Unify matrix4::buildProjectionMatrixPerspectiveFov functions

We had 4 near identical functions, those now all call buildProjectionMatrixPerspectiveFov
They were a bit hard to check for errors otherwise.
Especially with the tiny confusing non-differences like one using (a-b) and other -(b-a)
Also new one uses matrix template parameter in case someone needs for example a high-precision matrix.

git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6530 dfc29bdd-3216-0410-991c-e03cc46cb475
This commit is contained in:
cutealien 2023-09-22 16:06:40 +00:00
parent c602a39598
commit 7ff82528f3
2 changed files with 52 additions and 138 deletions

@ -303,20 +303,33 @@ namespace core
\return Returns false if there is no inverse matrix. */
bool getInverse(CMatrix4<T>& out) const;
//! Tool function to build a perspective projection matrix
/** Mainly for use of the other perspective projection build functions.
But can also be used by users (can be useful if you don't work with matrices with T=f32).
\param sx: x scale factor (depth/half_width from clipped frustum planes parallel to the camera)
\param sy: y scale factor (depth/half_height from clipped frustum planes parallel to the camera)
\param zNear: Distance to near plane
\param zFar: Distance to far plane
param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style)
\param zSign: 1 for left-handed projection matrix, -1 for right-handed projection matrix */
CMatrix4<T>& buildProjectionMatrixPerspectiveFov(T sx, T sy, T zNear, T zFar, bool zClipFromZero, T zSign);
//! Builds a right-handed perspective projection matrix based on a field of view
//\param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style).
CMatrix4<T>& buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true);
CMatrix4<T>& buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true);
//! Builds a left-handed perspective projection matrix based on a field of view
CMatrix4<T>& buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true);
CMatrix4<T>& buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero=true);
//! Builds a left-handed perspective projection matrix based on a field of view, with far plane at infinity
CMatrix4<T>& buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon=0);
CMatrix4<T>& buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadiansY, f32 aspectRatio, f32 zNear, f32 epsilon=0);
//! Builds a right-handed perspective projection matrix.
CMatrix4<T>& buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true);
//! Builds a left-handed perspective projection matrix.
//\param widthOfViewVolume: width of clipped near frustum plane
//\param heightOfViewVolume: height of clipped near frustum plane
CMatrix4<T>& buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero=true);
//! Builds a left-handed orthogonal projection matrix.
@ -1568,102 +1581,70 @@ namespace core
}
// Builds a right-handed perspective projection matrix based on a field of view
// Builds a perspective projection matrix
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFov(T sx, T sy, T zNear, T zFar, bool zClipFromZero, T zSign)
{
const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
const T w = static_cast<T>(h / aspectRatio);
IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
M[0] = w;
M[0] = sx;
M[1] = 0;
M[2] = 0;
M[3] = 0;
M[4] = 0;
M[5] = (T)h;
M[5] = sy;
M[6] = 0;
M[7] = 0;
M[8] = 0;
M[9] = 0;
//M[10]
M[11] = -1;
//M[10] below
M[11] = zSign;
M[12] = 0;
M[13] = 0;
//M[14]
//M[14] below
M[15] = 0;
if ( zClipFromZero ) // DirectX version
{
M[10] = (T)(zFar/(zNear-zFar));
M[10] = zSign*zFar/(zFar-zNear);
M[14] = (T)(zNear*zFar/(zNear-zFar));
}
else // OpenGL version
{
M[10] = (T)((zFar+zNear)/(zNear-zFar));
M[10] = zSign*(zFar+zNear)/(zFar-zNear);
M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar));
}
#if defined ( USE_MATRIX_TEST )
definitelyIdentityMatrix=false;
#endif
#if defined ( USE_MATRIX_TEST )
definitelyIdentityMatrix=false;
#endif
return *this;
}
// Builds a right-handed perspective projection matrix based on a field of view
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
{
const f64 sy = reciprocal(tan(fieldOfViewRadians*0.5));
IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
const T sx = static_cast<T>(sy / aspectRatio);
return buildProjectionMatrixPerspectiveFov(sx, static_cast<T>(sy), zNear, zFar, zClipFromZero, (T)-1);
}
// Builds a left-handed perspective projection matrix based on a field of view
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
{
const f64 h = reciprocal(tan(fieldOfViewRadians*0.5));
const f64 sy = reciprocal(tan(fieldOfViewRadians*0.5));
IRR_DEBUG_BREAK_IF(aspectRatio==0.f); //divide by zero
const T w = static_cast<T>(h / aspectRatio);
IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
M[0] = w;
M[1] = 0;
M[2] = 0;
M[3] = 0;
M[4] = 0;
M[5] = (T)h;
M[6] = 0;
M[7] = 0;
M[8] = 0;
M[9] = 0;
//M[10]
M[11] = 1;
M[12] = 0;
M[13] = 0;
//M[14]
M[15] = 0;
if ( zClipFromZero ) // DirectX version
{
M[10] = (T)(zFar/(zFar-zNear));
M[14] = (T)(-zNear*zFar/(zFar-zNear));
}
else // OpenGL version
{
M[10] = (T)((zFar+zNear)/(zFar-zNear));
M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar));
}
#if defined ( USE_MATRIX_TEST )
definitelyIdentityMatrix=false;
#endif
return *this;
const T sx = static_cast<T>(sy / aspectRatio);
return buildProjectionMatrixPerspectiveFov(sx, static_cast<T>(sy), zNear, zFar, zClipFromZero, (T)1);
}
// Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
@ -1791,7 +1772,6 @@ namespace core
return *this;
}
// Builds a right-handed perspective projection matrix.
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
@ -1799,45 +1779,11 @@ namespace core
{
IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
M[0] = (T)(2*zNear/widthOfViewVolume);
M[1] = 0;
M[2] = 0;
M[3] = 0;
M[4] = 0;
M[5] = (T)(2*zNear/heightOfViewVolume);
M[6] = 0;
M[7] = 0;
M[8] = 0;
M[9] = 0;
//M[10]
M[11] = -1;
M[12] = 0;
M[13] = 0;
//M[14]
M[15] = 0;
if ( zClipFromZero ) // DirectX version
{
M[10] = (T)(zFar/(zNear-zFar));
M[14] = (T)(zNear*zFar/(zNear-zFar));
}
else // OpenGL version
{
M[10] = (T)((zFar+zNear)/(zNear-zFar));
M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar));
}
#if defined ( USE_MATRIX_TEST )
definitelyIdentityMatrix=false;
#endif
return *this;
const T sx = (T)(2*zNear/widthOfViewVolume);
const T sy = (T)(2*zNear/heightOfViewVolume);
return buildProjectionMatrixPerspectiveFov(sx, sy, zNear, zFar, zClipFromZero, (T)-1);
}
// Builds a left-handed perspective projection matrix.
template <class T>
inline CMatrix4<T>& CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
@ -1845,42 +1791,10 @@ namespace core
{
IRR_DEBUG_BREAK_IF(widthOfViewVolume==0.f); //divide by zero
IRR_DEBUG_BREAK_IF(heightOfViewVolume==0.f); //divide by zero
IRR_DEBUG_BREAK_IF(zNear==zFar); //divide by zero
M[0] = (T)(2*zNear/widthOfViewVolume);
M[1] = 0;
M[2] = 0;
M[3] = 0;
const T sx = (T)(2*zNear/widthOfViewVolume);
const T sy = (T)(2*zNear/heightOfViewVolume);
M[4] = 0;
M[5] = (T)(2*zNear/heightOfViewVolume);
M[6] = 0;
M[7] = 0;
M[8] = 0;
M[9] = 0;
//M[10]
M[11] = 1;
M[12] = 0;
M[13] = 0;
//M[14] = (T)(zNear*zFar/(zNear-zFar));
M[15] = 0;
if ( zClipFromZero ) // DirectX version
{
M[10] = (T)(zFar/(zFar-zNear));
M[14] = (T)(zNear*zFar/(zNear-zFar));
}
else // OpenGL version
{
M[10] = (T)((zFar+zNear)/(zFar-zNear));
M[14] = (T)(2.0f*zNear*zFar/(zNear-zFar));
}
#if defined ( USE_MATRIX_TEST )
definitelyIdentityMatrix=false;
#endif
return *this;
return buildProjectionMatrixPerspectiveFov(sx, sy, zNear, zFar, zClipFromZero, (T)1);
}

@ -1,4 +1,4 @@
Tests finished. 72 tests of 72 passed.
Compiled as DEBUG
Test suite pass at GMT Tue May 09 10:09:52 2023
Test suite pass at GMT Fri Sep 22 15:57:32 2023