// Copyright (C) 2008-2012 Colin MacDonald // No rights reserved: this software is in the public domain. #include "testUtils.h" using namespace irr; namespace { inline bool compareQ(const core::vector3df& v, const core::vector3df& turn=core::vector3df(0,0,1)) { core::quaternion q(v*core::DEGTORAD); core::vector3df v2; const core::vector3df v3=v.rotationToDirection(turn); if (!v3.equals(q*turn, 0.002f)) { logTestString("Inequality before quat.toEuler(): %f,%f,%f\n", v.X,v.Y,v.Z); return false; } q.toEuler(v2); v2*=core::RADTODEG; v2=v2.rotationToDirection(turn); // this yields pretty far values sometimes, so don't be too picky if (!v3.equals(v2, 0.0035f)) { logTestString("Inequality: %f,%f,%f != %f,%f,%f\n", v.X,v.Y,v.Z, v2.X,v2.Y,v2.Z); return false; } return true; } const core::vector3df vals[] = { core::vector3df(0.f, 0.f, 0.f), core::vector3df(0.f, 0.f, 24.04f), core::vector3df(0.f, 0.f, 71.f), core::vector3df(0.f, 0.f, 71.19f), core::vector3df(0.f, 0.f, 80.f), core::vector3df(0.f, 0.f, 103.99f), core::vector3df(0.f, 0.f, 261.73f), core::vector3df(0.f, 0.f, 276.f), core::vector3df(0.f, 0.f, 286.29f), core::vector3df(0.f, 0.f, 295.f), core::vector3df(0.f, 0.f, 318.3f), core::vector3df(360.f, 75.55f, 155.89f), core::vector3df(0.f, 90.f, 159.51f), core::vector3df(0.f, 90.f, 249.48f), core::vector3df(0.f, 90.f, 269.91f), core::vector3df(0.f, 90.f, 270.f), core::vector3df(0.f, 284.45f, 155.89f), core::vector3df(0.01f, 0.42f, 90.38f), core::vector3df(0.04f, 359.99f, 9.5f), core::vector3df(0.34f, 89.58f, 360.f), core::vector3df(0.58f, 4.36f, 334.36f), core::vector3df(3.23f, 359.65f, 10.17f), core::vector3df(3.23f, 359.65f, 10.21f), core::vector3df(4.85f, 359.3f, 94.33f), core::vector3df(8.90f, 6.63f, 9.27f), core::vector3df(11.64f, 311.52f, 345.35f), core::vector3df(12.1f, 4.72f, 11.24f), core::vector3df(14.63f, 48.72f, 31.79f), core::vector3df(76.68f, 1.11f, 18.65f), core::vector3df(90.f, 0.f, 0.f), core::vector3df(90.01f, 270.49f, 360.f), core::vector3df(90.95f, 0.f, 0.f), core::vector3df(173.58f, 348.13f, 132.25f), core::vector3df(115.52f, 89.04f, 205.51f), core::vector3df(179.3f, 359.18f, 0.58f), core::vector3df(180.09f, 270.06f, 0.f), core::vector3df(180.41f, 359.94f, 179.69f), core::vector3df(180.92f, 10.79f, 144.53f), core::vector3df(181.95f, 270.03f, 0.f), core::vector3df(269.05f, 0.f, 0.f), core::vector3df(269.99f, 270.49f, 360.f), core::vector3df(283.32f, 358.89f, 18.65f), core::vector3df(347.9f, 355.28f, 11.24f), core::vector3df(351.1f, 353.37f, 9.27f), core::vector3df(355.82f, 345.96f, 273.26f), core::vector3df(358.24f, 358.07f, 342.82f), core::vector3df(359.78f, 357.69f, 7.52f), core::vector3df(359.96f, 0.01f, 9.5f), core::vector3df(-57.197479f,-90.f,0.f), core::vector3df(-57.187481f,-90.f,0.f) }; bool testQuatEulerMatrix() { // Test fromAngleAxis core::vector3df v4; core::quaternion q1; f32 angle = 60.f; q1.fromAngleAxis(angle*core::DEGTORAD, core::vector3df(1, 0, 0)); q1.toEuler(v4); bool result = v4.equals(core::vector3df(angle*core::DEGTORAD,0,0)); // Test maxtrix constructor core::vector3df v5; core::matrix4 mx4; mx4.setRotationDegrees(core::vector3df(angle,0,0)); core::quaternion q2(mx4); q2.toEuler(v5); result &= q1.equals(q2); result &= v4.equals(v5); // Test matrix conversion via getMatrix core::matrix4 mat; mat.setRotationDegrees(core::vector3df(angle,0,0)); core::vector3df v6 = mat.getRotationDegrees()*core::DEGTORAD; // make sure comparison matrix is correct result &= v4.equals(v6); core::matrix4 mat2 = q1.getMatrix(); result &= mat.equals(mat2, 0.0005f); // test for proper handedness angle=90; q1.fromAngleAxis(angle*core::DEGTORAD, core::vector3df(0,0,1)); // check we have the correct quat result &= q1.equals(core::quaternion(0,0,sqrtf(2)/2,sqrtf(2)/2)); q1.toEuler(v4); // and the correct rotation vector result &= v4.equals(core::vector3df(0,0,90*core::DEGTORAD)); mat.setRotationRadians(v4); mat2=q1.getMatrix(); // check matrix result &= mat.equals(mat2, 0.0005f); // and to be absolutely sure, check rotation results v5.set(1,0,0); mat.transformVect(v5); v6.set(1,0,0); mat2.transformVect(v6); result &= v5.equals(v6); return result; } bool testEulerConversion() { bool result = true; for (u32 i=0; i<sizeof(vals)/sizeof(vals[0]); ++i) { // make sure the rotations work with different turn vectors result &= compareQ(vals[i]) && compareQ(vals[i], core::vector3df(1,2,3)) && compareQ(vals[i], core::vector3df(0,1,0)); } result &= testQuatEulerMatrix(); return result; } bool testRotationFromTo() { bool result = true; core::quaternion q; q.rotationFromTo(core::vector3df(1.f,0.f,0.f), core::vector3df(1.f,0.f,0.f)); if (q != core::quaternion()) { logTestString("Quaternion rotationFromTo method did not yield identity.\n"); result = false; } core::vector3df from(1.f,0.f,0.f); q.rotationFromTo(from, core::vector3df(-1.f,0.f,0.f)); from=q*from; if (from != core::vector3df(-1.f,0.f,0.f)) { logTestString("Quaternion rotationFromTo method did not yield x flip.\n"); result = false; } from.set(1.f,2.f,3.f); q.rotationFromTo(from, core::vector3df(-1.f,-2.f,-3.f)); from=q*from; if (from != core::vector3df(-1.f,-2.f,-3.f)) { logTestString("Quaternion rotationFromTo method did not yield x flip for non-axis.\n"); result = false; } from.set(1.f,0.f,0.f); q.rotationFromTo(from, core::vector3df(0.f,1.f,0.f)); from=q*from; if (from != core::vector3df(0.f,1.f,0.f)) { logTestString("Quaternion rotationFromTo method did not yield 90 degree rotation.\n"); result = false; } for (u32 i=1; i<sizeof(vals)/sizeof(vals[0])-1; ++i) { from.set(vals[i]).normalize(); core::vector3df to(vals[i+1]); to.normalize(); q.rotationFromTo(from, to); from = q*from; result &= (from.equals(to, 0.00012f)); } return result; } bool testInterpolation() { bool result=true; core::quaternion q(1.f,2.f,3.f,4.f); q.normalize(); core::quaternion q2; q2.lerp(q,q,0); if (q != q2) { logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0).\n"); result = false; } q2.lerp(q,q,0.5f); if (q != q2) { logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0.5).\n"); result = false; } q2.lerp(q,q,1); if (q != q2) { logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==1).\n"); result = false; } q2.lerp(q,q,0.2345f); if (q != q2) { logTestString("Quaternion lerp with same quaternion did not yield same quaternion back (with t==0.2345).\n"); result = false; } q2.slerp(q,q,0); if (q != q2) { logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0).\n"); result = false; } q2.slerp(q,q,0.5f); if (q != q2) { logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0.5).\n"); result = false; } q2.slerp(q,q,1); if (q != q2) { logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==1).\n"); result = false; } q2.slerp(q,q,0.2345f); if (q != q2) { logTestString("Quaternion slerp with same quaternion did not yield same quaternion back (with t==0.2345).\n"); result = false; } core::quaternion q3(core::vector3df(45,135,85)*core::DEGTORAD); q.set(core::vector3df(35,125,75)*core::DEGTORAD); q2.slerp(q,q3,0); if (q != q2) { logTestString("Quaternion slerp with different quaternions did not yield first quaternion back (with t==0).\n"); result = false; } q2.slerp(q,q3,1); if (q3 != q2) { logTestString("Quaternion slerp with different quaternions did not yield second quaternion back (with t==1).\n"); result = false; } q2.slerp(q,q3,0.5); if (!q2.equals(core::quaternion(-0.437f,0.742f,0.017f,0.506f),0.001f)) { logTestString("Quaternion slerp with different quaternions did not yield correct result (with t==0.5).\n"); result = false; } q2.slerp(q,q3,0.2345f); if (!q2.equals(core::quaternion(-0.4202f,0.7499f,0.03814f,0.5093f),0.0007f)) { logTestString("Quaternion slerp with different quaternions did not yield correct result (with t==0.2345).\n"); result = false; } return result; } } bool testQuaternion(void) { bool result = true; core::quaternion q1; if ((q1.W != 1.f)||(q1.X != 0.f)||(q1.Y != 0.f)||(q1.Z != 0.f)) { logTestString("Default constructor did not create proper quaternion.\n"); result = false; } core::quaternion q2(1.f,2.f,3.f,4.f); if ((q2.W != 4.f)||(q2.X != 1.f)||(q2.Y != 2.f)||(q2.Z != 3.f)) { logTestString("Element constructor did not create proper quaternion.\n"); result = false; } q2.set(4.f,3.f,2.f,1.f); if ((q2.W != 1.f)||(q2.X != 4.f)||(q2.Y != 3.f)||(q2.Z != 2.f)) { logTestString("Quaternion set method not working(1).\n"); result = false; } q2.set(0.f,0.f,0.f,1.f); if ((q2.W != 1.f)||(q2.X != 0.f)||(q2.Y != 0.f)||(q2.Z != 0.f)) { logTestString("Quaternion set method not working(2).\n"); result = false; } if (q1 != q2) { logTestString("Quaternion equals method not working.\n"); result = false; } result &= testRotationFromTo(); result &= testInterpolation(); result &= testEulerConversion(); return result; }