_SIZE(hollowBar));
}
}
#else
if(i < bars - 4) {
for(uint8_t j = 0; j < 4; j++)
p_line[xpos + i * 5 + j] = (~(0x7F >> (i+1))) & 0x7F;
}
else {
memcpy(p_line + (xpos + i * 5), &hollowBar, ARRAY_SIZE(hollowBar));
}
#endif
}
}
#endif
#ifdef ENABLE_AUDIO_BAR
// Approximation of a logarithmic scale using integer arithmetic
uint8_t log2_approx(unsigned int value) {
uint8_t log = 0;
while (value >>= 1) {
log++;
}
return log;
}
void UI_DisplayAudioBar(void)
{
if (gSetting_mic_bar)
{
if(gLowBattery && !gLowBatteryConfirmed)
return;
#ifdef ENABLE_FEAT_F4HWN
RxBlinkLed = 0;
RxBlinkLedCounter = 0;
BK4819_ToggleGpioOut(BK4819_GPIO6_PIN2_GREEN, false);
unsigned int line;
if (isMainOnly())
{
line = 5;
}
else
{
line = 3;
}
#else
const unsigned int line = 3;
#endif
if (gCurrentFunction != FUNCTION_TRANSMIT ||
gScreenToDisplay != DISPLAY_MAIN
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE
#endif
)
{
return; // screen is in use
}
#if defined(ENABLE_ALARM) || defined(ENABLE_TX1750)
if (gAlarmState != ALARM_STATE_OFF)
return;
#endif
static uint8_t barsOld = 0;
const uint8_t thresold = 18; // arbitrary thresold
//const uint8_t barsList[] = {0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 25};
const uint8_t barsList[] = {0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 25, 25, 25};
uint8_t logLevel;
uint8_t bars;
unsigned int voiceLevel = BK4819_GetVoiceAmplitudeOut(); // 15:0
voiceLevel = (voiceLevel >= thresold) ? (voiceLevel - thresold) : 0;
logLevel = log2_approx(MIN(voiceLevel * 16, 32768u) + 1);
bars = barsList[logLevel];
barsOld = (barsOld - bars > 1) ? (barsOld - 1) : bars;
uint8_t *p_line = gFrameBuffer[line];
memset(p_line, 0, LCD_WIDTH);
DrawLevelBar(2, line, barsOld, 25);
if (gCurrentFunction == FUNCTION_TRANSMIT)
ST7565_BlitFullScreen();
}
}
#endif
void DisplayRSSIBar(const bool now)
{
#if defined(ENABLE_RSSI_BAR)
const unsigned int txt_width = 7 * 8; // 8 text chars
const unsigned int bar_x = 2 + txt_width + 4; // X coord of bar graph
#ifdef ENABLE_FEAT_F4HWN
/*
const char empty[] = {
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000000,
0b00000000,
};
*/
unsigned int line;
if (isMainOnly())
{
line = 5;
}
else
{
line = 3;
}
//char rx[4];
//sprintf(String, "%d", RxBlink);
//UI_PrintStringSmallBold(String, 80, 0, RxLine);
if(RxLine >= 0 && center_line != CENTER_LINE_IN_USE)
{
if (RxBlink == 0 || RxBlink == 1) {
UI_PrintStringSmallBold("RX", 8, 0, RxLine);
if (RxBlink == 1) RxBlink = 2;
} else {
for (uint8_t i = 8; i < 24; i++)
{
gFrameBuffer[RxLine][i] = 0x00;
}
RxBlink = 1;
}
ST7565_BlitLine(RxLine);
}
#else
const unsigned int line = 3;
#endif
uint8_t *p_line = gFrameBuffer[line];
char str[16];
#ifndef ENABLE_FEAT_F4HWN
const char plus[] = {
0b00011000,
0b00011000,
0b01111110,
0b01111110,
0b01111110,
0b00011000,
0b00011000,
};
#endif
if ((gEeprom.KEY_LOCK && gKeypadLocked > 0) || center_line != CENTER_LINE_RSSI)
return; // display is in use
if (gCurrentFunction == FUNCTION_TRANSMIT ||
gScreenToDisplay != DISPLAY_MAIN
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE
#endif
)
return; // display is in use
if (now)
memset(p_line, 0, LCD_WIDTH);
#ifdef ENABLE_FEAT_F4HWN
int16_t rssi_dBm =
BK4819_GetRSSI_dBm()
#ifdef ENABLE_AM_FIX
+ ((gSetting_AM_fix && gRxVfo->Modulation == MODULATION_AM) ? AM_fix_get_gain_diff() : 0)
#endif
+ dBmCorrTable[gRxVfo->Band];
rssi_dBm = -rssi_dBm;
if(rssi_dBm > 141) rssi_dBm = 141;
if(rssi_dBm < 53) rssi_dBm = 53;
uint8_t s_level = 0;
uint8_t overS9dBm = 0;
uint8_t overS9Bars = 0;
if(rssi_dBm >= 93) {
s_level = map(rssi_dBm, 141, 93, 1, 9);
}
else {
s_level = 9;
overS9dBm = map(rssi_dBm, 93, 53, 0, 40);
overS9Bars = map(overS9dBm, 0, 40, 0, 4);
}
#else
const int16_t s0_dBm = -gEeprom.S0_LEVEL; // S0 .. base level
const int16_t rssi_dBm =
BK4819_GetRSSI_dBm()
#ifdef ENABLE_AM_FIX
+ ((gSetting_AM_fix && gRxVfo->Modulation == MODULATION_AM) ? AM_fix_get_gain_diff() : 0)
#endif
+ dBmCorrTable[gRxVfo->Band];
int s0_9 = gEeprom.S0_LEVEL - gEeprom.S9_LEVEL;
const uint8_t s_level = MIN(MAX((int32_t)(rssi_dBm - s0_dBm)*100 / (s0_9*100/9), 0), 9); // S0 - S9
uint8_t overS9dBm = MIN(MAX(rssi_dBm + gEeprom.S9_LEVEL, 0), 99);
uint8_t overS9Bars = MIN(overS9dBm/10, 4);
#endif
#ifdef ENABLE_FEAT_F4HWN
if (gSetting_set_gui)
{
sprintf(str, "%3d", -rssi_dBm);
UI_PrintStringSmallNormal(str, LCD_WIDTH + 8, 0, line - 1);
}
else
{
sprintf(str, "% 4d %s", -rssi_dBm, "dBm");
if(isMainOnly())
GUI_DisplaySmallest(str, 2, 41, false, true);
else
GUI_DisplaySmallest(str, 2, 25, false, true);
}
if(overS9Bars == 0) {
sprintf(str, "S%d", s_level);
}
else {
sprintf(str, "+%02d", overS9dBm);
}
UI_PrintStringSmallNormal(str, LCD_WIDTH + 38, 0, line - 1);
#else
if(overS9Bars == 0) {
sprintf(str, "% 4d S%d", -rssi_dBm, s_level);
}
else {
sprintf(str, "% 4d %2d", -rssi_dBm, overS9dBm);
memcpy(p_line + 2 + 7*5, &plus, ARRAY_SIZE(plus));
}
UI_PrintStringSmallNormal(str, 2, 0, line);
#endif
DrawLevelBar(bar_x, line, s_level + overS9Bars, 13);
if (now)
ST7565_BlitLine(line);
#else
int16_t rssi = BK4819_GetRSSI();
uint8_t Level;
if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][3]) {
Level = 6;
} else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][2]) {
Level = 4;
} else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][1]) {
Level = 2;
} else if (rssi >= gEEPROM_RSSI_CALIB[gRxVfo->Band][0]) {
Level = 1;
} else {
Level = 0;
}
uint8_t *pLine = (gEeprom.RX_VFO == 0)? gFrameBuffer[2] : gFrameBuffer[6];
if (now)
memset(pLine, 0, 23);
DrawSmallAntennaAndBars(pLine, Level);
if (now)
ST7565_BlitFullScreen();
#endif
}
#ifdef ENABLE_AGC_SHOW_DATA
void UI_MAIN_PrintAGC(bool now)
{
char buf[20];
memset(gFrameBuffer[3], 0, 128);
union {
struct {
uint16_t _ : 5;
uint16_t agcSigStrength : 7;
int16_t gainIdx : 3;
uint16_t agcEnab : 1;
};
uint16_t __raw;
} reg7e;
reg7e.__raw = BK4819_ReadRegister(0x7E);
uint8_t gainAddr = reg7e.gainIdx < 0 ? 0x14 : 0x10 + reg7e.gainIdx;
union {
struct {
uint16_t pga:3;
uint16_t mixer:2;
uint16_t lna:3;
uint16_t lnaS:2;
};
uint16_t __raw;
} agcGainReg;
agcGainReg.__raw = BK4819_ReadRegister(gainAddr);
int8_t lnaShortTab[] = {-28, -24, -19, 0};
int8_t lnaTab[] = {-24, -19, -14, -9, -6, -4, -2, 0};
int8_t mixerTab[] = {-8, -6, -3, 0};
int8_t pgaTab[] = {-33, -27, -21, -15, -9, -6, -3, 0};
int16_t agcGain = lnaShortTab[agcGainReg.lnaS] + lnaTab[agcGainReg.lna] + mixerTab[agcGainReg.mixer] + pgaTab[agcGainReg.pga];
sprintf(buf, "%d%2d %2d %2d %3d", reg7e.agcEnab, reg7e.gainIdx, -agcGain, reg7e.agcSigStrength, BK4819_GetRSSI());
UI_PrintStringSmallNormal(buf, 2, 0, 3);
if(now)
ST7565_BlitLine(3);
}
#endif
void UI_MAIN_TimeSlice500ms(void)
{
if(gScreenToDisplay==DISPLAY_MAIN) {
#ifdef ENABLE_AGC_SHOW_DATA
UI_MAIN_PrintAGC(true);
return;
#endif
if(FUNCTION_IsRx()) {
DisplayRSSIBar(true);
}
#ifdef ENABLE_FEAT_F4HWN // Blink Green Led for white...
else if(gSetting_set_eot > 0 && RxBlinkLed == 2)
{
if(RxBlinkLedCounter <= 8)
{
if(RxBlinkLedCounter % 2 == 0)
{
if(gSetting_set_eot > 1 )
{
BK4819_ToggleGpioOut(BK4819_GPIO6_PIN2_GREEN, false);
}
}
else
{
if(gSetting_set_eot > 1 )
{
BK4819_ToggleGpioOut(BK4819_GPIO6_PIN2_GREEN, true);
}
if(gSetting_set_eot == 1 || gSetting_set_eot == 3)
{
switch(RxBlinkLedCounter)
{
case 1:
AUDIO_PlayBeep(BEEP_400HZ_30MS);
break;
case 3:
AUDIO_PlayBeep(BEEP_400HZ_30MS);
break;
case 5:
AUDIO_PlayBeep(BEEP_500HZ_30MS);
break;
case 7:
AUDIO_PlayBeep(BEEP_600HZ_30MS);
break;
}
}
}
RxBlinkLedCounter += 1;
}
else
{
RxBlinkLed = 0;
}
}
#endif
}
}
// ***************************************************************************
void UI_DisplayMain(void)
{
char String[22];
center_line = CENTER_LINE_NONE;
// clear the screen
UI_DisplayClear();
if(gLowBattery && !gLowBatteryConfirmed) {
UI_DisplayPopup("LOW BATTERY");
ST7565_BlitFullScreen();
return;
}
#ifndef ENABLE_FEAT_F4HWN
if (gEeprom.KEY_LOCK && gKeypadLocked > 0)
{ // tell user how to unlock the keyboard
UI_PrintString("Long press #", 0, LCD_WIDTH, 1, 8);
UI_PrintString("to unlock", 0, LCD_WIDTH, 3, 8);
ST7565_BlitFullScreen();
return;
}
#else
if (gEeprom.KEY_LOCK && gKeypadLocked > 0)
{ // tell user how to unlock the keyboard
uint8_t shift = 3;
/*
BK4819_ToggleGpioOut(BK4819_GPIO5_PIN1_RED, true);
SYSTEM_DelayMs(50);
BK4819_ToggleGpioOut(BK4819_GPIO5_PIN1_RED, false);
SYSTEM_DelayMs(50);
*/
if(isMainOnly())
{
shift = 5;
}
//memcpy(gFrameBuffer[shift] + 2, gFontKeyLock, sizeof(gFontKeyLock));
UI_PrintStringSmallBold("UNLOCK KEYBOARD", 12, 0, shift);
//memcpy(gFrameBuffer[shift] + 120, gFontKeyLock, sizeof(gFontKeyLock));
/*
for (uint8_t i = 12; i < 116; i++)
{
gFrameBuffer[shift][i] ^= 0xFF;
}
*/
}
#endif
unsigned int activeTxVFO = gRxVfoIsActive ? gEeprom.RX_VFO : gEeprom.TX_VFO;
for (unsigned int vfo_num = 0; vfo_num < 2; vfo_num++)
{
#ifdef ENABLE_FEAT_F4HWN
const unsigned int line0 = 0; // text screen line
const unsigned int line1 = 4;
unsigned int line;
if (isMainOnly())
{
line = 0;
}
else
{
line = (vfo_num == 0) ? line0 : line1;
}
const bool isMainVFO = (vfo_num == gEeprom.TX_VFO);
uint8_t *p_line0 = gFrameBuffer[line + 0];
uint8_t *p_line1 = gFrameBuffer[line + 1];
enum Vfo_txtr_mode mode = VFO_MODE_NONE;
#else
const unsigned int line0 = 0; // text screen line
const unsigned int line1 = 4;
const unsigned int line = (vfo_num == 0) ? line0 : line1;
const bool isMainVFO = (vfo_num == gEeprom.TX_VFO);
uint8_t *p_line0 = gFrameBuffer[line + 0];
uint8_t *p_line1 = gFrameBuffer[line + 1];
enum Vfo_txtr_mode mode = VFO_MODE_NONE;
#endif
#ifdef ENABLE_FEAT_F4HWN
if (isMainOnly())
{
if (activeTxVFO != vfo_num)
{
continue;
}
}
#endif
#ifdef ENABLE_FEAT_F4HWN
if (activeTxVFO != vfo_num || isMainOnly())
#else
if (activeTxVFO != vfo_num) // this is not active TX VFO
#endif
{
#ifdef ENABLE_SCAN_RANGES
if(gScanRangeStart) {
#ifdef ENABLE_FEAT_F4HWN
//if(IS_FREQ_CHANNEL(gEeprom.ScreenChannel[0]) && IS_FREQ_CHANNEL(gEeprom.ScreenChannel[1])) {
if(IS_FREQ_CHANNEL(gEeprom.ScreenChannel[activeTxVFO])) {
uint8_t shift = 0;
if (isMainOnly())
{
shift = 3;
}
UI_PrintString("ScnRng", 5, 0, line + shift, 8);
sprintf(String, "%3u.%05u", gScanRangeStart / 100000, gScanRangeStart % 100000);
UI_PrintStringSmallNormal(String, 56, 0, line + shift);
sprintf(String, "%3u.%05u", gScanRangeStop / 100000, gScanRangeStop % 100000);
UI_PrintStringSmallNormal(String, 56, 0, line + shift + 1);
if (!isMainOnly())
continue;
}
else
{
gScanRangeStart = 0;
}
#else
UI_PrintString("ScnRng", 5, 0, line, 8);
sprintf(String, "%3u.%05u", gScanRangeStart / 100000, gScanRangeStart % 100000);
UI_PrintStringSmallNormal(String, 56, 0, line);
sprintf(String, "%3u.%05u", gScanRangeStop / 100000, gScanRangeStop % 100000);
UI_PrintStringSmallNormal(String, 56, 0, line + 1);
continue;
#endif
}
#endif
if (gDTMF_InputMode
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE || gDTMF_IsTx
#endif
) {
char *pPrintStr = "";
// show DTMF stuff
#ifdef ENABLE_DTMF_CALLING
char Contact[16];
if (!gDTMF_InputMode) {
if (gDTMF_CallState == DTMF_CALL_STATE_CALL_OUT) {
pPrintStr = DTMF_FindContact(gDTMF_String, Contact) ? Contact : gDTMF_String;
} else if (gDTMF_CallState == DTMF_CALL_STATE_RECEIVED || gDTMF_CallState == DTMF_CALL_STATE_RECEIVED_STAY){
pPrintStr = DTMF_FindContact(gDTMF_Callee, Contact) ? Contact : gDTMF_Callee;
}else if (gDTMF_IsTx) {
pPrintStr = gDTMF_String;
}
}
UI_PrintString(pPrintStr, 2, 0, 2 + (vfo_num * 3), 8);
pPrintStr = "";
if (!gDTMF_InputMode) {
if (gDTMF_CallState == DTMF_CALL_STATE_CALL_OUT) {
pPrintStr = (gDTMF_State == DTMF_STATE_CALL_OUT_RSP) ? "CALL OUT(RSP)" : "CALL OUT";
} else if (gDTMF_CallState == DTMF_CALL_STATE_RECEIVED || gDTMF_CallState == DTMF_CALL_STATE_RECEIVED_STAY) {
sprintf(String, "CALL FRM:%s", (DTMF_FindContact(gDTMF_Caller, Contact)) ? Contact : gDTMF_Caller);
pPrintStr = String;
} else if (gDTMF_IsTx) {
pPrintStr = (gDTMF_State == DTMF_STATE_TX_SUCC) ? "DTMF TX(SUCC)" : "DTMF TX";
}
}
else
#endif
{
sprintf(String, ">%s", gDTMF_InputBox);
pPrintStr = String;
}
#ifdef ENABLE_FEAT_F4HWN
if (isMainOnly())
{
UI_PrintString(pPrintStr, 2, 0, 5, 8);
isMainOnlyInputDTMF = true;
center_line = CENTER_LINE_IN_USE;
}
else
{
UI_PrintString(pPrintStr, 2, 0, 0 + (vfo_num * 3), 8);
isMainOnlyInputDTMF = false;
center_line = CENTER_LINE_IN_USE;
continue;
}
#else
UI_PrintString(pPrintStr, 2, 0, 0 + (vfo_num * 3), 8);
center_line = CENTER_LINE_IN_USE;
continue;
#endif
}
// highlight the selected/used VFO with a marker
if (isMainVFO)
memcpy(p_line0 + 0, BITMAP_VFO_Default, sizeof(BITMAP_VFO_Default));
}
else // active TX VFO
{ // highlight the selected/used VFO with a marker
if (isMainVFO)
memcpy(p_line0 + 0, BITMAP_VFO_Default, sizeof(BITMAP_VFO_Default));
else
memcpy(p_line0 + 0, BITMAP_VFO_NotDefault, sizeof(BITMAP_VFO_NotDefault));
}
uint32_t frequency = gEeprom.VfoInfo[vfo_num].pRX->Frequency;
if(TX_freq_check(frequency) != 0 && gEeprom.VfoInfo[vfo_num].TX_LOCK == true)
{
if(isMainOnly())
memcpy(p_line0 + 14, BITMAP_VFO_Lock, sizeof(BITMAP_VFO_Lock));
else
memcpy(p_line0 + 24, BITMAP_VFO_Lock, sizeof(BITMAP_VFO_Lock));
}
if (gCurrentFunction == FUNCTION_TRANSMIT)
{ // transmitting
#ifdef ENABLE_ALARM
if (gAlarmState == ALARM_STATE_SITE_ALARM)
mode = VFO_MODE_RX;
else
#endif
{
if (activeTxVFO == vfo_num)
{ // show the TX symbol
mode = VFO_MODE_TX;
UI_PrintStringSmallBold("TX", 8, 0, line);
}
}
}
else
{ // receiving .. show the RX symbol
mode = VFO_MODE_RX;
//if (FUNCTION_IsRx() && gEeprom.RX_VFO == vfo_num) {
if (FUNCTION_IsRx() && gEeprom.RX_VFO == vfo_num && VfoState[vfo_num] == VFO_STATE_NORMAL) {
#ifdef ENABLE_FEAT_F4HWN
RxBlinkLed = 1;
RxBlinkLedCounter = 0;
RxLine = line;
RxOnVfofrequency = frequency;
if(!isMainVFO)
{
RxBlink = 1;
}
else
{
RxBlink = 0;
}
#else
UI_PrintStringSmallBold("RX", 8, 0, line);
#endif
}
#ifdef ENABLE_FEAT_F4HWN
else
{
if(RxOnVfofrequency == frequency && !isMainOnly())
{
UI_PrintStringSmallNormal(">>", 8, 0, line);
//memcpy(p_line0 + 14, BITMAP_VFO_Default, sizeof(BITMAP_VFO_Default));
}
if(RxBlinkLed == 1)
RxBlinkLed = 2;
}
#endif
}
if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo_num]))
{ // channel mode
const unsigned int x = 2;
const bool inputting = gInputBoxIndex != 0 && gEeprom.TX_VFO == vfo_num;
if (!inputting)
sprintf(String, "M%u", gEeprom.ScreenChannel[vfo_num] + 1);
else
sprintf(String, "M%.3s", INPUTBOX_GetAscii()); // show the input text
UI_PrintStringSmallNormal(String, x, 0, line + 1);
}
else if (IS_FREQ_CHANNEL(gEeprom.ScreenChannel[vfo_num]))
{ // frequency mode
// show the frequency band number
const unsigned int x = 2;
char * buf = gEeprom.VfoInfo[vfo_num].pRX->Frequency < _1GHz_in_KHz ? "" : "+";
sprintf(String, "F%u%s", 1 + gEeprom.ScreenChannel[vfo_num] - FREQ_CHANNEL_FIRST, buf);
UI_PrintStringSmallNormal(String, x, 0, line + 1);
}
#ifdef ENABLE_NOAA
else
{
if (gInputBoxIndex == 0 || gEeprom.TX_VFO != vfo_num)
{ // channel number
sprintf(String, "N%u", 1 + gEeprom.ScreenChannel[vfo_num] - NOAA_CHANNEL_FIRST);
}
else
{ // user entering channel number
sprintf(String, "N%u%u", '0' + gInputBox[0], '0' + gInputBox[1]);
}
UI_PrintStringSmallNormal(String, 7, 0, line + 1);
}
#endif
// ************
enum VfoState_t state = VfoState[vfo_num];
#ifdef ENABLE_ALARM
if (gCurrentFunction == FUNCTION_TRANSMIT && gAlarmState == ALARM_STATE_SITE_ALARM) {
if (activeTxVFO == vfo_num)
state = VFO_STATE_ALARM;
}
#endif
if (state != VFO_STATE_NORMAL)
{
if (state < ARRAY_SIZE(VfoStateStr))
UI_PrintString(VfoStateStr[state], 31, 0, line, 8);
}
else if (gInputBoxIndex > 0 && IS_FREQ_CHANNEL(gEeprom.ScreenChannel[vfo_num]) && gEeprom.TX_VFO == vfo_num)
{ // user entering a frequency
const char * ascii = INPUTBOX_GetAscii();
bool isGigaF = frequency>=_1GHz_in_KHz;
sprintf(String, "%.*s.%.3s", 3 + isGigaF, ascii, ascii + 3 + isGigaF);
#ifdef ENABLE_BIG_FREQ
if(!isGigaF) {
// show the remaining 2 small frequency digits
UI_PrintStringSmallNormal(String + 7, 113, 0, line + 1);
String[7] = 0;
// show the main large frequency digits
UI_DisplayFrequency(String, 32, line, false);
}
else
#endif
{
// show the frequency in the main font
UI_PrintString(String, 32, 0, line, 8);
}
continue;
}
else
{
if (gCurrentFunction == FUNCTION_TRANSMIT)
{ // transmitting
if (activeTxVFO == vfo_num)
frequency = gEeprom.VfoInfo[vfo_num].pTX->Frequency;
}
if (IS_MR_CHANNEL(gEeprom.ScreenChannel[vfo_num]))
{ // it's a channel
#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
if(gEeprom.MENU_LOCK == false) {
#endif
uint8_t countList = 0;
uint8_t shiftList = 0;
if(gMR_ChannelExclude[gEeprom.ScreenChannel[vfo_num]] == false)
{
// show the scan list assigment symbols
const ChannelAttributes_t att = gMR_ChannelAttributes[gEeprom.ScreenChannel[vfo_num]];
countList = att.scanlist1 + att.scanlist2 + att.scanlist3;
if(countList == 0)
{
memcpy(p_line0 + 127 - (1 * 6), BITMAP_ScanList0, sizeof(BITMAP_ScanList0));
}
else
{
shiftList = countList;
if (att.scanlist1)
{
memcpy(p_line0 + 127 - (shiftList * 6), BITMAP_ScanList1, sizeof(BITMAP_ScanList1));
shiftList--;
}
if (att.scanlist2)
{
memcpy(p_line0 + 127 - (shiftList * 6), BITMAP_ScanList2, sizeof(BITMAP_ScanList2));
shiftList--;
}
if (att.scanlist3)
{
memcpy(p_line0 + 127 - (shiftList * 6), BITMAP_ScanList3, sizeof(BITMAP_ScanList3));
}
}
}
else
{
memcpy(p_line0 + 127 - (1 * 6), BITMAP_ScanListE, sizeof(BITMAP_ScanListE));
}
#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
{
}
}
#endif
// compander symbol
#ifndef ENABLE_BIG_FREQ
if (att.compander)
memcpy(p_line0 + 120 + LCD_WIDTH, BITMAP_compand, sizeof(BITMAP_compand));
#else
// TODO: // find somewhere else to put the symbol
#endif
switch (gEeprom.CHANNEL_DISPLAY_MODE)
{
case MDF_FREQUENCY: // show the channel frequency
sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000);
#ifdef ENABLE_BIG_FREQ
if(frequency < _1GHz_in_KHz) {
// show the remaining 2 small frequency digits
UI_PrintStringSmallNormal(String + 7, 113, 0, line + 1);
String[7] = 0;
// show the main large frequency digits
UI_DisplayFrequency(String, 32, line, false);
}
else
#endif
{
// show the frequency in the main font
UI_PrintString(String, 32, 0, line, 8);
}
break;
case MDF_CHANNEL: // show the channel number
sprintf(String, "CH-%03u", gEeprom.ScreenChannel[vfo_num] + 1);
UI_PrintString(String, 32, 0, line, 8);
break;
case MDF_NAME: // show the channel name
case MDF_NAME_FREQ: // show the channel name and frequency
SETTINGS_FetchChannelName(String, gEeprom.ScreenChannel[vfo_num]);
if (String[0] == 0)
{ // no channel name, show the channel number instead
sprintf(String, "CH-%03u", gEeprom.ScreenChannel[vfo_num] + 1);
}
if (gEeprom.CHANNEL_DISPLAY_MODE == MDF_NAME) {
UI_PrintString(String, 32, 0, line, 8);
}
else {
#ifdef ENABLE_FEAT_F4HWN
if (isMainOnly())
{
UI_PrintString(String, 32, 0, line, 8);
}
else
{
if(activeTxVFO == vfo_num) {
UI_PrintStringSmallBold(String, 32 + 4, 0, line);
}
else
{
UI_PrintStringSmallNormal(String, 32 + 4, 0, line);
}
}
#else
UI_PrintStringSmallBold(String, 32 + 4, 0, line);
#endif
#ifdef ENABLE_FEAT_F4HWN
if (isMainOnly())
{
sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000);
if(frequency < _1GHz_in_KHz) {
// show the remaining 2 small frequency digits
UI_PrintStringSmallNormal(String + 7, 113, 0, line + 4);
String[7] = 0;
// show the main large frequency digits
UI_DisplayFrequency(String, 32, line + 3, false);
}
else
{
// show the frequency in the main font
UI_PrintString(String, 32, 0, line + 3, 8);
}
}
else
{
sprintf(String, "%03u.%05u", frequency / 100000, frequency % 100000);
UI_PrintStringSmallNormal(String, 32 + 4, 0, line + 1);
}
#else // show the channel frequency below the channel number/name
sprintf(String, "%03u.%05u", frequency / 100000, frequency % 100000);
UI_PrintStringSmallNormal(String, 32 + 4, 0, line + 1);
#endif
}
break;
}
}
else
{ // frequency mode
sprintf(String, "%3u.%05u", frequency / 100000, frequency % 100000);
#ifdef ENABLE_BIG_FREQ
if(frequency < _1GHz_in_KHz) {
// show the remaining 2 small frequency digits
UI_PrintStringSmallNormal(String + 7, 113, 0, line + 1);
String[7] = 0;
// show the main large frequency digits
UI_DisplayFrequency(String, 32, line, false);
}
else
#endif
{
// show the frequency in the main font
UI_PrintString(String, 32, 0, line, 8);
}
// show the channel symbols
const ChannelAttributes_t att = gMR_ChannelAttributes[gEeprom.ScreenChannel[vfo_num]];
if (att.compander)
#ifdef ENABLE_BIG_FREQ
memcpy(p_line0 + 120, BITMAP_compand, sizeof(BITMAP_compand));
#else
memcpy(p_line0 + 120 + LCD_WIDTH, BITMAP_compand, sizeof(BITMAP_compand));
#endif
}
}
// ************
{ // show the TX/RX level
int8_t Level = -1;
if (mode == VFO_MODE_TX)
{ // TX power level
/*
switch (gRxVfo->OUTPUT_POWER)
{
case OUTPUT_POWER_LOW1: Level = 2; break;
case OUTPUT_POWER_LOW2: Level = 2; break;
case OUTPUT_POWER_LOW3: Level = 2; break;
case OUTPUT_POWER_LOW4: Level = 2; break;
case OUTPUT_POWER_LOW5: Level = 2; break;
case OUTPUT_POWER_MID: Level = 4; break;
case OUTPUT_POWER_HIGH: Level = 6; break;
}
if (gRxVfo->OUTPUT_POWER == OUTPUT_POWER_MID) {
Level = 4;
} else if (gRxVfo->OUTPUT_POWER == OUTPUT_POWER_HIGH) {
Level = 6;
} else {
Level = 2;
}
*/
Level = gRxVfo->OUTPUT_POWER - 1;
}
else
if (mode == VFO_MODE_RX)
{ // RX signal level
#ifndef ENABLE_RSSI_BAR
// bar graph
if (gVFO_RSSI_bar_level[vfo_num] > 0)
Level = gVFO_RSSI_bar_level[vfo_num];
#endif
}
if(Level >= 0)
DrawSmallAntennaAndBars(p_line1 + LCD_WIDTH, Level);
}
// ************
String[0] = '\0';
const VFO_Info_t *vfoInfo = &gEeprom.VfoInfo[vfo_num];
// show the modulation symbol
const char * s = "";
#ifdef ENABLE_FEAT_F4HWN
const char * t = "";
#endif
const ModulationMode_t mod = vfoInfo->Modulation;
switch (mod){
case MODULATION_FM: {
const FREQ_Config_t *pConfig = (mode == VFO_MODE_TX) ? vfoInfo->pTX : vfoInfo->pRX;
const unsigned int code_type = pConfig->CodeType;
#ifdef ENABLE_FEAT_F4HWN
const char *code_list[] = {"", "CT", "DC", "DC"};
#else
const char *code_list[] = {"", "CT", "DCS", "DCR"};
#endif
if (code_type < ARRAY_SIZE(code_list))
s = code_list[code_type];
#ifdef ENABLE_FEAT_F4HWN
if(gCurrentFunction != FUNCTION_TRANSMIT || activeTxVFO != vfo_num)
t = gModulationStr[mod];
#endif
break;
}
default:
t = gModulationStr[mod];
break;
}
#if ENABLE_FEAT_F4HWN
const FREQ_Config_t *pConfig = (mode == VFO_MODE_TX) ? vfoInfo->pTX : vfoInfo->pRX;
int8_t shift = 0;
switch((int)pConfig->CodeType)
{
case 1:
sprintf(String, "%u.%u", CTCSS_Options[pConfig->Code] / 10, CTCSS_Options[pConfig->Code] % 10);
break;
case 2:
sprintf(String, "%03oN", DCS_Options[pConfig->Code]);
break;
case 3:
sprintf(String, "%03oI", DCS_Options[pConfig->Code]);
break;
default:
sprintf(String, "%d.%02uK", vfoInfo->StepFrequency / 100, vfoInfo->StepFrequency % 100);
shift = -10;
}
if (gSetting_set_gui)
{
UI_PrintStringSmallNormal(s, LCD_WIDTH + 22, 0, line + 1);
UI_PrintStringSmallNormal(t, LCD_WIDTH + 2, 0, line + 1);
if (isMainOnly() && !gDTMF_InputMode)
{
if(shift == 0)
{
UI_PrintStringSmallNormal(String, 2, 0, 6);
}
if((vfoInfo->StepFrequency / 100) < 100)
{
sprintf(String, "%d.%02uK", vfoInfo->StepFrequency / 100, vfoInfo->StepFrequency % 100);
}
else
{
sprintf(String, "%dK", vfoInfo->StepFrequency / 100);
}
UI_PrintStringSmallNormal(String, 46, 0, 6);
}
}
else
{
if ((s != NULL) && (s[0] != '\0')) {
GUI_DisplaySmallest(s, 58, line == 0 ? 17 : 49, false, true);
}
if ((t != NULL) && (t[0] != '\0')) {
GUI_DisplaySmallest(t, 3, line == 0 ? 17 : 49, false, true);
}
GUI_DisplaySmallest(String, 68 + shift, line == 0 ? 17 : 49, false, true);
//sprintf(String, "%d.%02u", vfoInfo->StepFrequency / 100, vfoInfo->StepFrequency % 100);
//GUI_DisplaySmallest(String, 91, line == 0 ? 2 : 34, false, true);
}
#else
UI_PrintStringSmallNormal(s, LCD_WIDTH + 24, 0, line + 1);
#endif
if (state == VFO_STATE_NORMAL || state == VFO_STATE_ALARM)
{ // show the TX power
uint8_t currentPower = vfoInfo->OUTPUT_POWER % 8;
uint8_t arrowPos = 19;
bool userPower = false;
if(currentPower == OUTPUT_POWER_USER)
{
currentPower = gSetting_set_pwr;
userPower = true;
}
else
{
currentPower--;
userPower = false;
}
if (gSetting_set_gui)
{
const char pwr_short[][3] = {"L1", "L2", "L3", "L4", "L5", "M", "H"};
sprintf(String, "%s", pwr_short[currentPower]);
UI_PrintStringSmallNormal(String, LCD_WIDTH + 42, 0, line + 1);
arrowPos = 38;
}
else
{
const char pwr_long[][5] = {"LOW1", "LOW2", "LOW3", "LOW4", "LOW5", "MID", "HIGH"};
sprintf(String, "%s", pwr_long[currentPower]);
GUI_DisplaySmallest(String, 24, line == 0 ? 17 : 49, false, true);
}
if(userPower == true)
{
memcpy(p_line0 + 256 + arrowPos, BITMAP_PowerUser, sizeof(BITMAP_PowerUser));
}
}
if (vfoInfo->freq_config_RX.Frequency != vfoInfo->freq_config_TX.Frequency)
{ // show the TX offset symbol
int i = vfoInfo->TX_OFFSET_FREQUENCY_DIRECTION % 3;
#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
const char dir_list[][2] = {"", "+", "-", "D"};
if(gTxVfo->TX_OFFSET_FREQUENCY_DIRECTION != 0 && gTxVfo->pTX == &gTxVfo->freq_config_RX && !vfoInfo->FrequencyReverse)
{
i = 3;
}
#else
const char dir_list[][2] = {"", "+", "-"};
#endif
#if ENABLE_FEAT_F4HWN
if (gSetting_set_gui)
{
UI_PrintStringSmallNormal(dir_list[i], LCD_WIDTH + 60, 0, line + 1);
}
else
{
#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
if(i == 3)
{
GUI_DisplaySmallest(dir_list[i], 43, line == 0 ? 17 : 49, false, true);
}
else
{
#endif
UI_PrintStringSmallNormal(dir_list[i], LCD_WIDTH + 41, 0, line + 1);
#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
}
#endif
}
#else
UI_PrintStringSmallNormal(dir_list[i], LCD_WIDTH + 54, 0, line + 1);
#endif
}
// show the TX/RX reverse symbol
if (vfoInfo->FrequencyReverse)
#if ENABLE_FEAT_F4HWN
{
if (gSetting_set_gui)
{
UI_PrintStringSmallNormal("R", LCD_WIDTH + 68, 0, line + 1);
}
else
{
GUI_DisplaySmallest("R", 51, line == 0 ? 17 : 49, false, true);
}
}
#else
UI_PrintStringSmallNormal("R", LCD_WIDTH + 62, 0, line + 1);
#endif
#if ENABLE_FEAT_F4HWN
#ifdef ENABLE_FEAT_F4HWN_NARROWER
bool narrower = 0;
if(vfoInfo->CHANNEL_BANDWIDTH == BANDWIDTH_NARROW && gSetting_set_nfm == 1)
{
narrower = 1;
}
if (gSetting_set_gui)
{
const char *bandWidthNames[] = {"W", "N", "N+"};
UI_PrintStringSmallNormal(bandWidthNames[vfoInfo->CHANNEL_BANDWIDTH + narrower], LCD_WIDTH + 80, 0, line + 1);
}
else
{
const char *bandWidthNames[] = {"WIDE", "NAR", "NAR+"};
GUI_DisplaySmallest(bandWidthNames[vfoInfo->CHANNEL_BANDWIDTH + narrower], 91, line == 0 ? 17 : 49, false, true);
}
#else
if (gSetting_set_gui)
{
const char *bandWidthNames[] = {"W", "N"};
UI_PrintStringSmallNormal(bandWidthNames[vfoInfo->CHANNEL_BANDWIDTH], LCD_WIDTH + 80, 0, line + 1);
}
else
{
const char *bandWidthNames[] = {"WIDE", "NAR"};
GUI_DisplaySmallest(bandWidthNames[vfoInfo->CHANNEL_BANDWIDTH], 91, line == 0 ? 17 : 49, false, true);
}
#endif
#else
if (vfoInfo->CHANNEL_BANDWIDTH == BANDWIDTH_NARROW)
UI_PrintStringSmallNormal("N", LCD_WIDTH + 70, 0, line + 1);
#endif
#ifdef ENABLE_DTMF_CALLING
// show the DTMF decoding symbol
if (vfoInfo->DTMF_DECODING_ENABLE || gSetting_KILLED)
UI_PrintStringSmallNormal("DTMF", LCD_WIDTH + 78, 0, line + 1);
#endif
#ifndef ENABLE_FEAT_F4HWN
// show the audio scramble symbol
if (vfoInfo->SCRAMBLING_TYPE > 0 && gSetting_ScrambleEnable)
UI_PrintStringSmallNormal("SCR", LCD_WIDTH + 106, 0, line + 1);
#endif
#ifdef ENABLE_FEAT_F4HWN
/*
if(isMainVFO)
{
if(gMonitor)
{
sprintf(String, "%s", "MONI");
}
if (gSetting_set_gui)
{
if(!gMonitor)
{
sprintf(String, "SQL%d", gEeprom.SQUELCH_LEVEL);
}
UI_PrintStringSmallNormal(String, LCD_WIDTH + 98, 0, line + 1);
}
else
{
if(!gMonitor)
{
sprintf(String, "SQL%d", gEeprom.SQUELCH_LEVEL);
}
GUI_DisplaySmallest(String, 110, line == 0 ? 17 : 49, false, true);
}
}
*/
if (isMainVFO) {
if (gMonitor) {
strcpy(String, "MONI");
} else {
sprintf(String, "SQL%d", gEeprom.SQUELCH_LEVEL);
}
if (gSetting_set_gui) {
UI_PrintStringSmallNormal(String, LCD_WIDTH + 98, 0, line + 1);
} else {
GUI_DisplaySmallest(String, 110, line == 0 ? 17 : 49, false, true);
}
}
#endif
}
#ifdef ENABLE_AGC_SHOW_DATA
center_line = CENTER_LINE_IN_USE;
UI_MAIN_PrintAGC(false);
#endif
if (center_line == CENTER_LINE_NONE)
{ // we're free to use the middle line
const bool rx = FUNCTION_IsRx();
#ifdef ENABLE_AUDIO_BAR
if (gSetting_mic_bar && gCurrentFunction == FUNCTION_TRANSMIT) {
center_line = CENTER_LINE_AUDIO_BAR;
UI_DisplayAudioBar();
}
else
#endif
#if defined(ENABLE_AM_FIX) && defined(ENABLE_AM_FIX_SHOW_DATA)
if (rx && gEeprom.VfoInfo[gEeprom.RX_VFO].Modulation == MODULATION_AM && gSetting_AM_fix)
{
if (gScreenToDisplay != DISPLAY_MAIN
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE
#endif
)
return;
center_line = CENTER_LINE_AM_FIX_DATA;
AM_fix_print_data(gEeprom.RX_VFO, String);
UI_PrintStringSmallNormal(String, 2, 0, 3);
}
else
#endif
#ifdef ENABLE_RSSI_BAR
if (rx) {
center_line = CENTER_LINE_RSSI;
DisplayRSSIBar(false);
}
else
#endif
if (rx || gCurrentFunction == FUNCTION_FOREGROUND || gCurrentFunction == FUNCTION_POWER_SAVE)
{
#if 1
if (gSetting_live_DTMF_decoder && gDTMF_RX_live[0] != 0)
{ // show live DTMF decode
const unsigned int len = strlen(gDTMF_RX_live);
const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars
if (gScreenToDisplay != DISPLAY_MAIN
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE
#endif
)
return;
center_line = CENTER_LINE_DTMF_DEC;
sprintf(String, "DTMF %s", gDTMF_RX_live + idx);
#ifdef ENABLE_FEAT_F4HWN
if (isMainOnly())
{
UI_PrintStringSmallNormal(String, 2, 0, 5);
}
else
{
UI_PrintStringSmallNormal(String, 2, 0, 3);
}
#else
UI_PrintStringSmallNormal(String, 2, 0, 3);
#endif
}
#else
if (gSetting_live_DTMF_decoder && gDTMF_RX_index > 0)
{ // show live DTMF decode
const unsigned int len = gDTMF_RX_index;
const unsigned int idx = (len > (17 - 5)) ? len - (17 - 5) : 0; // limit to last 'n' chars
if (gScreenToDisplay != DISPLAY_MAIN ||
gDTMF_CallState != DTMF_CALL_STATE_NONE)
return;
center_line = CENTER_LINE_DTMF_DEC;
sprintf(String, "DTMF %s", gDTMF_RX_live + idx);
UI_PrintStringSmallNormal(String, 2, 0, 3);
}
#endif
#ifdef ENABLE_SHOW_CHARGE_LEVEL
else if (gChargingWithTypeC)
{ // charging .. show the battery state
if (gScreenToDisplay != DISPLAY_MAIN
#ifdef ENABLE_DTMF_CALLING
|| gDTMF_CallState != DTMF_CALL_STATE_NONE
#endif
)
return;
center_line = CENTER_LINE_CHARGE_DATA;
sprintf(String, "Charge %u.%02uV %u%%",
gBatteryVoltageAverage / 100, gBatteryVoltageAverage % 100,
BATTERY_VoltsToPercent(gBatteryVoltageAverage));
UI_PrintStringSmallNormal(String, 2, 0, 3);
}
#endif
}
}
#ifdef ENABLE_FEAT_F4HWN
//#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
//if(gEeprom.MENU_LOCK == false)
//{
//#endif
if (isMainOnly() && !gDTMF_InputMode)
{
sprintf(String, "VFO %s", activeTxVFO ? "B" : "A");
UI_PrintStringSmallBold(String, 92, 0, 6);
for (uint8_t i = 92; i < 128; i++)
{
gFrameBuffer[6][i] ^= 0x7F;
}
}
//#ifdef ENABLE_FEAT_F4HWN_RESCUE_OPS
//}
//#endif
#endif
ST7565_BlitFullScreen();
}
// ***************************************************************************