// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#ifndef IRR_C_OCTREE_H_INCLUDED
#define IRR_C_OCTREE_H_INCLUDED

#include "SViewFrustum.h"
#include "S3DVertex.h"
#include "aabbox3d.h"
#include "irrArray.h"
#include "CMeshBuffer.h"

/**
	Flags for Octree
*/
//! bypass full invisible/visible test
#define OCTREE_PARENTTEST

namespace irr
{

//! template octree.
/** T must be a vertex type which has a member
called .Pos, which is a core::vertex3df position. */
template <class T>
class Octree
{
public:

	// TODO: Using reference counted class on the stack. 
	//       Reason is likely that it really costs speed here otherwise.
	//       But doing so prevents using VBO's with octrees.
	//       Also it's just a bad idea, for example this is the reason 
	//       we can't make the copy-constructor private for IReferenceCounted.
	//       So would be nice to figure out how to put this on heap (and check 
	//		if it's maybe cheap enough) or maybe stop using CMeshBuffer here.
	struct SMeshChunk : public scene::CMeshBuffer<T>
	{
		SMeshChunk ()
			: scene::CMeshBuffer<T>(), MaterialId(0)
		{
			scene::CMeshBuffer<T>::grab();
		}

		virtual ~SMeshChunk ()
		{
			//removeAllHardwareBuffers
		}

		s32 MaterialId;
	};

	struct SIndexChunk
	{
		core::array<u16> Indices;
		s32 MaterialId;
	};

	struct SIndexData
	{
		u16* Indices;
		s32 CurrentSize;
		s32 MaxSize;
	};


	//! Constructor
	Octree(const core::array<SMeshChunk>& meshes, s32 minimalPolysPerNode=128) :
		IndexData(0), IndexDataCount(meshes.size()), NodeCount(0)
	{
		IndexData = new SIndexData[IndexDataCount];

		// construct array of all indices

		core::array<SIndexChunk>* indexChunks = new core::array<SIndexChunk>;
		indexChunks->reallocate(meshes.size());
		for (u32 i=0; i!=meshes.size(); ++i)
		{
			IndexData[i].CurrentSize = 0;
			IndexData[i].MaxSize = meshes[i].Indices.size();
			IndexData[i].Indices = new u16[IndexData[i].MaxSize];

			indexChunks->push_back(SIndexChunk());
			SIndexChunk& tic = indexChunks->getLast();

			tic.MaterialId = meshes[i].MaterialId;
			tic.Indices = meshes[i].Indices;
		}

		// create tree
		Root = new OctreeNode(NodeCount, 0, meshes, indexChunks, minimalPolysPerNode);
	}

	//! returns all ids of polygons partially or fully enclosed
	//! by this bounding box.
	void calculatePolys(const core::aabbox3d<f32>& box)
	{
		for (u32 i=0; i!=IndexDataCount; ++i)
			IndexData[i].CurrentSize = 0;

		Root->getPolys(box, IndexData, 0);
	}

	//! returns all ids of polygons partially or fully enclosed
	//! by a view frustum.
	void calculatePolys(const scene::SViewFrustum& frustum)
	{
		for (u32 i=0; i!=IndexDataCount; ++i)
			IndexData[i].CurrentSize = 0;

		Root->getPolys(frustum, IndexData, 0);
	}

	const SIndexData* getIndexData() const
	{
		return IndexData;
	}

	u32 getIndexDataCount() const
	{
		return IndexDataCount;
	}

	u32 getNodeCount() const
	{
		return NodeCount;
	}

	//! for debug purposes only, collects the bounding boxes of the tree
	void getBoundingBoxes(const core::aabbox3d<f32>& box,
		core::array< const core::aabbox3d<f32>* >&outBoxes) const
	{
		Root->getBoundingBoxes(box, outBoxes);
	}

	//! destructor
	~Octree()
	{
		for (u32 i=0; i<IndexDataCount; ++i)
			delete [] IndexData[i].Indices;

		delete [] IndexData;
		delete Root;
	}

private:
	// private inner class
	class OctreeNode
	{
	public:

		// constructor
		OctreeNode(u32& nodeCount, u32 currentdepth,
			const core::array<SMeshChunk>& allmeshdata,
			core::array<SIndexChunk>* indices,
			s32 minimalPolysPerNode) : IndexData(0),
			Depth(currentdepth+1)
		{
			++nodeCount;

			u32 i; // new ISO for scoping problem with different compilers

			for (i=0; i!=8; ++i)
				Children[i] = 0;

			if (indices->empty())
			{
				delete indices;
				return;
			}

			bool found = false;

			// find first point for bounding box

			for (i=0; i<indices->size(); ++i)
			{
				if (!(*indices)[i].Indices.empty())
				{
					Box.reset(allmeshdata[i].Vertices[(*indices)[i].Indices[0]].Pos);
					found = true;
					break;
				}
			}

			if (!found)
			{
				delete indices;
				return;
			}

			s32 totalPrimitives = 0;

			// now lets calculate our bounding box
			for (i=0; i<indices->size(); ++i)
			{
				totalPrimitives += (*indices)[i].Indices.size();
				for (u32 j=0; j<(*indices)[i].Indices.size(); ++j)
					Box.addInternalPoint(allmeshdata[i].Vertices[(*indices)[i].Indices[j]].Pos);
			}

			core::vector3df middle = Box.getCenter();
			core::vector3df edges[8];
			Box.getEdges(edges);

			// calculate all children
			core::aabbox3d<f32> box;
			core::array<u16> keepIndices;

			if (totalPrimitives > minimalPolysPerNode && !Box.isEmpty())
			for (u32 ch=0; ch!=8; ++ch)
			{
				box.reset(middle);
				box.addInternalPoint(edges[ch]);

				// create indices for child
				bool added = false;
				core::array<SIndexChunk>* cindexChunks = new core::array<SIndexChunk>;
				cindexChunks->reallocate(allmeshdata.size());
				for (i=0; i<allmeshdata.size(); ++i)
				{
					cindexChunks->push_back(SIndexChunk());
					SIndexChunk& tic = cindexChunks->getLast();
					tic.MaterialId = allmeshdata[i].MaterialId;

					for (u32 t=0; t<(*indices)[i].Indices.size(); t+=3)
					{
						if (box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t]].Pos) &&
							box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t+1]].Pos) &&
							box.isPointInside(allmeshdata[i].Vertices[(*indices)[i].Indices[t+2]].Pos))
						{
							tic.Indices.push_back((*indices)[i].Indices[t]);
							tic.Indices.push_back((*indices)[i].Indices[t+1]);
							tic.Indices.push_back((*indices)[i].Indices[t+2]);

							added = true;
						}
						else
						{
							keepIndices.push_back((*indices)[i].Indices[t]);
							keepIndices.push_back((*indices)[i].Indices[t+1]);
							keepIndices.push_back((*indices)[i].Indices[t+2]);
						}
					}

					(*indices)[i].Indices.set_used(keepIndices.size());
					memcpy( (*indices)[i].Indices.pointer(), keepIndices.pointer(), keepIndices.size()*sizeof(u16));
					keepIndices.set_used(0);
				}

				if (added)
					Children[ch] = new OctreeNode(nodeCount, Depth,
						allmeshdata, cindexChunks, minimalPolysPerNode);
				else
					delete cindexChunks;

			} // end for all possible children

			IndexData = indices;
		}

		// destructor
		~OctreeNode()
		{
			delete IndexData;

			for (u32 i=0; i<8; ++i)
				delete Children[i];
		}

		// returns all ids of polygons partially or full enclosed
		// by this bounding box.
		void getPolys(const core::aabbox3d<f32>& box, SIndexData* idxdata, u32 parentTest ) const
		{
#if defined (OCTREE_PARENTTEST )
			// if not full inside
			if ( parentTest != 2 )
			{
				// partially inside ?
				if (!Box.intersectsWithBox(box))
					return;

				// fully inside ?
				parentTest = Box.isFullInside(box)?2:1;
			}
#else
			if (Box.intersectsWithBox(box))
#endif
			{
				const u32 cnt = IndexData->size();
				u32 i; // new ISO for scoping problem in some compilers

				for (i=0; i<cnt; ++i)
				{
					const s32 idxcnt = (*IndexData)[i].Indices.size();

					if (idxcnt)
					{
						memcpy(&idxdata[i].Indices[idxdata[i].CurrentSize],
							&(*IndexData)[i].Indices[0], idxcnt * sizeof(s16));
						idxdata[i].CurrentSize += idxcnt;
					}
				}

				for (i=0; i!=8; ++i)
					if (Children[i])
						Children[i]->getPolys(box, idxdata,parentTest);
			}
		}

		// returns all ids of polygons partially or full enclosed
		// by the view frustum.
		void getPolys(const scene::SViewFrustum& frustum, SIndexData* idxdata,u32 parentTest) const
		{
			u32 i; // new ISO for scoping problem in some compilers

			// if parent is fully inside, no further check for the children is needed
#if defined (OCTREE_PARENTTEST )
			if ( parentTest != 2 )
#endif
			{
#if defined (OCTREE_PARENTTEST )
				parentTest = 2;
#endif
				for (i=0; i!=scene::SViewFrustum::VF_PLANE_COUNT; ++i)
				{
					core::EIntersectionRelation3D r = Box.classifyPlaneRelation(frustum.planes[i]);
					if ( r == core::ISREL3D_FRONT )
						return;
#if defined (OCTREE_PARENTTEST )
					if ( r == core::ISREL3D_CLIPPED )
						parentTest = 1;	// must still check children
#endif
				}
			}


			const u32 cnt = IndexData->size();

			for (i=0; i!=cnt; ++i)
			{
				s32 idxcnt = (*IndexData)[i].Indices.size();

				if (idxcnt)
				{
					memcpy(&idxdata[i].Indices[idxdata[i].CurrentSize],
						&(*IndexData)[i].Indices[0], idxcnt * sizeof(s16));
					idxdata[i].CurrentSize += idxcnt;
				}
			}

			for (i=0; i!=8; ++i)
				if (Children[i])
					Children[i]->getPolys(frustum, idxdata,parentTest);
		}

		//! for debug purposes only, collects the bounding boxes of the node
		void getBoundingBoxes(const core::aabbox3d<f32>& box,
			core::array< const core::aabbox3d<f32>* >&outBoxes) const
		{
			if (Box.intersectsWithBox(box))
			{
				outBoxes.push_back(&Box);

				for (u32 i=0; i!=8; ++i)
					if (Children[i])
						Children[i]->getBoundingBoxes(box, outBoxes);
			}
		}

	private:

		core::aabbox3df Box;
		core::array<SIndexChunk>* IndexData;
		OctreeNode* Children[8];
		u32 Depth;
	};

	OctreeNode* Root;
	SIndexData* IndexData;
	u32 IndexDataCount;
	u32 NodeCount;
};

} // end namespace

#endif