irrlicht/source/Irrlicht/OpenGL/Driver.cpp

2126 lines
65 KiB
C++
Raw Permalink Normal View History

2023-03-25 09:11:09 +01:00
// Copyright (C) 2023 Vitaliy Lobachevskiy
// Copyright (C) 2014 Patryk Nadrowski
// Copyright (C) 2009-2010 Amundis
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in Irrlicht.h
#include "Driver.h"
#include <cassert>
#include "CNullDriver.h"
#include "IContextManager.h"
#include "COpenGLCoreTexture.h"
#include "COpenGLCoreRenderTarget.h"
#include "COpenGLCoreCacheHandler.h"
#include "MaterialRenderer.h"
#include "FixedPipelineRenderer.h"
#include "Renderer2D.h"
#include "EVertexAttributes.h"
#include "CImage.h"
#include "os.h"
#ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_
#include "android_native_app_glue.h"
#endif
#include "mt_opengl.h"
namespace irr
{
namespace video
{
struct VertexAttribute {
enum class Mode {
Regular,
Normalized,
Integral,
};
int Index;
int ComponentCount;
GLenum ComponentType;
Mode mode;
int Offset;
};
struct VertexType {
int VertexSize;
std::vector<VertexAttribute> Attributes;
2023-03-25 09:11:09 +01:00
};
static const VertexAttribute *begin(const VertexType &type)
{
return type.Attributes.data();
2023-03-25 09:11:09 +01:00
}
static const VertexAttribute *end(const VertexType &type)
{
return type.Attributes.data() + type.Attributes.size();
2023-03-25 09:11:09 +01:00
}
static const VertexType vtStandard = {
sizeof(S3DVertex), {
2023-03-25 09:11:09 +01:00
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)},
},
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
static const VertexType vt2TCoords = {
sizeof(S3DVertex2TCoords), {
2023-03-25 09:11:09 +01:00
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex2TCoords, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords)},
{EVA_TCOORD1, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords2)},
},
};
static const VertexType vtTangents = {
sizeof(S3DVertexTangents), {
2023-03-25 09:11:09 +01:00
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertexTangents, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, TCoords)},
{EVA_TANGENT, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Tangent)},
{EVA_BINORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Binormal)},
},
};
#pragma GCC diagnostic pop
static const VertexType &getVertexTypeDescription(E_VERTEX_TYPE type)
{
switch (type) {
case EVT_STANDARD: return vtStandard;
case EVT_2TCOORDS: return vt2TCoords;
case EVT_TANGENTS: return vtTangents;
default: assert(false);
}
}
static const VertexType vt2DImage = {
sizeof(S3DVertex), {
2023-03-25 09:11:09 +01:00
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)},
},
};
static const VertexType vtPrimitive = {
sizeof(S3DVertex), {
2023-03-25 09:11:09 +01:00
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
},
};
void APIENTRY COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam)
{
((COpenGL3DriverBase *)userParam)->debugCb(source, type, id, severity, length, message);
}
void COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message)
{
printf("%04x %04x %x %x %.*s\n", source, type, id, severity, length, message);
}
COpenGL3DriverBase::COpenGL3DriverBase(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager) :
CNullDriver(io, params.WindowSize), COpenGL3ExtensionHandler(), CacheHandler(0),
Params(params), ResetRenderStates(true), LockRenderStateMode(false), AntiAlias(params.AntiAlias),
MaterialRenderer2DActive(0), MaterialRenderer2DTexture(0), MaterialRenderer2DNoTexture(0),
CurrentRenderMode(ERM_NONE), Transformation3DChanged(true),
OGLES2ShaderPath(params.OGLES2ShaderPath),
ColorFormat(ECF_R8G8B8), ContextManager(contextManager)
{
#ifdef _DEBUG
setDebugName("Driver");
#endif
if (!ContextManager)
return;
ContextManager->grab();
ContextManager->generateSurface();
ContextManager->generateContext();
ExposedData = ContextManager->getContext();
ContextManager->activateContext(ExposedData, false);
GL.LoadAllProcedures(ContextManager);
GL.DebugMessageCallback(debugCb, this);
initQuadsIndices();
}
COpenGL3DriverBase::~COpenGL3DriverBase()
{
deleteMaterialRenders();
CacheHandler->getTextureCache().clear();
removeAllRenderTargets();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
delete MaterialRenderer2DTexture;
delete MaterialRenderer2DNoTexture;
delete CacheHandler;
if (ContextManager)
{
ContextManager->destroyContext();
ContextManager->destroySurface();
ContextManager->terminate();
ContextManager->drop();
}
}
void COpenGL3DriverBase::initQuadsIndices(int max_vertex_count)
{
int max_quad_count = max_vertex_count / 4;
std::vector<GLushort> QuadsIndices;
2023-03-25 09:11:09 +01:00
QuadsIndices.reserve(6 * max_quad_count);
for (int k = 0; k < max_quad_count; k++) {
QuadsIndices.push_back(4 * k + 0);
QuadsIndices.push_back(4 * k + 1);
QuadsIndices.push_back(4 * k + 2);
QuadsIndices.push_back(4 * k + 0);
QuadsIndices.push_back(4 * k + 2);
QuadsIndices.push_back(4 * k + 3);
}
GL.GenBuffers(1, &QuadIndexBuffer);
GL.BindBuffer(GL_ARRAY_BUFFER, QuadIndexBuffer);
GL.BufferData(GL_ARRAY_BUFFER, sizeof(QuadsIndices[0]) * QuadsIndices.size(), QuadsIndices.data(), GL_STATIC_DRAW);
GL.BindBuffer(GL_ARRAY_BUFFER, 0);
QuadIndexCount = QuadsIndices.size();
2023-03-25 09:11:09 +01:00
}
2023-04-15 15:52:15 +02:00
void COpenGL3DriverBase::initVersion() {
Name = GL.GetString(GL_VERSION);
2023-03-25 09:11:09 +01:00
printVersion();
// print renderer information
VendorName = GL.GetString(GL_VENDOR);
os::Printer::log("Vendor", VendorName.c_str(), ELL_INFORMATION);
2023-03-25 09:11:09 +01:00
2023-04-15 15:52:15 +02:00
Version = getVersionFromOpenGL();
}
2023-04-16 00:00:41 +02:00
bool COpenGL3DriverBase::isVersionAtLeast(int major, int minor) const noexcept {
if (Version.Major < major)
return false;
if (Version.Major > major)
return true;
return Version.Minor >= minor;
}
2023-04-15 15:52:15 +02:00
bool COpenGL3DriverBase::genericDriverInit(const core::dimension2d<u32>& screenSize, bool stencilBuffer)
{
initVersion();
initFeatures();
printTextureFormats();
2023-03-25 09:11:09 +01:00
// reset cache handler
delete CacheHandler;
CacheHandler = new COpenGL3CacheHandler(this);
StencilBuffer = stencilBuffer;
DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits);
// DriverAttributes->setAttribute("MaxLights", MaxLights);
DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy);
// DriverAttributes->setAttribute("MaxUserClipPlanes", MaxUserClipPlanes);
// DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers);
// DriverAttributes->setAttribute("MaxMultipleRenderTargets", MaxMultipleRenderTargets);
DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices);
DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize);
DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias);
2023-04-15 15:52:15 +02:00
DriverAttributes->setAttribute("Version", 100 * Version.Major + Version.Minor);
2023-03-25 09:11:09 +01:00
DriverAttributes->setAttribute("AntiAlias", AntiAlias);
GL.PixelStorei(GL_PACK_ALIGNMENT, 1);
2023-03-25 09:11:09 +01:00
UserClipPlane.reallocate(0);
for (s32 i = 0; i < ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f));
GL.ClearDepthf(1.0f);
2023-03-25 09:11:09 +01:00
GL.Hint(GL_GENERATE_MIPMAP_HINT, GL_NICEST);
GL.FrontFace(GL_CW);
2023-03-25 09:11:09 +01:00
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
testGLError(__LINE__);
return true;
}
void COpenGL3DriverBase::printTextureFormats()
{
char buf[128];
for (u32 i = 0; i < static_cast<u32>(ECF_UNKNOWN); i++) {
auto &info = TextureFormats[i];
if (!info.InternalFormat) {
snprintf_irr(buf, sizeof(buf), "%s -> unsupported", ColorFormatNames[i]);
} else {
snprintf_irr(buf, sizeof(buf), "%s -> %#06x %#06x %#06x%s",
ColorFormatNames[i], info.InternalFormat, info.PixelFormat,
info.PixelType, info.Converter ? " (c)" : "");
}
os::Printer::log(buf, ELL_DEBUG);
}
}
2023-03-25 09:11:09 +01:00
void COpenGL3DriverBase::loadShaderData(const io::path& vertexShaderName, const io::path& fragmentShaderName, c8** vertexShaderData, c8** fragmentShaderData)
{
io::path vsPath(OGLES2ShaderPath);
vsPath += vertexShaderName;
io::path fsPath(OGLES2ShaderPath);
fsPath += fragmentShaderName;
*vertexShaderData = 0;
*fragmentShaderData = 0;
io::IReadFile* vsFile = FileSystem->createAndOpenFile(vsPath);
if ( !vsFile )
{
2024-02-18 16:29:03 +01:00
std::string warning("Warning: Missing shader files needed to simulate fixed function materials:\n");
warning.append(vsPath.c_str()).append("\n");
warning += "Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
2023-03-25 09:11:09 +01:00
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
io::IReadFile* fsFile = FileSystem->createAndOpenFile(fsPath);
if ( !fsFile )
{
2024-02-18 16:29:03 +01:00
std::string warning("Warning: Missing shader files needed to simulate fixed function materials:\n");
warning.append(fsPath.c_str()).append("\n");
warning += "Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
2023-03-25 09:11:09 +01:00
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
long size = vsFile->getSize();
if (size)
{
*vertexShaderData = new c8[size+1];
vsFile->read(*vertexShaderData, size);
(*vertexShaderData)[size] = 0;
}
2024-02-18 15:27:42 +01:00
{
auto tmp = std::string("Loaded ") + std::to_string(size) + " bytes for vertex shader " + vertexShaderName.c_str();
os::Printer::log(tmp.c_str(), ELL_INFORMATION);
}
2023-03-25 09:11:09 +01:00
size = fsFile->getSize();
if (size)
{
// if both handles are the same we must reset the file
if (fsFile == vsFile)
fsFile->seek(0);
*fragmentShaderData = new c8[size+1];
fsFile->read(*fragmentShaderData, size);
(*fragmentShaderData)[size] = 0;
}
2024-02-18 15:27:42 +01:00
{
auto tmp = std::string("Loaded ") + std::to_string(size) + " bytes for fragment shader " + fragmentShaderName.c_str();
os::Printer::log(tmp.c_str(), ELL_INFORMATION);
}
2023-03-25 09:11:09 +01:00
vsFile->drop();
fsFile->drop();
}
void COpenGL3DriverBase::createMaterialRenderers()
{
// Create callbacks.
COpenGL3MaterialSolidCB* SolidCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB* TransparentAlphaChannelCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB* TransparentAlphaChannelRefCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB* TransparentVertexAlphaCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialOneTextureBlendCB* OneTextureBlendCB = new COpenGL3MaterialOneTextureBlendCB();
// Create built-in materials.
// The addition order must be the same as in the E_MATERIAL_TYPE enumeration. Thus the
2023-03-25 09:11:09 +01:00
const core::stringc VertexShader = OGLES2ShaderPath + "Solid.vsh";
2023-03-25 09:11:09 +01:00
// EMT_SOLID
core::stringc FragmentShader = OGLES2ShaderPath + "Solid.fsh";
2023-03-25 09:11:09 +01:00
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, SolidCB, EMT_SOLID, 0);
// EMT_TRANSPARENT_ALPHA_CHANNEL
2023-03-25 09:11:09 +01:00
FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannel.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
// EMT_TRANSPARENT_ALPHA_CHANNEL_REF
2023-03-25 09:11:09 +01:00
FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannelRef.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelRefCB, EMT_SOLID, 0);
// EMT_TRANSPARENT_VERTEX_ALPHA
2023-03-25 09:11:09 +01:00
FragmentShader = OGLES2ShaderPath + "TransparentVertexAlpha.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentVertexAlphaCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
// EMT_ONETEXTURE_BLEND
2023-03-25 09:11:09 +01:00
FragmentShader = OGLES2ShaderPath + "OneTextureBlend.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main",
EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, OneTextureBlendCB, EMT_ONETEXTURE_BLEND, 0);
// Drop callbacks.
SolidCB->drop();
TransparentAlphaChannelCB->drop();
TransparentAlphaChannelRefCB->drop();
TransparentVertexAlphaCB->drop();
OneTextureBlendCB->drop();
// Create 2D material renderers
c8* vs2DData = 0;
c8* fs2DData = 0;
loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, true);
delete[] vs2DData;
delete[] fs2DData;
vs2DData = 0;
fs2DData = 0;
loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D_noTex.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DNoTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, false);
delete[] vs2DData;
delete[] fs2DData;
}
bool COpenGL3DriverBase::setMaterialTexture(irr::u32 layerIdx, const irr::video::ITexture* texture)
{
Material.TextureLayers[layerIdx].Texture = const_cast<ITexture*>(texture); // function uses const-pointer for texture because all draw functions use const-pointers already
2023-03-25 09:11:09 +01:00
return CacheHandler->getTextureCache().set(0, texture);
}
bool COpenGL3DriverBase::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
if (ContextManager)
ContextManager->activateContext(videoData, true);
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
bool COpenGL3DriverBase::endScene()
{
CNullDriver::endScene();
GL.Flush();
2023-03-25 09:11:09 +01:00
if (ContextManager)
return ContextManager->swapBuffers();
return false;
}
//! Returns the transformation set by setTransform
const core::matrix4& COpenGL3DriverBase::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COpenGL3DriverBase::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
}
bool COpenGL3DriverBase::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* vertices = mb->getVertices();
const u32 vertexCount = mb->getVertexCount();
const E_VERTEX_TYPE vType = mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
const void *buffer = vertices;
size_t bufferSize = vertexSize * vertexCount;
//get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_verticesID)
{
GL.GenBuffers(1, &HWBuffer->vbo_verticesID);
2023-03-25 09:11:09 +01:00
if (!HWBuffer->vbo_verticesID) return false;
newBuffer = true;
}
else if (HWBuffer->vbo_verticesSize < bufferSize)
{
newBuffer = true;
}
GL.BindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
2023-03-25 09:11:09 +01:00
// copy data to graphics card
if (!newBuffer)
GL.BufferSubData(GL_ARRAY_BUFFER, 0, bufferSize, buffer);
2023-03-25 09:11:09 +01:00
else
{
HWBuffer->vbo_verticesSize = bufferSize;
GLenum usage = GL_STATIC_DRAW;
if (HWBuffer->Mapped_Index == scene::EHM_STREAM)
usage = GL_STREAM_DRAW;
else if (HWBuffer->Mapped_Index == scene::EHM_DYNAMIC)
usage = GL_DYNAMIC_DRAW;
GL.BufferData(GL_ARRAY_BUFFER, bufferSize, buffer, usage);
2023-03-25 09:11:09 +01:00
}
GL.BindBuffer(GL_ARRAY_BUFFER, 0);
2023-03-25 09:11:09 +01:00
return (!testGLError(__LINE__));
}
bool COpenGL3DriverBase::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* indices = mb->getIndices();
u32 indexCount = mb->getIndexCount();
GLenum indexSize;
switch (mb->getIndexType())
{
case(EIT_16BIT):
{
indexSize = sizeof(u16);
break;
}
case(EIT_32BIT):
{
indexSize = sizeof(u32);
break;
}
default:
{
return false;
}
}
//get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_indicesID)
{
GL.GenBuffers(1, &HWBuffer->vbo_indicesID);
2023-03-25 09:11:09 +01:00
if (!HWBuffer->vbo_indicesID) return false;
newBuffer = true;
}
else if (HWBuffer->vbo_indicesSize < indexCount*indexSize)
{
newBuffer = true;
}
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
2023-03-25 09:11:09 +01:00
// copy data to graphics card
if (!newBuffer)
GL.BufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
2023-03-25 09:11:09 +01:00
else
{
HWBuffer->vbo_indicesSize = indexCount * indexSize;
GLenum usage = GL_STATIC_DRAW;
if (HWBuffer->Mapped_Index == scene::EHM_STREAM)
usage = GL_STREAM_DRAW;
else if (HWBuffer->Mapped_Index == scene::EHM_DYNAMIC)
usage = GL_DYNAMIC_DRAW;
GL.BufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, usage);
2023-03-25 09:11:09 +01:00
}
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
2023-03-25 09:11:09 +01:00
return (!testGLError(__LINE__));
}
//! updates hardware buffer if needed
bool COpenGL3DriverBase::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex()
|| !static_cast<SHWBufferLink_opengl*>(HWBuffer)->vbo_verticesID)
{
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer(static_cast<SHWBufferLink_opengl*>(HWBuffer)))
return false;
}
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index()
|| !static_cast<SHWBufferLink_opengl*>(HWBuffer)->vbo_indicesID)
{
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
COpenGL3DriverBase::SHWBufferLink *COpenGL3DriverBase::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb);
//add to map
HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer);
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex();
HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index();
HWBuffer->vbo_verticesID = 0;
HWBuffer->vbo_indicesID = 0;
HWBuffer->vbo_verticesSize = 0;
HWBuffer->vbo_indicesSize = 0;
if (!updateHardwareBuffer(HWBuffer))
{
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
void COpenGL3DriverBase::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl*>(_HWBuffer);
if (HWBuffer->vbo_verticesID)
{
GL.DeleteBuffers(1, &HWBuffer->vbo_verticesID);
2023-03-25 09:11:09 +01:00
HWBuffer->vbo_verticesID = 0;
}
if (HWBuffer->vbo_indicesID)
{
GL.DeleteBuffers(1, &HWBuffer->vbo_indicesID);
2023-03-25 09:11:09 +01:00
HWBuffer->vbo_indicesID = 0;
}
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COpenGL3DriverBase::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl*>(_HWBuffer);
updateHardwareBuffer(HWBuffer); //check if update is needed
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void *vertices = mb->getVertices();
const void *indexList = mb->getIndices();
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
{
GL.BindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
2023-03-25 09:11:09 +01:00
vertices = 0;
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
{
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
2023-03-25 09:11:09 +01:00
indexList = 0;
}
drawVertexPrimitiveList(vertices, mb->getVertexCount(),
indexList, mb->getPrimitiveCount(),
mb->getVertexType(), mb->getPrimitiveType(),
mb->getIndexType());
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
GL.BindBuffer(GL_ARRAY_BUFFER, 0);
2023-03-25 09:11:09 +01:00
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
2023-03-25 09:11:09 +01:00
}
IRenderTarget* COpenGL3DriverBase::addRenderTarget()
{
COpenGL3RenderTarget* renderTarget = new COpenGL3RenderTarget(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
// small helper function to create vertex buffer object adress offsets
static inline u8* buffer_offset(const long offset)
{
return ((u8*)0 + offset);
}
//! draws a vertex primitive list
void COpenGL3DriverBase::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
setRenderStates3DMode();
auto &vTypeDesc = getVertexTypeDescription(vType);
beginDraw(vTypeDesc, reinterpret_cast<uintptr_t>(vertices));
GLenum indexSize = 0;
switch (iType)
{
case(EIT_16BIT):
{
indexSize = GL_UNSIGNED_SHORT;
break;
}
case(EIT_32BIT):
{
#ifdef GL_OES_element_index_uint
#ifndef GL_UNSIGNED_INT
#define GL_UNSIGNED_INT 0x1405
#endif
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint])
indexSize = GL_UNSIGNED_INT;
else
#endif
indexSize = GL_UNSIGNED_SHORT;
break;
}
}
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
GL.DrawArrays(GL_POINTS, 0, primitiveCount);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_LINE_STRIP:
GL.DrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_LINE_LOOP:
GL.DrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_LINES:
GL.DrawElements(GL_LINES, primitiveCount*2, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_TRIANGLE_STRIP:
GL.DrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_TRIANGLE_FAN:
GL.DrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
case scene::EPT_TRIANGLES:
GL.DrawElements((LastMaterial.Wireframe) ? GL_LINES : (LastMaterial.PointCloud) ? GL_POINTS : GL_TRIANGLES, primitiveCount*3, indexSize, indexList);
2023-03-25 09:11:09 +01:00
break;
default:
break;
}
endDraw(vTypeDesc);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
SColor colors[4] = {color, color, color, color};
draw2DImage(texture, {destPos, sourceRect.getSize()}, sourceRect, clipRect, colors, useAlphaChannelOfTexture);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2du& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) *invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
chooseMaterial2D();
if (!setMaterialTexture(0, texture ))
return;
setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 ||
useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255,
true, useAlphaChannelOfTexture);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (clipRect)
{
if (!clipRect->isValid())
return;
GL.Enable(GL_SCISSOR_TEST);
GL.Scissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
2023-03-25 09:11:09 +01:00
clipRect->getWidth(), clipRect->getHeight());
}
f32 left = (f32)destRect.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)destRect.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)destRect.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)destRect.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawQuad(vt2DImage, vertices);
if (clipRect)
GL.Disable(GL_SCISSOR_TEST);
2023-03-25 09:11:09 +01:00
testGLError(__LINE__);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, u32 layer, bool flip)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture ))
return;
setRenderStates2DMode(false, true, true);
S3DVertex quad2DVertices[4];
quad2DVertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f);
quad2DVertices[1].Pos = core::vector3df(1.f, 1.f, 0.f);
quad2DVertices[2].Pos = core::vector3df(1.f, -1.f, 0.f);
quad2DVertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f);
f32 modificator = (flip) ? 1.f : 0.f;
quad2DVertices[0].TCoords = core::vector2df(0.f, 0.f + modificator);
quad2DVertices[1].TCoords = core::vector2df(1.f, 0.f + modificator);
quad2DVertices[2].TCoords = core::vector2df(1.f, 1.f - modificator);
quad2DVertices[3].TCoords = core::vector2df(0.f, 1.f - modificator);
quad2DVertices[0].Color = SColor(0xFFFFFFFF);
quad2DVertices[1].Color = SColor(0xFFFFFFFF);
quad2DVertices[2].Color = SColor(0xFFFFFFFF);
quad2DVertices[3].Color = SColor(0xFFFFFFFF);
drawQuad(vt2DImage, quad2DVertices);
}
void COpenGL3DriverBase::draw2DImageBatch(const video::ITexture* texture,
const core::array<core::position2d<s32> >& positions,
const core::array<core::rect<s32> >& sourceRects,
const core::rect<s32>* clipRect,
SColor color, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (clipRect)
{
if (!clipRect->isValid())
return;
GL.Enable(GL_SCISSOR_TEST);
GL.Scissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
2023-03-25 09:11:09 +01:00
clipRect->getWidth(), clipRect->getHeight());
}
const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
assert(6 * drawCount <= QuadIndexCount); // FIXME split the batch? or let it crash?
2023-03-25 09:11:09 +01:00
core::array<S3DVertex> vtx(drawCount * 4);
for (u32 i = 0; i < drawCount; i++)
{
core::position2d<s32> targetPos = positions[i];
core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
f32 left = (f32)poss.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)poss.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)poss.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)poss.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
vtx.push_back(S3DVertex(left, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex(right, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vtx.push_back(S3DVertex(right, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vtx.push_back(S3DVertex(left, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
}
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, QuadIndexBuffer);
drawElements(GL_TRIANGLES, vt2DImage, vtx.const_pointer(), vtx.size(), 0, 6 * drawCount);
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
2023-03-25 09:11:09 +01:00
if (clipRect)
GL.Disable(GL_SCISSOR_TEST);
2023-03-25 09:11:09 +01:00
}
//! draw a 2d rectangle
void COpenGL3DriverBase::draw2DRectangle(SColor color,
const core::rect<s32>& position,
const core::rect<s32>* clip)
{
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, color, 0, 0);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, color, 0, 0);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, color, 0, 0);
drawQuad(vtPrimitive, vertices);
}
//! draw an 2d rectangle
void COpenGL3DriverBase::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp,
SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, colorLeftUp, 0, 0);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, colorRightUp, 0, 0);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, colorRightDown, 0, 0);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, colorLeftDown, 0, 0);
drawQuad(vtPrimitive, vertices);
}
//! Draws a 2d line.
void COpenGL3DriverBase::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end, SColor color)
{
if (start==end)
drawPixel(start.X, start.Y, color);
else
{
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
f32 startX = (f32)start.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 endX = (f32)end.X / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 startY = 2.f - (f32)start.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
f32 endY = 2.f - (f32)end.Y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[2];
vertices[0] = S3DVertex(startX, startY, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(endX, endY, 0, 0, 0, 1, color, 1, 1);
drawArrays(GL_LINES, vtPrimitive, vertices, 2);
}
}
//! Draws a pixel
void COpenGL3DriverBase::drawPixel(u32 x, u32 y, const SColor &color)
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height)
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
f32 X = (f32)x / (f32)renderTargetSize.Width * 2.f - 1.f;
f32 Y = 2.f - (f32)y / (f32)renderTargetSize.Height * 2.f - 1.f;
S3DVertex vertices[1];
vertices[0] = S3DVertex(X, Y, 0, 0, 0, 1, color, 0, 0);
drawArrays(GL_POINTS, vtPrimitive, vertices, 1);
}
void COpenGL3DriverBase::drawQuad(const VertexType &vertexType, const S3DVertex (&vertices)[4])
{
drawArrays(GL_TRIANGLE_FAN, vertexType, vertices, 4);
}
void COpenGL3DriverBase::drawArrays(GLenum primitiveType, const VertexType &vertexType, const void *vertices, int vertexCount)
{
beginDraw(vertexType, reinterpret_cast<uintptr_t>(vertices));
GL.DrawArrays(primitiveType, 0, vertexCount);
2023-03-25 09:11:09 +01:00
endDraw(vertexType);
}
void COpenGL3DriverBase::drawElements(GLenum primitiveType, const VertexType &vertexType, const void *vertices, int vertexCount, const u16 *indices, int indexCount)
2023-03-25 09:11:09 +01:00
{
beginDraw(vertexType, reinterpret_cast<uintptr_t>(vertices));
GL.DrawRangeElements(primitiveType, 0, vertexCount - 1, indexCount, GL_UNSIGNED_SHORT, indices);
2023-03-25 09:11:09 +01:00
endDraw(vertexType);
}
void COpenGL3DriverBase::beginDraw(const VertexType &vertexType, uintptr_t verticesBase)
{
for (auto attr: vertexType) {
GL.EnableVertexAttribArray(attr.Index);
2023-03-25 09:11:09 +01:00
switch (attr.mode) {
case VertexAttribute::Mode::Regular: GL.VertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_FALSE, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset)); break;
case VertexAttribute::Mode::Normalized: GL.VertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_TRUE, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset)); break;
case VertexAttribute::Mode::Integral: GL.VertexAttribIPointer(attr.Index, attr.ComponentCount, attr.ComponentType, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset)); break;
2023-03-25 09:11:09 +01:00
}
}
}
void COpenGL3DriverBase::endDraw(const VertexType &vertexType)
{
for (auto attr: vertexType)
GL.DisableVertexAttribArray(attr.Index);
2023-03-25 09:11:09 +01:00
}
ITexture* COpenGL3DriverBase::createDeviceDependentTexture(const io::path& name, IImage* image)
{
core::array<IImage*> imageArray(1);
imageArray.push_back(image);
COpenGL3Texture* texture = new COpenGL3Texture(name, imageArray, ETT_2D, this);
return texture;
}
ITexture* COpenGL3DriverBase::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image)
{
COpenGL3Texture* texture = new COpenGL3Texture(name, image, ETT_CUBEMAP, this);
return texture;
}
//! Sets a material.
void COpenGL3DriverBase::setMaterial(const SMaterial& material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i = 0; i < Feature.MaxTextureUnits; ++i)
{
CacheHandler->getTextureCache().set(i, material.getTexture(i));
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i));
}
}
//! prints error if an error happened.
bool COpenGL3DriverBase::testGLError(int code)
{
#ifdef _DEBUG
GLenum g = GL.GetError();
2023-03-25 09:11:09 +01:00
switch (g)
{
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR);
break;
};
return true;
#else
return false;
#endif
}
//! prints error if an error happened.
bool COpenGL3DriverBase::testEGLError()
{
#if defined(EGL_VERSION_1_0) && defined(_DEBUG)
EGLint g = eglGetError();
switch (g)
{
case EGL_SUCCESS:
return false;
case EGL_NOT_INITIALIZED :
os::Printer::log("Not Initialized", ELL_ERROR);
break;
case EGL_BAD_ACCESS:
os::Printer::log("Bad Access", ELL_ERROR);
break;
case EGL_BAD_ALLOC:
os::Printer::log("Bad Alloc", ELL_ERROR);
break;
case EGL_BAD_ATTRIBUTE:
os::Printer::log("Bad Attribute", ELL_ERROR);
break;
case EGL_BAD_CONTEXT:
os::Printer::log("Bad Context", ELL_ERROR);
break;
case EGL_BAD_CONFIG:
os::Printer::log("Bad Config", ELL_ERROR);
break;
case EGL_BAD_CURRENT_SURFACE:
os::Printer::log("Bad Current Surface", ELL_ERROR);
break;
case EGL_BAD_DISPLAY:
os::Printer::log("Bad Display", ELL_ERROR);
break;
case EGL_BAD_SURFACE:
os::Printer::log("Bad Surface", ELL_ERROR);
break;
case EGL_BAD_MATCH:
os::Printer::log("Bad Match", ELL_ERROR);
break;
case EGL_BAD_PARAMETER:
os::Printer::log("Bad Parameter", ELL_ERROR);
break;
case EGL_BAD_NATIVE_PIXMAP:
os::Printer::log("Bad Native Pixmap", ELL_ERROR);
break;
case EGL_BAD_NATIVE_WINDOW:
os::Printer::log("Bad Native Window", ELL_ERROR);
break;
case EGL_CONTEXT_LOST:
os::Printer::log("Context Lost", ELL_ERROR);
break;
};
return true;
#else
return false;
#endif
}
void COpenGL3DriverBase::setRenderStates3DMode()
{
if ( LockRenderStateMode )
return;
if (CurrentRenderMode != ERM_3D)
{
// Reset Texture Stages
CacheHandler->setBlend(false);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material)
{
// unset old material
// unset last 3d material
if (CurrentRenderMode == ERM_2D && MaterialRenderer2DActive)
{
MaterialRenderer2DActive->OnUnsetMaterial();
MaterialRenderer2DActive = 0;
}
else if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COpenGL3DriverBase::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates)
{
// ZBuffer
switch (material.ZBuffer)
{
case ECFN_DISABLED:
CacheHandler->setDepthTest(false);
break;
case ECFN_LESSEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_ALWAYS);
break;
case ECFN_NEVER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NEVER);
break;
default:
break;
}
// ZWrite
if (getWriteZBuffer(material))
{
CacheHandler->setDepthMask(true);
}
else
{
CacheHandler->setDepthMask(false);
}
// Back face culling
if ((material.FrontfaceCulling) && (material.BackfaceCulling))
{
CacheHandler->setCullFaceFunc(GL_FRONT_AND_BACK);
CacheHandler->setCullFace(true);
}
else if (material.BackfaceCulling)
{
CacheHandler->setCullFaceFunc(GL_BACK);
CacheHandler->setCullFace(true);
}
else if (material.FrontfaceCulling)
{
CacheHandler->setCullFaceFunc(GL_FRONT);
CacheHandler->setCullFace(true);
}
else
{
CacheHandler->setCullFace(false);
}
// Color Mask
CacheHandler->setColorMask(material.ColorMask);
// Blend Equation
if (material.BlendOperation == EBO_NONE)
CacheHandler->setBlend(false);
else
{
CacheHandler->setBlend(true);
switch (material.BlendOperation)
{
case EBO_ADD:
CacheHandler->setBlendEquation(GL_FUNC_ADD);
break;
case EBO_SUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT);
break;
case EBO_REVSUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
break;
2023-04-20 16:44:14 +02:00
case EBO_MIN:
if (BlendMinMaxSupported)
CacheHandler->setBlendEquation(GL_MIN);
else
os::Printer::log("Attempt to use EBO_MIN without driver support", ELL_WARNING);
break;
case EBO_MAX:
if (BlendMinMaxSupported)
CacheHandler->setBlendEquation(GL_MAX);
else
os::Printer::log("Attempt to use EBO_MAX without driver support", ELL_WARNING);
break;
2023-03-25 09:11:09 +01:00
default:
break;
}
}
// Blend Factor
if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF?
&& material.MaterialType != EMT_ONETEXTURE_BLEND
)
{
E_BLEND_FACTOR srcRGBFact = EBF_ZERO;
E_BLEND_FACTOR dstRGBFact = EBF_ZERO;
E_BLEND_FACTOR srcAlphaFact = EBF_ZERO;
E_BLEND_FACTOR dstAlphaFact = EBF_ZERO;
E_MODULATE_FUNC modulo = EMFN_MODULATE_1X;
u32 alphaSource = 0;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor);
CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact),
getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact));
}
// TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver.
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
GL.LineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
2023-03-25 09:11:09 +01:00
// Anti aliasing
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing)
{
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
GL.Enable(GL_SAMPLE_ALPHA_TO_COVERAGE);
2023-03-25 09:11:09 +01:00
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
GL.Disable(GL_SAMPLE_ALPHA_TO_COVERAGE);
2023-03-25 09:11:09 +01:00
}
// Texture parameters
setTextureRenderStates(material, resetAllRenderStates);
}
//! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call.
void COpenGL3DriverBase::setTextureRenderStates(const SMaterial& material, bool resetAllRenderstates)
{
// Set textures to TU/TIU and apply filters to them
for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i)
{
const COpenGL3Texture* tmpTexture = CacheHandler->getTextureCache()[i];
if (!tmpTexture)
continue;
GLenum tmpTextureType = tmpTexture->getOpenGLTextureType();
CacheHandler->setActiveTexture(GL_TEXTURE0 + i);
if (resetAllRenderstates)
tmpTexture->getStatesCache().IsCached = false;
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].MagFilter != tmpTexture->getStatesCache().MagFilter)
2023-03-25 09:11:09 +01:00
{
E_TEXTURE_MAG_FILTER magFilter = material.TextureLayers[i].MagFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER,
magFilter == ETMAGF_NEAREST ? GL_NEAREST :
(assert(magFilter == ETMAGF_LINEAR), GL_LINEAR));
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().MagFilter = magFilter;
2023-03-25 09:11:09 +01:00
}
if (material.UseMipMaps && tmpTexture->hasMipMaps())
{
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].MinFilter != tmpTexture->getStatesCache().MinFilter ||
!tmpTexture->getStatesCache().MipMapStatus)
2023-03-25 09:11:09 +01:00
{
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
minFilter == ETMINF_NEAREST_MIPMAP_NEAREST ? GL_NEAREST_MIPMAP_NEAREST :
minFilter == ETMINF_LINEAR_MIPMAP_NEAREST ? GL_LINEAR_MIPMAP_NEAREST :
minFilter == ETMINF_NEAREST_MIPMAP_LINEAR ? GL_NEAREST_MIPMAP_LINEAR :
(assert(minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR_MIPMAP_LINEAR));
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().MinFilter = minFilter;
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().MipMapStatus = true;
}
}
else
{
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].MinFilter != tmpTexture->getStatesCache().MinFilter ||
tmpTexture->getStatesCache().MipMapStatus)
2023-03-25 09:11:09 +01:00
{
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
(minFilter == ETMINF_NEAREST_MIPMAP_NEAREST || minFilter == ETMINF_NEAREST_MIPMAP_LINEAR) ? GL_NEAREST :
(assert(minFilter == ETMINF_LINEAR_MIPMAP_NEAREST || minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR));
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().MinFilter = minFilter;
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().MipMapStatus = false;
}
}
2023-04-20 16:37:15 +02:00
if (AnisotropicFilterSupported &&
(!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].AnisotropicFilter != tmpTexture->getStatesCache().AnisotropicFilter))
2023-03-25 09:11:09 +01:00
{
GL.TexParameteri(tmpTextureType, GL.TEXTURE_MAX_ANISOTROPY,
material.TextureLayers[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayers[i].AnisotropicFilter) : 1);
2023-03-25 09:11:09 +01:00
tmpTexture->getStatesCache().AnisotropicFilter = material.TextureLayers[i].AnisotropicFilter;
2023-03-25 09:11:09 +01:00
}
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].TextureWrapU != tmpTexture->getStatesCache().WrapU)
2023-03-25 09:11:09 +01:00
{
GL.TexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayers[i].TextureWrapU));
tmpTexture->getStatesCache().WrapU = material.TextureLayers[i].TextureWrapU;
2023-03-25 09:11:09 +01:00
}
if (!tmpTexture->getStatesCache().IsCached || material.TextureLayers[i].TextureWrapV != tmpTexture->getStatesCache().WrapV)
2023-03-25 09:11:09 +01:00
{
GL.TexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayers[i].TextureWrapV));
tmpTexture->getStatesCache().WrapV = material.TextureLayers[i].TextureWrapV;
2023-03-25 09:11:09 +01:00
}
tmpTexture->getStatesCache().IsCached = true;
}
}
// Get OpenGL ES2.0 texture wrap mode from Irrlicht wrap mode.
GLint COpenGL3DriverBase::getTextureWrapMode(u8 clamp) const
{
switch (clamp)
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
return GL_CLAMP_TO_EDGE;
case ETC_MIRROR:
return GL_REPEAT;
default:
return GL_REPEAT;
}
}
//! sets the needed renderstates
void COpenGL3DriverBase::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if ( LockRenderStateMode )
return;
COpenGL3Renderer2D* nextActiveRenderer = texture ? MaterialRenderer2DTexture : MaterialRenderer2DNoTexture;
if (CurrentRenderMode != ERM_2D)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
CurrentRenderMode = ERM_2D;
}
else if ( MaterialRenderer2DActive && MaterialRenderer2DActive != nextActiveRenderer)
{
MaterialRenderer2DActive->OnUnsetMaterial();
}
MaterialRenderer2DActive = nextActiveRenderer;
MaterialRenderer2DActive->OnSetMaterial(Material, LastMaterial, true, 0);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
// no alphaChannel without texture
alphaChannel &= texture;
if (alphaChannel || alpha)
{
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
CacheHandler->setBlendEquation(GL_FUNC_ADD);
}
else
CacheHandler->setBlend(false);
Material.setTexture(0, const_cast<COpenGL3Texture*>(CacheHandler->getTextureCache().get(0)));
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
if (texture)
{
if (OverrideMaterial2DEnabled)
setTextureRenderStates(OverrideMaterial2D, false);
else
setTextureRenderStates(InitMaterial2D, false);
}
MaterialRenderer2DActive->OnRender(this, video::EVT_STANDARD);
}
void COpenGL3DriverBase::chooseMaterial2D()
{
if (!OverrideMaterial2DEnabled)
Material = InitMaterial2D;
if (OverrideMaterial2DEnabled)
{
OverrideMaterial2D.Lighting=false;
OverrideMaterial2D.ZWriteEnable=EZW_OFF;
OverrideMaterial2D.ZBuffer=ECFN_DISABLED; // it will be ECFN_DISABLED after merge
OverrideMaterial2D.Lighting=false;
Material = OverrideMaterial2D;
}
}
//! \return Returns the name of the video driver.
2024-02-18 16:29:03 +01:00
const char* COpenGL3DriverBase::getName() const
2023-03-25 09:11:09 +01:00
{
return Name.c_str();
}
void COpenGL3DriverBase::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
void COpenGL3DriverBase::setViewPortRaw(u32 width, u32 height)
{
CacheHandler->setViewport(0, 0, width, height);
ViewPort = core::recti(0, 0, width, height);
}
//! Draws a 3d line.
void COpenGL3DriverBase::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setRenderStates3DMode();
S3DVertex vertices[2];
vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0);
drawArrays(GL_LINES, vtPrimitive, vertices, 2);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COpenGL3DriverBase::OnResize(const core::dimension2d<u32>& size)
{
CNullDriver::OnResize(size);
CacheHandler->setViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COpenGL3DriverBase::getDriverType() const
{
return EDT_OPENGL3;
}
//! returns color format
ECOLOR_FORMAT COpenGL3DriverBase::getColorFormat() const
{
return ColorFormat;
}
//! Get a vertex shader constant index.
s32 COpenGL3DriverBase::getVertexShaderConstantID(const c8* name)
{
return getPixelShaderConstantID(name);
}
//! Get a pixel shader constant index.
s32 COpenGL3DriverBase::getPixelShaderConstantID(const c8* name)
{
os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID().");
return -1;
}
//! Sets a constant for the vertex shader based on an index.
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Int interface for the above.
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Sets a constant for the pixel shader based on an index.
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Int interface for the above.
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COpenGL3DriverBase::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
COpenGL3MaterialRenderer* r = new COpenGL3MaterialRenderer(
this, nr, vertexShaderProgram,
pixelShaderProgram,
callback, baseMaterial, userData);
r->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* COpenGL3DriverBase::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices* COpenGL3DriverBase::getGPUProgrammingServices()
{
return this;
}
ITexture* COpenGL3DriverBase::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
COpenGL3Texture* renderTargetTexture = new COpenGL3Texture(name, size, ETT_2D, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
ITexture* COpenGL3DriverBase::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
const core::dimension2d<u32> size(sideLen, sideLen);
core::dimension2du destSize(size);
if (!supportForFBO)
{
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COpenGL3Texture* renderTargetTexture = new COpenGL3Texture(name, destSize, ETT_CUBEMAP, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
//! Returns the maximum amount of primitives
u32 COpenGL3DriverBase::getMaximalPrimitiveCount() const
{
return 65535;
}
bool COpenGL3DriverBase::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != getDriverType())
{
os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL 3 driver.", ELL_ERROR);
return false;
}
core::dimension2d<u32> destRenderTargetSize(0, 0);
if (target)
{
COpenGL3RenderTarget* renderTarget = static_cast<COpenGL3RenderTarget*>(target);
CacheHandler->setFBO(renderTarget->getBufferID());
renderTarget->update();
destRenderTargetSize = renderTarget->getSize();
setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height);
}
else
{
CacheHandler->setFBO(0);
destRenderTargetSize = core::dimension2d<u32>(0, 0);
setViewPortRaw(ScreenSize.Width, ScreenSize.Height);
}
if (CurrentRenderTargetSize != destRenderTargetSize)
{
CurrentRenderTargetSize = destRenderTargetSize;
Transformation3DChanged = true;
}
CurrentRenderTarget = target;
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
void COpenGL3DriverBase::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
GLbitfield mask = 0;
u8 colorMask = 0;
bool depthMask = false;
CacheHandler->getColorMask(colorMask);
CacheHandler->getDepthMask(depthMask);
if (flag & ECBF_COLOR)
{
CacheHandler->setColorMask(ECP_ALL);
const f32 inv = 1.0f / 255.0f;
GL.ClearColor(color.getRed() * inv, color.getGreen() * inv,
2023-03-25 09:11:09 +01:00
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (flag & ECBF_DEPTH)
{
CacheHandler->setDepthMask(true);
GL.ClearDepthf(depth);
2023-03-25 09:11:09 +01:00
mask |= GL_DEPTH_BUFFER_BIT;
}
if (flag & ECBF_STENCIL)
{
GL.ClearStencil(stencil);
2023-03-25 09:11:09 +01:00
mask |= GL_STENCIL_BUFFER_BIT;
}
if (mask)
GL.Clear(mask);
2023-03-25 09:11:09 +01:00
CacheHandler->setColorMask(colorMask);
CacheHandler->setDepthMask(depthMask);
}
//! Returns an image created from the last rendered frame.
// We want to read the front buffer to get the latest render finished.
// This is not possible under ogl-es, though, so one has to call this method
// outside of the render loop only.
IImage* COpenGL3DriverBase::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target==video::ERT_MULTI_RENDER_TEXTURES || target==video::ERT_RENDER_TEXTURE || target==video::ERT_STEREO_BOTH_BUFFERS)
return 0;
GLint internalformat = GL_RGBA;
GLint type = GL_UNSIGNED_BYTE;
{
// GL.GetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &internalformat);
// GL.GetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &type);
2023-03-25 09:11:09 +01:00
// there's a format we don't support ATM
if (GL_UNSIGNED_SHORT_4_4_4_4 == type)
{
internalformat = GL_RGBA;
type = GL_UNSIGNED_BYTE;
}
}
IImage* newImage = 0;
if (GL_RGBA == internalformat)
{
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_A1R5G5B5, ScreenSize);
}
else
{
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_R5G6B5, ScreenSize);
}
if (!newImage)
return 0;
u8* pixels = static_cast<u8*>(newImage->getData());
if (!pixels)
{
newImage->drop();
return 0;
}
GL.ReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels);
2023-03-25 09:11:09 +01:00
testGLError(__LINE__);
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch = newImage->getPitch();
u8* p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8* tmpBuffer = new u8[pitch];
for (u32 i = 0; i < ScreenSize.Height; i += 2)
{
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete [] tmpBuffer;
// also GL_RGBA doesn't match the internal encoding of the image (which is BGRA)
if (GL_RGBA == internalformat && GL_UNSIGNED_BYTE == type)
{
pixels = static_cast<u8*>(newImage->getData());
for (u32 i = 0; i < ScreenSize.Height; i++)
{
for (u32 j = 0; j < ScreenSize.Width; j++)
{
u32 c = *(u32*) (pixels + 4 * j);
*(u32*) (pixels + 4 * j) = (c & 0xFF00FF00) |
((c & 0x00FF0000) >> 16) | ((c & 0x000000FF) << 16);
}
pixels += pitch;
}
}
if (testGLError(__LINE__))
{
newImage->drop();
return 0;
}
testGLError(__LINE__);
return newImage;
}
void COpenGL3DriverBase::removeTexture(ITexture* texture)
{
CacheHandler->getTextureCache().remove(texture);
CNullDriver::removeTexture(texture);
}
//! Set/unset a clipping plane.
bool COpenGL3DriverBase::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= UserClipPlane.size())
UserClipPlane.push_back(SUserClipPlane());
UserClipPlane[index].Plane = plane;
UserClipPlane[index].Enabled = enable;
return true;
}
//! Enable/disable a clipping plane.
void COpenGL3DriverBase::enableClipPlane(u32 index, bool enable)
{
UserClipPlane[index].Enabled = enable;
}
//! Get the ClipPlane Count
u32 COpenGL3DriverBase::getClipPlaneCount() const
{
return UserClipPlane.size();
}
const core::plane3df& COpenGL3DriverBase::getClipPlane(irr::u32 index) const
{
if (index < UserClipPlane.size())
return UserClipPlane[index].Plane;
else
{
_IRR_DEBUG_BREAK_IF(true) // invalid index
static const core::plane3df dummy;
return dummy;
}
}
core::dimension2du COpenGL3DriverBase::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
GLenum COpenGL3DriverBase::getGLBlend(E_BLEND_FACTOR factor) const
{
static GLenum const blendTable[] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE
};
return blendTable[factor];
}
bool COpenGL3DriverBase::getColorFormatParameters(ECOLOR_FORMAT format, GLint& internalFormat, GLenum& pixelFormat,
GLenum& pixelType, void(**converter)(const void*, s32, void*)) const
{
auto &info = TextureFormats[format];
internalFormat = info.InternalFormat;
pixelFormat = info.PixelFormat;
pixelType = info.PixelType;
*converter = info.Converter;
return info.InternalFormat != 0;
2023-03-25 09:11:09 +01:00
}
bool COpenGL3DriverBase::queryTextureFormat(ECOLOR_FORMAT format) const
{
return TextureFormats[format].InternalFormat != 0;
2023-03-25 09:11:09 +01:00
}
bool COpenGL3DriverBase::needsTransparentRenderPass(const irr::video::SMaterial& material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation();
}
const SMaterial& COpenGL3DriverBase::getCurrentMaterial() const
{
return Material;
}
COpenGL3CacheHandler* COpenGL3DriverBase::getCacheHandler() const
{
return CacheHandler;
}
} // end namespace
} // end namespace