irrlicht/source/Irrlicht/CSoftwareDriver2.cpp
cutealien 20b3d56987 Merging r6075 through r6106 from trunk to ogl-es branch.
Burnings renderer changes.


git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6116 dfc29bdd-3216-0410-991c-e03cc46cb475
2020-06-12 20:41:49 +00:00

3964 lines
118 KiB
C++
Raw Blame History

// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "IrrCompileConfig.h"
#include "CSoftwareDriver2.h"
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
#include "SoftwareDriver2_helper.h"
#include "CSoftwareTexture.h"
#include "CSoftwareTexture2.h"
#include "CSoftware2MaterialRenderer.h"
#include "S3DVertex.h"
#include "S4DVertex.h"
#include "CBlit.h"
// Matrix now here
template <class T>
bool mat44_transposed_inverse(irr::core::CMatrix4<T>& out, const irr::core::CMatrix4<T>& M)
{
const T* burning_restrict m = M.pointer();
double d =
(m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
if (fabs(d) < DBL_MIN)
{
out.makeIdentity();
return false;
}
d = 1.0 / d;
T* burning_restrict o = out.pointer();
o[0] = (T)(d*(m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13])));
o[4] = (T)(d*(m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13])));
o[8] = (T)(d*(m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5])));
o[12] = (T)(d*(m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10])));
o[1] = (T)(d*(m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15])));
o[5] = (T)(d*(m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15])));
o[9] = (T)(d*(m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7])));
o[13] = (T)(d*(m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10])));
o[2] = (T)(d*(m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15])));
o[6] = (T)(d*(m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15])));
o[10] = (T)(d*(m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7])));
o[14] = (T)(d*(m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8])));
o[3] = (T)(d*(m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13])));
o[7] = (T)(d*(m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13])));
o[11] = (T)(d*(m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5])));
o[15] = (T)(d*(m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8])));
return true;
}
#if 0
// difference to CMatrix4<T>::getInverse . higher precision in determinant. return identity on failure
template <class T>
bool mat44_inverse(CMatrix4<T>& out, const CMatrix4<T>& M)
{
const T* m = M.pointer();
double d =
(m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
if (fabs(d) < DBL_MIN)
{
out.makeIdentity();
return false;
}
d = 1.0 / d;
T* o = out.pointer();
o[0] = (T)(d*(m[5] * (m[10] * m[15] - m[11] * m[14]) + m[6] * (m[11] * m[13] - m[9] * m[15]) + m[7] * (m[9] * m[14] - m[10] * m[13])));
o[1] = (T)(d*(m[9] * (m[2] * m[15] - m[3] * m[14]) + m[10] * (m[3] * m[13] - m[1] * m[15]) + m[11] * (m[1] * m[14] - m[2] * m[13])));
o[2] = (T)(d*(m[13] * (m[2] * m[7] - m[3] * m[6]) + m[14] * (m[3] * m[5] - m[1] * m[7]) + m[15] * (m[1] * m[6] - m[2] * m[5])));
o[3] = (T)(d*(m[1] * (m[7] * m[10] - m[6] * m[11]) + m[2] * (m[5] * m[11] - m[7] * m[9]) + m[3] * (m[6] * m[9] - m[5] * m[10])));
o[4] = (T)(d*(m[6] * (m[8] * m[15] - m[11] * m[12]) + m[7] * (m[10] * m[12] - m[8] * m[14]) + m[4] * (m[11] * m[14] - m[10] * m[15])));
o[5] = (T)(d*(m[10] * (m[0] * m[15] - m[3] * m[12]) + m[11] * (m[2] * m[12] - m[0] * m[14]) + m[8] * (m[3] * m[14] - m[2] * m[15])));
o[6] = (T)(d*(m[14] * (m[0] * m[7] - m[3] * m[4]) + m[15] * (m[2] * m[4] - m[0] * m[6]) + m[12] * (m[3] * m[6] - m[2] * m[7])));
o[7] = (T)(d*(m[2] * (m[7] * m[8] - m[4] * m[11]) + m[3] * (m[4] * m[10] - m[6] * m[8]) + m[0] * (m[6] * m[11] - m[7] * m[10])));
o[8] = (T)(d*(m[7] * (m[8] * m[13] - m[9] * m[12]) + m[4] * (m[9] * m[15] - m[11] * m[13]) + m[5] * (m[11] * m[12] - m[8] * m[15])));
o[9] = (T)(d*(m[11] * (m[0] * m[13] - m[1] * m[12]) + m[8] * (m[1] * m[15] - m[3] * m[13]) + m[9] * (m[3] * m[12] - m[0] * m[15])));
o[10] = (T)(d*(m[15] * (m[0] * m[5] - m[1] * m[4]) + m[12] * (m[1] * m[7] - m[3] * m[5]) + m[13] * (m[3] * m[4] - m[0] * m[7])));
o[11] = (T)(d*(m[3] * (m[5] * m[8] - m[4] * m[9]) + m[0] * (m[7] * m[9] - m[5] * m[11]) + m[1] * (m[4] * m[11] - m[7] * m[8])));
o[12] = (T)(d*(m[4] * (m[10] * m[13] - m[9] * m[14]) + m[5] * (m[8] * m[14] - m[10] * m[12]) + m[6] * (m[9] * m[12] - m[8] * m[13])));
o[13] = (T)(d*(m[8] * (m[2] * m[13] - m[1] * m[14]) + m[9] * (m[0] * m[14] - m[2] * m[12]) + m[10] * (m[1] * m[12] - m[0] * m[13])));
o[14] = (T)(d*(m[12] * (m[2] * m[5] - m[1] * m[6]) + m[13] * (m[0] * m[6] - m[2] * m[4]) + m[14] * (m[1] * m[4] - m[0] * m[5])));
o[15] = (T)(d*(m[0] * (m[5] * m[10] - m[6] * m[9]) + m[1] * (m[6] * m[8] - m[4] * m[10]) + m[2] * (m[4] * m[9] - m[5] * m[8])));
return true;
}
#endif
// void CMatrix4<T>::transformVec4(T *out, const T * in) const
template <class T>
inline void transformVec4Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14];
out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15];
}
#if 0
// void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
template <class T>
inline void transformVec3Vec4(const irr::core::CMatrix4<T>& m,T* burning_restrict out, const core::vector3df &in)
{
const T* burning_restrict M = m.pointer();
out[0] = in.X*M[0] + in.Y*M[4] + in.Z*M[8] + M[12];
out[1] = in.X*M[1] + in.Y*M[5] + in.Z*M[9] + M[13];
out[2] = in.X*M[2] + in.Y*M[6] + in.Z*M[10] + M[14];
out[3] = in.X*M[3] + in.Y*M[7] + in.Z*M[11] + M[15];
}
#endif
template <class T>
inline void rotateVec3Vec4(const irr::core::CMatrix4<T>& m, T* burning_restrict out, const T* burning_restrict in)
{
const T* burning_restrict M = m.pointer();
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8];
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9];
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10];
out[3] = 0.f;
}
//based on https://github.com/ekmett/approximate/blob/master/cbits/fast.c powf_fast_precise
static inline float powf_limit(const float a, const float b)
{
if (a <= 0.0000001f) return 0.f;
else if (a >= 1.f) return 1.f;
/* calculate approximation with fraction of the exponent */
int e = (int)b;
union { float f; int x; } u = { a };
u.x = (int)((b - e) * (u.x - 1065353216) + 1065353216);
float r = 1.0f;
float ua = a;
while (e) {
if (e & 1) {
r *= ua;
}
if (ua < 0.00000001f)
break;
ua *= ua;
e >>= 1;
}
r *= u.f;
return r;
}
#if defined(Tweak_Burning)
// run time parameter
struct tweakBurning
{
tweakBurning()
{
current = 11;
step = 0.0001f;
ndc_shrink_x = -0.75f;
ndc_scale_x = 0.5f;
ndc_trans_x = -0.5f;
ndc_shrink_y = -0.75f;
ndc_scale_y = -0.5f;
ndc_trans_y = -0.5f;
tex_w_add = 0.f;
tex_h_add = 0.f;
tex_cx_add = 0.f;
tex_cy_add = 0.f;
AreaMinDrawSize = 0.001f;
}
int current;
union
{
struct {
f32 step;
f32 ndc_shrink_x;
f32 ndc_scale_x;
f32 ndc_trans_x;
f32 ndc_shrink_y;
f32 ndc_scale_y;
f32 ndc_trans_y;
f32 tex_w_add;
f32 tex_cx_add;
f32 tex_h_add;
f32 tex_cy_add;
f32 AreaMinDrawSize; //! minimal visible covered area for primitive
};
f32 val[16];
};
static const char* const name[16];
void postEventFromUser(const SEvent& e);
};
const char* const tweakBurning::name[] = { "step",
"ndc_shrink_x","ndc_scale_x","ndc_trans_x",
"ndc_shrink_y","ndc_scale_y","ndc_trans_y",
"tex_w_add","tex_cx_add","tex_h_add","tex_cy_add",
"dc_area",0 };
void tweakBurning::postEventFromUser(const SEvent& e)
{
int show = 0;
if (e.EventType == EET_KEY_INPUT_EVENT)
{
switch (e.KeyInput.Key)
{
case KEY_KEY_1: step *= 0.9f; if (step < 0.00001f) step = 0.0001f; show = 2; break;
case KEY_KEY_2: step *= 1.1f; show = 2; break;
case KEY_KEY_3: if (!e.KeyInput.PressedDown) { current -= 1; if (current < 1) current = 11; show = 1; } break;
case KEY_KEY_4: if (!e.KeyInput.PressedDown) { current += 1; if (current > 11) current = 1; show = 1; } break;
case KEY_KEY_5: val[current] -= e.KeyInput.Shift ? step * 100.f : step; show = 1; break;
case KEY_KEY_6: val[current] += e.KeyInput.Shift ? step * 100.f : step; show = 1; break;
default:
break;
}
}
if (show)
{
if (step < 0.0001f) step = 0.0001f;
char buf[256];
if (show == 2) sprintf(buf, "%s %f\n", name[0], val[0]);
else sprintf(buf, "%s %f\n", name[current], val[current]);
os::Printer::print(buf);
}
}
void CBurningVideoDriver::postEventFromUser(const void* sevent)
{
if (sevent) Tweak.postEventFromUser(*(const SEvent*)sevent);
}
tweakBurning Tweak;
#endif //defined(Tweak_Burning)
namespace irr
{
namespace video
{
//! constructor
CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
: CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter),
WindowId(0), SceneSourceRect(0),
RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0),
DepthBuffer(0), StencilBuffer ( 0 )
{
//enable fpu exception
//unsigned int fp_control_state = _controlfp(_EM_INEXACT, _MCW_EM);
#ifdef _DEBUG
setDebugName("CBurningVideoDriver");
#endif
VertexCache_map_source_format();
// create backbuffer
BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, params.WindowSize);
if (BackBuffer)
{
BackBuffer->fill(SColor(0));
// create z buffer
if ( params.ZBufferBits )
DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension());
// create stencil buffer
if ( params.Stencilbuffer )
StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension(),8);
}
DriverAttributes->setAttribute("MaxIndices", 1<<16);
DriverAttributes->setAttribute("MaxTextures", BURNING_MATERIAL_MAX_TEXTURES);
DriverAttributes->setAttribute("MaxTextureSize", SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE ? SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE : 1<<20);
DriverAttributes->setAttribute("MaxLights", 1024 ); //glsl::gl_MaxLights);
DriverAttributes->setAttribute("MaxTextureLODBias", 16.f);
DriverAttributes->setAttribute("Version", 50);
// create triangle renderers
memset( BurningShader, 0, sizeof ( BurningShader ) );
//BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer);
//BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer);
BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this);
BurningShader[ETR_GOURAUD_NOZ] = createTriangleRendererGouraudNoZ2(this);
//BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this );
BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this ); // 2D
//BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer);
//BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer);
BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this);
BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this);
BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this);
BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this);
BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this);
BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this);
BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2 ( this );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this );
BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ( this );
BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap ( this );
BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow ( this );
BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend( this );
BurningShader[ETR_TRANSPARENT_REFLECTION_2_LAYER] = createTriangleRendererTexture_transparent_reflection_2_layer(this);
//BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this );
BurningShader[ETR_COLOR] = create_burning_shader_color(this);
// add the same renderer for all solid types
CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID( this);
CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR( this);
//CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this );
//!TODO: addMaterialRenderer depends on pushing order....
addMaterialRenderer ( smr ); // EMT_SOLID
addMaterialRenderer ( smr ); // EMT_SOLID_2_LAYER,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP,
addMaterialRenderer ( tmr ); // EMT_LIGHTMAP_ADD,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M4,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M2,
addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M4,
addMaterialRenderer ( smr ); // EMT_DETAIL_MAP,
addMaterialRenderer ( smr ); // EMT_SPHERE_MAP,
addMaterialRenderer ( smr ); // EMT_REFLECTION_2_LAYER,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( smr ); // EMT_TRANSPARENT_REFLECTION_2_LAYER,
addMaterialRenderer ( smr ); // EMT_NORMAL_MAP_SOLID,
addMaterialRenderer ( tmr ); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( smr ); // EMT_PARALLAX_MAP_SOLID,
addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
addMaterialRenderer ( tmr ); // EMT_ONETEXTURE_BLEND
smr->drop ();
tmr->drop ();
//umr->drop ();
// select render target
setRenderTargetImage(BackBuffer);
//reset Lightspace
EyeSpace.reset();
EyeSpace.resetFog();
// select the right renderer
setMaterial(Material.org);
}
//! destructor
CBurningVideoDriver::~CBurningVideoDriver()
{
// delete Backbuffer
if (BackBuffer)
{
BackBuffer->drop();
BackBuffer = 0;
}
// delete triangle renderers
for (s32 i=0; i<ETR2_COUNT; ++i)
{
if (BurningShader[i])
{
BurningShader[i]->drop();
BurningShader[i] = 0;
}
}
// delete Additional buffer
if (StencilBuffer)
{
StencilBuffer->drop();
StencilBuffer = 0;
}
if (DepthBuffer)
{
DepthBuffer->drop();
DepthBuffer = 0;
}
if (RenderTargetTexture)
{
RenderTargetTexture->drop();
RenderTargetTexture = 0;
}
if (RenderTargetSurface)
{
RenderTargetSurface->drop();
RenderTargetSurface = 0;
}
}
//! queries the features of the driver, returns true if feature is available
bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const
{
int on = 0;
switch (feature)
{
#ifdef SOFTWARE_DRIVER_2_BILINEAR
case EVDF_BILINEAR_FILTER:
on = 1;
break;
#endif
#ifdef SOFTWARE_DRIVER_2_MIPMAPPING
case EVDF_MIP_MAP:
on = 1;
break;
#endif
case EVDF_STENCIL_BUFFER:
on = StencilBuffer != 0;
break;
case EVDF_RENDER_TO_TARGET:
case EVDF_MULTITEXTURE:
case EVDF_HARDWARE_TL:
case EVDF_TEXTURE_NSQUARE:
case EVDF_TEXTURE_MATRIX:
on = 1;
break;
case EVDF_DEPTH_CLAMP: // shadow
on = 1;
break;
case EVDF_TEXTURE_NPOT: // for 2D
on = 0;
break;
case EVDF_ARB_FRAGMENT_PROGRAM_1:
case EVDF_ARB_VERTEX_PROGRAM_1:
on = 1;
break;
#if defined(PATCH_SUPERTUX_8_0_1)
case EVDF_TEXTURE_NPOT:
case EVDF_ARB_GLSL:
on = 1;
break;
#endif
#if defined(SOFTWARE_DRIVER_2_2D_AS_3D)
#if defined(IRRLICHT_FREE_CANVAS)
case EVDF_VIEWPORT_SCALE_GUI:
on = 1;
break;
#endif
#endif
default:
on = 0;
break;
}
return on && FeatureEnabled[feature];
}
//! Create render target.
IRenderTarget* CBurningVideoDriver::addRenderTarget()
{
CSoftwareRenderTarget2* renderTarget = new CSoftwareRenderTarget2(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
//matrix multiplication
void CBurningVideoDriver::transform_calc(E_TRANSFORMATION_STATE_BURNING_VIDEO state)
{
size_t* flag = TransformationFlag[TransformationStack];
if (flag[state] & ETF_VALID ) return;
//check
int ok = 0;
switch ( state )
{
case ETS_PROJ_MODEL_VIEW:
if ( 0 == (flag[ETS_VIEW_PROJECTION] & ETF_VALID) ) transform_calc (ETS_VIEW_PROJECTION);
ok = flag[ETS_WORLD] & flag[ETS_VIEW] & flag[ETS_PROJECTION] & flag[ETS_VIEW_PROJECTION] & ETF_VALID;
break;
case ETS_VIEW_PROJECTION:
ok = flag[ETS_VIEW] & flag[ETS_PROJECTION] & ETF_VALID;
break;
case ETS_MODEL_VIEW:
ok = flag[ETS_WORLD] & flag[ETS_VIEW] & ETF_VALID;
break;
case ETS_NORMAL:
ok = flag[ETS_MODEL_VIEW] & ETF_VALID;
break;
default:
break;
}
if ( !ok )
{
char buf[256];
sprintf(buf,"transform_calc not valid for %d\n",state);
os::Printer::log(buf, ELL_WARNING);
}
core::matrix4* matrix = Transformation[TransformationStack];
switch ( state )
{
case ETS_PROJ_MODEL_VIEW:
if (flag[ETS_WORLD] & ETF_IDENTITY )
{
matrix[state] = matrix[ETS_VIEW_PROJECTION];
}
else
{
matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW_PROJECTION], matrix[ETS_WORLD]);
}
break;
case ETS_VIEW_PROJECTION:
matrix[state].setbyproduct_nocheck (matrix[ETS_PROJECTION], matrix[ETS_VIEW]);
break;
case ETS_MODEL_VIEW:
if ( flag[ETS_WORLD] & ETF_IDENTITY )
{
matrix[state] = matrix[ETS_VIEW];
}
else
{
matrix[state].setbyproduct_nocheck(matrix[ETS_VIEW], matrix[ETS_WORLD]);
}
break;
case ETS_NORMAL:
mat44_transposed_inverse(matrix[state], matrix[ETS_MODEL_VIEW]);
break;
default:
break;
}
flag[state] |= ETF_VALID;
}
//! sets transformation
void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
size_t* flag = TransformationFlag[TransformationStack];
core::matrix4* matrix = Transformation[TransformationStack];
#if 0
int changed = 1;
if (flag[state] & ETF_VALID)
{
changed = memcmp(mat.pointer(), matrix[state].pointer(), sizeof(mat));
}
if (changed)
#endif
{
matrix[state] = mat;
flag[state] |= ETF_VALID;
}
//maybe identity (mostly for texturematrix to avoid costly multiplication)
#if defined ( USE_MATRIX_TEST )
burning_setbit( TransformationFlag[state], mat.getDefinitelyIdentityMatrix(), ETF_IDENTITY );
#else
burning_setbit(flag[state],
!memcmp(mat.pointer(), core::IdentityMatrix.pointer(),sizeof(mat)),ETF_IDENTITY
);
#endif
#if 0
if ( changed )
#endif
switch ( state )
{
case ETS_PROJECTION:
flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID;
break;
case ETS_VIEW:
flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_VIEW_PROJECTION] &= ~ETF_VALID;
flag[ETS_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_NORMAL] &= ~ETF_VALID;
break;
case ETS_WORLD:
flag[ETS_PROJ_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_MODEL_VIEW] &= ~ETF_VALID;
flag[ETS_NORMAL] &= ~ETF_VALID;
break;
case ETS_TEXTURE_0:
case ETS_TEXTURE_1:
case ETS_TEXTURE_2:
case ETS_TEXTURE_3:
#if _IRR_MATERIAL_MAX_TEXTURES_>4
case ETS_TEXTURE_4:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>5
case ETS_TEXTURE_5:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>6
case ETS_TEXTURE_6:
#endif
#if _IRR_MATERIAL_MAX_TEXTURES_>7
case ETS_TEXTURE_7:
#endif
if ( 0 == (flag[state] & ETF_IDENTITY ) )
{
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM;
}
break;
default:
break;
}
}
//! Returns the transformation set by setTransform
const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Transformation[TransformationStack][state];
}
bool CBurningVideoDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
WindowId = videoData.D3D9.HWnd;
SceneSourceRect = sourceRect;
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
//memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) );
return true;
}
bool CBurningVideoDriver::endScene()
{
CNullDriver::endScene();
return Presenter->present(BackBuffer, WindowId, SceneSourceRect);
}
bool CBurningVideoDriver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR);
return false;
}
if (RenderTargetTexture)
RenderTargetTexture->drop();
CSoftwareRenderTarget2* renderTarget = static_cast<CSoftwareRenderTarget2*>(target);
RenderTargetTexture = (renderTarget) ? renderTarget->getTexture() : 0;
if (RenderTargetTexture)
{
RenderTargetTexture->grab();
setRenderTargetImage(((CSoftwareTexture2*)RenderTargetTexture)->getTexture());
}
else
{
setRenderTargetImage(BackBuffer);
}
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
//! sets a render target
void CBurningVideoDriver::setRenderTargetImage(video::CImage* image)
{
if (RenderTargetSurface)
RenderTargetSurface->drop();
core::dimension2d<u32> current = RenderTargetSize;
RenderTargetSurface = image;
RenderTargetSize.Width = 0;
RenderTargetSize.Height = 0;
if (RenderTargetSurface)
{
RenderTargetSurface->grab();
RenderTargetSize = RenderTargetSurface->getDimension();
}
int not_changed = current == RenderTargetSize;
burning_setbit(TransformationFlag[0][ETS_PROJECTION], not_changed, ETF_VALID);
burning_setbit(TransformationFlag[1][ETS_PROJECTION], not_changed, ETF_VALID);
setViewPort(core::recti(RenderTargetSize));
if (DepthBuffer)
DepthBuffer->setSize(RenderTargetSize);
if (StencilBuffer)
StencilBuffer->setSize(RenderTargetSize);
}
//--------- Transform from NDC to DC, transform TexCoo ----------------------------------------------
// controls subtexel and fill convention
#if defined(SOFTWARE_DRIVER_2_SUBTEXEL)
#define SOFTWARE_DRIVER_2_PIXEL_CENTER -0.5f
#else
#define SOFTWARE_DRIVER_2_PIXEL_CENTER -0.5f
#endif
#if 1
// used to scale <-1,-1><1,1> to viewport
void buildNDCToDCMatrix(f32* m, const core::rect<s32>& viewport, f32 tx)
{
m[0] = (viewport.getWidth() + tx) * 0.5f;
m[1] = SOFTWARE_DRIVER_2_PIXEL_CENTER + ((viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X) * 0.5f);
m[2] = (viewport.getHeight() + tx) * -0.5f;
m[3] = SOFTWARE_DRIVER_2_PIXEL_CENTER + ((viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y) * 0.5f);
}
#else
// used to scale <-1,-1><1,1> to viewport
void buildNDCToDCMatrix( core::matrix4& out, const core::rect<s32>& viewport)
{
//guard band to stay in screen bounds.(empirical). get holes left side otherwise or out of screen
//TODO: match openGL or D3D.
//assumption pixel center, top-left rule and rounding error projection deny exact match without additional clipping
//or triangle render scanline doesn't step on correct texel center
//or sampler is not on texel center
f32* m = out.pointer();
#if defined(Tweak_Burning) && 0
m[0] = (viewport.getWidth() + Tweak.ndc_shrink_x ) * Tweak.ndc_scale_x;
m[5] = (viewport.getHeight() + Tweak.ndc_shrink_y ) * Tweak.ndc_scale_y;
m[12] = Tweak.ndc_trans_x + ( (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X ) * 0.5f );
m[13] = Tweak.ndc_trans_y + ( (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y ) * 0.5f );
#endif
m[0] = (viewport.getWidth() - 0.75f ) * 0.5f;
m[1] = 0.f;
m[2] = 0.f;
m[3] = 0.f;
m[4] = 0.f;
m[5] = (viewport.getHeight() - 0.75f ) * -0.5f;
m[6] = 0.f;
m[7] = 0.f;
m[8] = 0.f;
m[9] = 0.f;
m[10] = 1.f;
m[11] = 0.f;
m[12] = SOFTWARE_DRIVER_2_PIXEL_CENTER + ( (viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X ) * 0.5f );
m[13] = SOFTWARE_DRIVER_2_PIXEL_CENTER + ( (viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y ) * 0.5f );
m[14] = 0.f;
m[15] = 1.f;
}
#endif
//--------- Transform from NCD to DC ----------------------------------------------
//! sets a viewport
void CBurningVideoDriver::setViewPort(const core::rect<s32>& area)
{
ViewPort = area;
core::rect<s32> rendert(0,0,RenderTargetSize.Width,RenderTargetSize.Height);
ViewPort.clipAgainst(rendert);
buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[0], ViewPort,-0.375f);
buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[1], ViewPort, 0.f); // OverrideMaterial2DEnabled ? -0.375f : 0.f);
if (CurrentShader)
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
}
void CBurningVideoDriver::setScissor(int x, int y, int width, int height)
{
AbsRectangle v0;
v0.x0 = x;
v0.y0 = y;
v0.x1 = x+width;
v0.y1 = y+width;
const core::dimension2d<u32>& rt = getCurrentRenderTargetSize();
AbsRectangle v1;
v1.x0 = 0;
v1.y0 = 0;
v1.x1 = rt.Width;
v1.y1 = rt.Height;
intersect(Scissor, v0, v1);
}
/*
generic plane clipping in homogenous coordinates
special case ndc frustum <-w,w>,<-w,w>,<-w,w>
can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w
cam is (0,0,-1)
*/
const sVec4 CBurningVideoDriver::NDCPlane[6+2] =
{
sVec4( 0.f, 0.f, -1.f, -1.f ), // near
sVec4( 0.f, 0.f, 1.f, -1.f ), // far
sVec4( 1.f, 0.f, 0.f, -1.f ), // left
sVec4( -1.f, 0.f, 0.f, -1.f ), // right
sVec4( 0.f, 1.f, 0.f, -1.f ), // bottom
sVec4( 0.f, -1.f, 0.f, -1.f ) // top
};
/*
test a vertex if it's inside the standard frustum
this is the generic one..
f32 dotPlane;
for ( u32 i = 0; i!= 6; ++i )
{
dotPlane = v->Pos.dotProduct ( NDCPlane[i] );
burning_setbit32( flag, dotPlane <= 0.f, 1 << i );
}
// this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w>
burning_setbit32( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 );
burning_setbit32( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 );
burning_setbit32( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 );
burning_setbit32( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 );
burning_setbit32( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 );
burning_setbit32( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 );
*/
#ifdef IRRLICHT_FAST_MATH
REALINLINE size_t CBurningVideoDriver::clipToFrustumTest ( const s4DVertex* v ) const
{
register size_t flag;
f32 test[8];
const f32 w = - v->Pos.w;
// a conditional move is needed....FCOMI ( but we don't have it )
// so let the fpu calculate and write it back.
// cpu makes the compare, interleaving
test[0] = v->Pos.z + w;
test[1] = -v->Pos.z + w;
test[2] = v->Pos.x + w;
test[3] = -v->Pos.x + w;
test[4] = v->Pos.y + w;
test[5] = -v->Pos.y + w;
const u32* a = F32_AS_U32_POINTER(test);
flag = (a[0] ) >> 31;
flag |= (a[1] & 0x80000000) >> 30;
flag |= (a[2] & 0x80000000) >> 29;
flag |= (a[3] & 0x80000000) >> 28;
flag |= (a[4] & 0x80000000) >> 27;
flag |= (a[5] & 0x80000000) >> 26;
/*
flag = (IR ( test[0] ) ) >> 31;
flag |= (IR ( test[1] ) & 0x80000000 ) >> 30;
flag |= (IR ( test[2] ) & 0x80000000 ) >> 29;
flag |= (IR ( test[3] ) & 0x80000000 ) >> 28;
flag |= (IR ( test[4] ) & 0x80000000 ) >> 27;
flag |= (IR ( test[5] ) & 0x80000000 ) >> 26;
*/
/*
flag = F32_LOWER_EQUAL_0 ( test[0] );
flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1;
flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2;
flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3;
flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4;
flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5;
*/
return flag;
}
#else
REALINLINE size_t clipToFrustumTest ( const s4DVertex* v )
{
size_t flag = 0;
flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0;
flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0;
flag |= v->Pos.x <= v->Pos.w ? VERTEX4D_CLIP_LEFT : 0;
flag |= -v->Pos.x <= v->Pos.w ? VERTEX4D_CLIP_RIGHT : 0;
flag |= v->Pos.y <= v->Pos.w ? VERTEX4D_CLIP_BOTTOM : 0;
flag |= -v->Pos.y <= v->Pos.w ? VERTEX4D_CLIP_TOP : 0;
/*
for ( u32 i = 0; i <= 6; ++i )
{
if (v->Pos.dot_xyzw(NDCPlane[i]) <= 0.f) flag |= ((size_t)1) << i;
}
*/
return flag;
}
#endif // _MSC_VER
size_t clipToHyperPlane (
s4DVertexPair* burning_restrict dest,
const s4DVertexPair* burning_restrict source,
const size_t inCount,
const sVec4& plane
)
{
size_t outCount = 0;
s4DVertexPair* out = dest;
const s4DVertex* a;
const s4DVertex* b = source;
ipoltype bDotPlane;
bDotPlane = b->Pos.dot_xyzw( plane );
/*
for( u32 i = 1; i < inCount + 1; ++i)
{
#if 0
a = source + (i%inCount)*2;
#else
const s32 condition = i - inCount;
const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1;
a = source + index;
#endif
*/
//Sutherland<6E>Hodgman
for(size_t i = 0; i < inCount; ++i)
{
a = source + (i == inCount-1 ? 0 : s4DVertex_ofs(i+1));
// current point inside
if (ipol_lower_equal_0(a->Pos.dot_xyzw( plane )) )
{
// last point outside
if (ipol_greater_0( bDotPlane ) )
{
// intersect line segment with plane
out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane) );
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
// copy current to out
//*out = *a;
memcpy_s4DVertexPair( out, a);
b = out;
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
else
{
// current point outside
if (ipol_lower_equal_0( bDotPlane ) )
{
// previous was inside
// intersect line segment with plane
out->interpolate(*b, *a, bDotPlane / (b->Pos - a->Pos).dot_xyzw(plane) );
out += sizeof_s4DVertexPairRel;
outCount += 1;
}
// pointer
b = a;
}
bDotPlane = b->Pos.dot_xyzw( plane );
}
return outCount;
}
/*
Clip on all planes. Clipper.data
clipmask per face
*/
size_t CBurningVideoDriver::clipToFrustum(const size_t vIn /*, const size_t clipmask_for_face*/ )
{
s4DVertexPair* v0 = Clipper.data;
s4DVertexPair* v1 = Clipper_temp.data;
size_t vOut = vIn;
//clear all clipping & projected flags
const u32 flag = v0[0].flag & VERTEX4D_FORMAT_MASK;
for (size_t g = 0; g != Clipper.ElementSize; ++g)
{
v0[g].flag = flag;
v1[g].flag = flag;
}
#if 0
for (size_t i = 0; i < 6; ++i)
{
v0 = i & 1 ? Clipper_temp.data : Clipper.data;
v1 = i & 1 ? Clipper.data : Clipper_temp.data;
//clipMask checked outside - always clip all planes
#if 0
if (0 == (clipMask & ((size_t)1<<i)))
{
vOut = vIn;
memcpy_s4DVertexPair(v1, v0);
}
else
#endif
{
vOut = clipToHyperPlane(v1, v0, vOut, NDCPlane[i]);
if (vOut < vIn) return vOut;
}
}
#endif
vOut = clipToHyperPlane( v1, v0, vOut, NDCPlane[0] ); if ( vOut < vIn) return vOut;
vOut = clipToHyperPlane( v0, v1, vOut, NDCPlane[1] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane( v1, v0, vOut, NDCPlane[2] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane( v0, v1, vOut, NDCPlane[3] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane( v1, v0, vOut, NDCPlane[4] ); if ( vOut < vIn ) return vOut;
vOut = clipToHyperPlane( v0, v1, vOut, NDCPlane[5] );
return vOut;
}
/*!
Part I:
apply Clip Scale matrix
From Normalized Device Coordiante ( NDC ) Space to Device Coordinate ( DC ) Space
Part II:
Project homogeneous vector
homogeneous to non-homogenous coordinates ( dividebyW )
Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A )
Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w )
replace w/w by 1/w
*/
//aliasing problems! [dest = source + 1]
inline void CBurningVideoDriver::ndc_2_dc_and_project (s4DVertexPair* dest,const s4DVertexPair *source, const size_t vIn ) const
{
const f32* dc = Transformation_ETS_CLIPSCALE[TransformationStack];
for ( size_t g = 0; g != vIn; g += sizeof_s4DVertexPairRel)
{
//cache doesn't work anymore?
//if ( dest[g].flag & VERTEX4D_PROJECTED )
// continue;
//dest[g].flag = source[g].flag | VERTEX4D_PROJECTED;
const f32 iw = reciprocal_zero (source[g].Pos.w);
// to device coordinates
dest[g].Pos.x = iw * source[g].Pos.x * dc[0] + dc[1];
dest[g].Pos.y = iw * source[g].Pos.y * dc[2] + dc[3];
//burning uses direct Z. for OpenGL it should be -Z,[-1;1] and texture flip
#if !defined(SOFTWARE_DRIVER_2_USE_WBUFFER) || 1
dest[g].Pos.z = -iw * source[g].Pos.z * 0.5f + 0.5f;
#endif
dest[g].Pos.w = iw;
// Texture Coordinates will be projected after mipmap selection
// satisfy write-combiner
#if 1
#if BURNING_MATERIAL_MAX_TEXTURES > 0
dest[g].Tex[0] = source[g].Tex[0];
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 1
dest[g].Tex[1] = source[g].Tex[1];
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 2
dest[g].Tex[2] = source[g].Tex[2];
#endif
#if BURNING_MATERIAL_MAX_TEXTURES > 3
dest[g].Tex[3] = source[g].Tex[3];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 0
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[0] = source[g].Color[0] * iw; // alpha?
#else
dest[g].Color[0] = source[g].Color[0];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 1
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[1] = source[g].Color[1] * iw; // alpha?
#else
dest[g].Color[1] = source[g].Color[1];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 2
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[2] = source[g].Color[2] * iw; // alpha?
#else
dest[g].Color[2] = source[g].Color[2];
#endif
#endif
#if BURNING_MATERIAL_MAX_COLORS > 3
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
dest[g].Color[3] = source[g].Color[3] * iw; // alpha?
#else
dest[g].Color[3] = source[g].Color[3];
#endif
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
dest[g].LightTangent[0] = source[g].LightTangent[0] * iw;
#endif
}
}
/*!
crossproduct in projected 2D, face
*/
REALINLINE f32 CBurningVideoDriver::screenarea_inside(const s4DVertexPair* burning_restrict const face[] ) const
{
return ( ((face[1]+1)->Pos.x - (face[0]+1)->Pos.x) * ((face[2]+1)->Pos.y - (face[0]+1)->Pos.y) ) -
( ((face[2]+1)->Pos.x - (face[0]+1)->Pos.x) * ((face[1]+1)->Pos.y - (face[0]+1)->Pos.y) );
/*
float signedArea = 0;
for (int k = 1; k < output->count; k++) {
signedArea += (output->vertices[k - 1].values[0] * output->vertices[k - 0].values[1]);
signedArea -= (output->vertices[k - 0].values[0] * output->vertices[k - 1].values[1]);
}
*/
}
#if 0
static inline f32 dot(const sVec2& a,const sVec2& b) { return a.x * b.x + a.y * b.y; }
sVec2 dFdx(const sVec2& v) { return v; }
sVec2 dFdy(const sVec2& v) { return v; }
f32 MipmapLevel(const sVec2& uv, const sVec2& textureSize)
{
sVec2 dx = dFdx(uv * textureSize.x);
sVec2 dy = dFdy(uv * textureSize.y);
f32 d = core::max_(dot(dx, dx), dot(dy, dy));
return log2f(sqrtf(d));
}
#endif
#define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.getTexture ( (u32)tex ) )
/*!
calculate from unprojected.
attribute need not to follow winding rule from position.
Edge-walking problem
Texture Wrapping problem
Atlas problem
*/
REALINLINE s32 CBurningVideoDriver::lodFactor_inside(const s4DVertexPair* burning_restrict const face[],
const size_t m, f32 dc_area, f32 lod_bias) const
{
/*
sVec2 a(v[1]->Tex[tex].x - v[0]->Tex[tex].x,v[1]->Tex[tex].y - v[0]->Tex[tex].y);
sVec2 b(v[2]->Tex[tex].x - v[0]->Tex[tex].x,v[2]->Tex[tex].y - v[0]->Tex[tex].y);
f32 area = a.x * b.y - b.x * a.y;
*/
/*
degenerate(A, B, C, minarea) = ((B - A).cross(C - A)).lengthSquared() < (4.0f * minarea * minarea);
check for collapsed or "long thin triangles"
*/
ieee754 signedArea;
ieee754 t[4];
t[0].f = face[1]->Tex[m].x - face[0]->Tex[m].x;
t[1].f = face[1]->Tex[m].y - face[0]->Tex[m].y;
t[2].f = face[2]->Tex[m].x - face[0]->Tex[m].x;
t[3].f = face[2]->Tex[m].y - face[0]->Tex[m].y;
//crossproduct in projected 2D -> screen area triangle
signedArea.f = t[0].f * t[3].f - t[2].f * t[1].f;
//signedArea =
// ((face[1]->Tex[m].x - face[0]->Tex[m].x) * (face[2]->Tex[m].y - face[0]->Tex[m].y))
// - ((face[2]->Tex[m].x - face[0]->Tex[m].x) * (face[1]->Tex[m].y - face[0]->Tex[m].y));
//if (signedArea*signedArea <= 0.00000000001f)
if (signedArea.fields.exp == 0 )
{
ieee754 _max;
_max.u = t[0].abs.frac_exp;
if (t[1].abs.frac_exp > _max.u) _max.u = t[1].abs.frac_exp;
if (t[2].abs.frac_exp > _max.u) _max.u = t[2].abs.frac_exp;
if (t[3].abs.frac_exp > _max.u) _max.u = t[3].abs.frac_exp;
signedArea.u = _max.fields.exp ? _max.u : ieee754_one;
/*
//dot,length
ieee754 v[2];
v[0].f = t[0] * t[2];
v[1].f = t[1] * t[3];
//signedArea.f = t[4] > t[5] ? t[4] : t[5];
signedArea.u = v[0].fields.frac > v[1].fields.frac ? v[0].u : v[1].u;
if (signedArea.fields.exp == 0)
{
return -1;
}
*/
}
//only guessing: take more detail (lower mipmap) in light+bump textures
//assume transparent add is ~50% transparent -> more detail
const u32* d = MAT_TEXTURE(m)->getMipMap0_Area();
f32 texelspace = d[0] * d[1] * lod_bias; //(m ? 0.5f : 0.5f);
ieee754 ratio;
ratio.f = (signedArea.f * texelspace) * dc_area;
ratio.fields.sign = 0;
//log2(0)==denormal [ use high lod] [ only if dc_area == 0 checked outside ]
#if 0
if (ratio.fields.exp == 0)
{
int g = 1;
}
#endif
//log2
return (ratio.fields.exp & 0x80) ? ratio.fields.exp - 127 : 0; /*denormal very high lod*/
//return (ratio.f <= 1.f) ? 0 : 1;
//f32 texArea = MAT_TEXTURE(m)->getLODFactor(signedArea); // texelarea_inside(face, m);
//s32 lodFactor = s32_log2_f32(texArea * dc_area); /* avoid denorm */
//return MAT_TEXTURE(m)->getLODFactor(signedArea);
}
/*!
texcoo in current mipmap dimension (face, already clipped)
-> want to help fixpoint
*/
inline void CBurningVideoDriver::select_polygon_mipmap_inside(s4DVertex* burning_restrict face[], const size_t tex, const CSoftwareTexture2_Bound& b) const
{
#ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
#if defined(Tweak_Burning)
(face[0] + 1)->Tex[tex].x = face[0]->Tex[tex].x * (face[0] + 1)->Pos.w * (b.w + Tweak.tex_w_add) + (b.cx + Tweak.tex_cx_add);
(face[0] + 1)->Tex[tex].y = face[0]->Tex[tex].y * (face[0] + 1)->Pos.w * (b.h + Tweak.tex_h_add) + (b.cy + Tweak.tex_cy_add);
(face[1] + 1)->Tex[tex].x = face[1]->Tex[tex].x * (face[1] + 1)->Pos.w * (b.w + Tweak.tex_w_add) + (b.cx + Tweak.tex_cx_add);
(face[1] + 1)->Tex[tex].y = face[1]->Tex[tex].y * (face[1] + 1)->Pos.w * (b.h + Tweak.tex_h_add) + (b.cy + Tweak.tex_cy_add);
(face[2] + 1)->Tex[tex].x = face[2]->Tex[tex].x * (face[2] + 1)->Pos.w * (b.w + Tweak.tex_w_add) + (b.cx + Tweak.tex_cx_add);
(face[2] + 1)->Tex[tex].y = face[2]->Tex[tex].y * (face[2] + 1)->Pos.w * (b.h + Tweak.tex_h_add) + (b.cy + Tweak.tex_cy_add);
#else
(face[0] + 1)->Tex[tex].x = face[0]->Tex[tex].x * (face[0] + 1)->Pos.w * b.w + b.cx;
(face[0] + 1)->Tex[tex].y = face[0]->Tex[tex].y * (face[0] + 1)->Pos.w * b.h + b.cy;
(face[1] + 1)->Tex[tex].x = face[1]->Tex[tex].x * (face[1] + 1)->Pos.w * b.w + b.cx;
(face[1] + 1)->Tex[tex].y = face[1]->Tex[tex].y * (face[1] + 1)->Pos.w * b.h + b.cy;
(face[2] + 1)->Tex[tex].x = face[2]->Tex[tex].x * (face[2] + 1)->Pos.w * b.w + b.cx;
(face[2] + 1)->Tex[tex].y = face[2]->Tex[tex].y * (face[2] + 1)->Pos.w * b.h + b.cy;
#endif
#else
(face[0] + 1)->Tex[tex].x = face[0]->Tex[tex].x * b.w;
(face[0] + 1)->Tex[tex].y = face[0]->Tex[tex].y * b.h;
(face[1] + 1)->Tex[tex].x = face[1]->Tex[tex].x * b.w;
(face[1] + 1)->Tex[tex].y = face[1]->Tex[tex].y * b.h;
(face[2] + 1)->Tex[tex].x = face[2]->Tex[tex].x * b.w;
(face[2] + 1)->Tex[tex].y = face[2]->Tex[tex].y * b.h;
#endif
}
// Vertex Cache
//! setup Vertex Format
void CBurningVideoDriver::VertexCache_map_source_format()
{
u32 s0 = sizeof(s4DVertex);
u32 s1 = sizeof(s4DVertex_proxy);
if ( s1 <= sizeof_s4DVertex /2 )
{
os::Printer::log ( "BurningVideo vertex format unnecessary to large", ELL_WARNING );
}
//memcpy_vertex
if ( s0 != sizeof_s4DVertex || ((sizeof_s4DVertex * sizeof_s4DVertexPairRel)&31))
{
os::Printer::log ( "BurningVideo vertex format compile problem", ELL_ERROR );
_IRR_DEBUG_BREAK_IF(1);
}
#if defined(ENV64BIT)
if (sizeof(void*) != 8)
{
os::Printer::log("BurningVideo pointer should be 8 bytes", ELL_ERROR);
_IRR_DEBUG_BREAK_IF(1);
}
#endif
SVSize* vSize = VertexCache.vSize;
//vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_SPECULAR;
vSize[E4VT_STANDARD].Format = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_2_FOG;
vSize[E4VT_STANDARD].Pitch = sizeof(S3DVertex);
vSize[E4VT_STANDARD].TexSize = 1;
vSize[E4VT_STANDARD].TexCooSize = 1;
vSize[E4VT_2TCOORDS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1;
vSize[E4VT_2TCOORDS].Pitch = sizeof(S3DVertex2TCoords);
vSize[E4VT_2TCOORDS].TexSize = 2;
vSize[E4VT_2TCOORDS].TexCooSize = 2;
//vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_BUMP_DOT3;
vSize[E4VT_TANGENTS].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_2_FOG | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_BUMP_DOT3;
vSize[E4VT_TANGENTS].Pitch = sizeof(S3DVertexTangents);
vSize[E4VT_TANGENTS].TexSize = 2;
vSize[E4VT_TANGENTS].TexCooSize = 2;
// reflection map
vSize[E4VT_REFLECTION_MAP].Format = VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1;
vSize[E4VT_REFLECTION_MAP].Pitch = sizeof(S3DVertex);
vSize[E4VT_REFLECTION_MAP].TexSize = 2;
vSize[E4VT_REFLECTION_MAP].TexCooSize = 1; //TexCoo2 generated
// shadow
vSize[E4VT_SHADOW].Format = 0;
vSize[E4VT_SHADOW].Pitch = sizeof(f32) * 3; // core::vector3df*
vSize[E4VT_SHADOW].TexSize = 0;
vSize[E4VT_SHADOW].TexCooSize = 0;
// color shading only (no texture)
vSize[E4VT_NO_TEXTURE].Format = VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_LIGHT_1 | VERTEX4D_FORMAT_SPECULAR;
vSize[E4VT_NO_TEXTURE].Pitch = sizeof(S3DVertex);
vSize[E4VT_NO_TEXTURE].TexSize = 0;
vSize[E4VT_NO_TEXTURE].TexCooSize = 0;
//Line
vSize[E4VT_LINE].Format = VERTEX4D_FORMAT_COLOR_1;
vSize[E4VT_LINE].Pitch = sizeof(S3DVertex);
vSize[E4VT_LINE].TexSize = 0;
vSize[E4VT_LINE].TexCooSize = 0;
size_t size;
for ( size_t i = 0; i < E4VT_COUNT; ++i )
{
size_t& flag = vSize[i].Format;
#if !defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR)
flag &= ~VERTEX4D_FORMAT_SPECULAR;
#endif
if ( vSize[i].TexSize > BURNING_MATERIAL_MAX_TEXTURES )
vSize[i].TexSize = BURNING_MATERIAL_MAX_TEXTURES;
size = (flag & VERTEX4D_FORMAT_MASK_TEXTURE) >> 16;
if ( size > BURNING_MATERIAL_MAX_TEXTURES )
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_TEXTURE) | (BURNING_MATERIAL_MAX_TEXTURES << 16);
}
size = (flag & VERTEX4D_FORMAT_MASK_COLOR) >> 20;
if ( size > BURNING_MATERIAL_MAX_COLORS )
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_COLOR) | (BURNING_MATERIAL_MAX_COLORS << 20);
}
size = (flag & VERTEX4D_FORMAT_MASK_LIGHT) >> 24;
if ( size > BURNING_MATERIAL_MAX_LIGHT_TANGENT)
{
flag = (flag & ~VERTEX4D_FORMAT_MASK_LIGHT) | (BURNING_MATERIAL_MAX_LIGHT_TANGENT << 24);
}
}
VertexCache.mem.resize(VERTEXCACHE_ELEMENT * 2);
VertexCache.vType = E4VT_STANDARD;
Clipper.resize(VERTEXCACHE_ELEMENT * 2);
Clipper_temp.resize(VERTEXCACHE_ELEMENT * 2);
TransformationStack = 0;
memset(TransformationFlag, 0, sizeof(TransformationFlag));
memset(Transformation_ETS_CLIPSCALE, 0, sizeof(Transformation_ETS_CLIPSCALE));
Material.resetRenderStates = true;
Material.Fallback_MaterialType = EMT_SOLID;
}
/*!
fill a cache line with transformed, light and clip test triangles
overhead - if primitive is outside or culled, vertexLighting and TextureTransform is still done
*/
void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex)
{
u8* burning_restrict source;
s4DVertex* burning_restrict dest;
source = (u8*) VertexCache.vertices + ( sourceIndex * VertexCache.vSize[VertexCache.vType].Pitch );
// it's a look ahead so we never hit it..
// but give priority...
//VertexCache.info[ destIndex ].hit = hitCount;
// store info
VertexCache.info[ destIndex ].index = sourceIndex;
VertexCache.info[ destIndex ].hit = 0;
// destination Vertex
dest = VertexCache.mem.data + s4DVertex_ofs(destIndex);
//Irrlicht S3DVertex,S3DVertex2TCoords,S3DVertexTangents
const S3DVertex* base = ((S3DVertex*)source);
// transform Model * World * Camera * Projection * NDCSpace matrix
const core::matrix4* matrix = Transformation[TransformationStack];
matrix[ETS_PROJ_MODEL_VIEW].transformVect(&dest->Pos.x, base->Pos);
//mhm ... maybe no goto
if (VertexCache.vType == E4VT_SHADOW)
{
//core::vector3df i = base->Pos;
//i.Z -= 0.5f;
//matrix[ETS_PROJ_MODEL_VIEW].transformVect(&dest->Pos.x, i);
//GL_DEPTH_CLAMP,EVDF_DEPTH_CLAMP
//if ( dest->Pos.z < dest->Pos.w)
// dest->Pos.z = dest->Pos.w*0.99f;
//glPolygonOffset // self shadow wanted or not?
dest->Pos.w *= 1.005f;
//flag |= v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_NEAR : 0;
//flag |= -v->Pos.z <= v->Pos.w ? VERTEX4D_CLIP_FAR : 0;
goto clipandproject;
}
#if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
// vertex, normal in light(eye) space
if ( Material.org.Lighting || (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM|TL_FOG)) )
{
sVec4 vertex4; //eye coordinate position of vertex
matrix[ETS_MODEL_VIEW].transformVect ( &vertex4.x, base->Pos );
f32 iw = reciprocal_zero(vertex4.w);
EyeSpace.vertex.x = vertex4.x * iw;
EyeSpace.vertex.y = vertex4.y * iw;
EyeSpace.vertex.z = vertex4.z * iw;
EyeSpace.vertex.w = iw;
//EyeSpace.cam_distance = EyeSpace.vertex.length_xyz();
EyeSpace.cam_dir = EyeSpace.vertex;
EyeSpace.cam_dir.normalize_dir_xyz();
matrix[ETS_NORMAL].rotateVect(&EyeSpace.normal.x, base->Normal);
if (EyeSpace.TL_Flag & TL_NORMALIZE_NORMALS)
EyeSpace.normal.normalize_dir_xyz();
}
#endif
#if BURNING_MATERIAL_MAX_COLORS > 1
dest->Color[1].a = 1.f;
dest->Color[1].r = 0.f;
dest->Color[1].g = 0.f;
dest->Color[1].b = 0.f;
#endif
#if BURNING_MATERIAL_MAX_COLORS > 2
dest->Color[2].a = 1.f;
dest->Color[2].r = 0.f;
dest->Color[2].g = 0.f;
dest->Color[2].b = 0.f;
#endif
#if BURNING_MATERIAL_MAX_COLORS > 3
dest->Color[3].a = 1.f;
dest->Color[3].r = 0.f;
dest->Color[3].g = 0.f;
dest->Color[3].b = 0.f;
#endif
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
dest->LightTangent[0].x = 0.f;
dest->LightTangent[0].y = 0.f;
dest->LightTangent[0].z = 0.f;
#endif
#if BURNING_MATERIAL_MAX_COLORS > 0
// apply lighting model
#if defined (SOFTWARE_DRIVER_2_LIGHTING)
if ( Material.org.Lighting )
{
lightVertex_eye ( dest, base->Color.color );
}
else
{
dest->Color[0].setA8R8G8B8 ( base->Color.color );
}
#else
dest->Color[0].setA8R8G8B8 ( base->Color.color );
#endif
#endif
//vertex fog
if (EyeSpace.TL_Flag & TL_FOG ) //Material.org.FogEnable
{
f32 fog_factor = 1.f;
// GL_FRAGMENT_DEPTH -> abs(EyeSpace.vertex.z)
ieee754 fog_frag_coord;
fog_frag_coord.f = EyeSpace.vertex.z;
fog_frag_coord.fields.sign = 0;
switch (FogType)
{
case EFT_FOG_LINEAR:
fog_factor = (FogEnd - fog_frag_coord.f) * EyeSpace.fog_scale;
break;
case EFT_FOG_EXP:
fog_factor = (f32)exp(-FogDensity * fog_frag_coord.f);
break;
case EFT_FOG_EXP2:
fog_factor = (f32)exp(-FogDensity * FogDensity * fog_frag_coord.f * fog_frag_coord.f);
break;
}
sVec4* a = dest->Color + ((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_COLOR_2_FOG) ? 1 : 0);
a->a = core::clamp(fog_factor, 0.f, 1.f);
}
// Texture Transform
#if defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
if ( 0 == (EyeSpace.TL_Flag & TL_TEXTURE_TRANSFORM) )
#endif // SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
{
// Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address!
const f32* baseTCoord = &base->TCoords.X;
switch (VertexCache.vSize[VertexCache.vType].TexCooSize)
{
#if BURNING_MATERIAL_MAX_TEXTURES == 4
case 0:
dest->Tex[0].x = 0.f;
dest->Tex[0].y = 0.f;
dest->Tex[1].x = 0.f;
dest->Tex[1].y = 0.f;
dest->Tex[2].x = 0.f;
dest->Tex[2].y = 0.f;
dest->Tex[3].x = 0.f;
dest->Tex[3].y = 0.f;
break;
case 1:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = 0.f;
dest->Tex[1].y = 0.f;
dest->Tex[2].x = 0.f;
dest->Tex[2].y = 0.f;
dest->Tex[3].x = 0.f;
dest->Tex[3].y = 0.f;
break;
case 2:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = baseTCoord[2];
dest->Tex[1].y = baseTCoord[3];
dest->Tex[2].x = 0.f;
dest->Tex[2].y = 0.f;
dest->Tex[3].x = 0.f;
dest->Tex[3].y = 0.f;
break;
case 3:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = baseTCoord[2];
dest->Tex[1].y = baseTCoord[3];
dest->Tex[2].x = baseTCoord[4];
dest->Tex[2].y = baseTCoord[5];
dest->Tex[3].x = 0.f;
dest->Tex[3].y = 0.f;
break;
case 4:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = baseTCoord[2];
dest->Tex[1].y = baseTCoord[3];
dest->Tex[2].x = baseTCoord[4];
dest->Tex[2].y = baseTCoord[5];
dest->Tex[3].x = baseTCoord[6];
dest->Tex[3].y = baseTCoord[7];
break;
#endif
#if BURNING_MATERIAL_MAX_TEXTURES == 2
case 0:
dest->Tex[0].x = 0.f;
dest->Tex[0].y = 0.f;
dest->Tex[1].x = 0.f;
dest->Tex[1].y = 0.f;
break;
case 1:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = 0.f;
dest->Tex[1].y = 0.f;
break;
case 2:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
dest->Tex[1].x = baseTCoord[2];
dest->Tex[1].y = baseTCoord[3];
break;
#endif
#if BURNING_MATERIAL_MAX_TEXTURES == 1
case 0:
dest->Tex[0].x = 0.f;
dest->Tex[0].y = 0.f;
break;
case 1:
dest->Tex[0].x = baseTCoord[0];
dest->Tex[0].y = baseTCoord[1];
break;
#endif
default:
break;
}
}
#if defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM )
else
{
/*
Generate texture coordinates as linear functions so that:
u = Ux*x + Uy*y + Uz*z + Uw
v = Vx*x + Vy*y + Vz*z + Vw
The matrix M for this case is:
Ux Vx 0 0
Uy Vy 0 0
Uz Vz 0 0
Uw Vw 0 0
*/
const sVec4& u = EyeSpace.cam_dir; // EyeSpace.vertex.normalized
const sVec4& n = EyeSpace.normal;
sVec4 r;
const size_t* flag = TransformationFlag[TransformationStack];
for ( u32 t = 0; t != VertexCache.vSize[VertexCache.vType].TexSize; ++t )
{
// texgen
if (flag[ETS_TEXTURE_0+t] & ETF_TEXGEN_CAMERA_SPHERE )
{
//reflect(u,N) u - 2.0 * dot(N, u) * N
// cam is (0,0,-1), tex flipped
f32 dot = -2.f * n.dot_xyz(u);
r.x = u.x + dot * n.x;
r.y = u.y + dot * n.y;
r.z = u.z + dot * n.z;
//openGL
f32 m = 2.f * sqrtf(r.x*r.x+r.y*r.y+(r.z+1.f)*(r.z+1.f));
dest[0].Tex[t].x = r.x / m + 0.5f;
dest[0].Tex[t].y = -r.y / m + 0.5f;
/*
//~d3d with spheremap scale
f32 m = 0.25f / (0.00001f + sqrtf(r.x*r.x+r.y*r.y+r.z*r.z));
dest[0].Tex[t].x = r.x * m + 0.5f;
dest[0].Tex[t].y = -r.y * m + 0.5f;
*/
}
else if (flag[ETS_TEXTURE_0+t] & ETF_TEXGEN_CAMERA_REFLECTION )
{
//reflect(u,N) u - 2.0 * dot(N, u) * N
// cam is (0,0,-1), tex flipped
f32 dot = -2.f * n.dot_xyz(u);
r.x = u.x + dot * n.x;
r.y = u.y + dot * n.y;
r.z = u.z + dot * n.z;
//openGL
dest[0].Tex[t].x = r.x;
dest[0].Tex[t].y = -r.y;
/*
//~d3d with spheremap scale
dest[0].Tex[t].x = r.x;
dest[0].Tex[t].y = r.y;
*/
}
else if (VertexCache.vSize[VertexCache.vType].TexCooSize > t)
{
const f32* M = matrix[ETS_TEXTURE_0 + t].pointer();
// Irrlicht TCoords and TCoords2 must be contiguous memory. baseTCoord has no 4 byte aligned start address!
const f32* baseTCoord = &base->TCoords.X;
sVec4 srcT;
srcT.x = baseTCoord[(t * 2) + 0];
srcT.y = baseTCoord[(t * 2) + 1];
switch ( Material.org.TextureLayer[t].TextureWrapU )
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f );
break;
case ETC_MIRROR:
dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8];
if (core::fract(dest->Tex[t].x)>0.5f)
dest->Tex[t].x=1.f-dest->Tex[t].x;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f );
if (core::fract(dest->Tex[t].x)>0.5f)
dest->Tex[t].x=1.f-dest->Tex[t].x;
break;
case ETC_REPEAT:
default:
dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8];
break;
}
switch ( Material.org.TextureLayer[t].TextureWrapV )
{
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f );
break;
case ETC_MIRROR:
dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9];
if (core::fract(dest->Tex[t].y)>0.5f)
dest->Tex[t].y=1.f-dest->Tex[t].y;
break;
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f );
if (core::fract(dest->Tex[t].y)>0.5f)
dest->Tex[t].y=1.f-dest->Tex[t].y;
break;
case ETC_REPEAT:
default:
dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9];
break;
}
}
}
}
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
if ((EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) &&
((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_MASK_TANGENT) == VERTEX4D_FORMAT_BUMP_DOT3)
)
{
const S3DVertexTangents *tangent = ((S3DVertexTangents*) source );
sVec4 vp;
sVec4 light_accu;
light_accu.x = 0.f;
light_accu.y = 0.f;
light_accu.z = 0.f;
light_accu.w = 0.f;
for ( u32 i = 0; i < 2 && i < EyeSpace.Light.size (); ++i )
{
const SBurningShaderLight &light = EyeSpace.Light[i];
if ( !light.LightIsOn )
continue;
// lightcolor with standard model
// but shader is different. treating light and vertex in same space
#if 1
vp.x = light.pos.x - base->Pos.X;
vp.y = light.pos.y - base->Pos.Y;
vp.z = light.pos.z - base->Pos.Z;
#else
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
#endif
// transform by tangent matrix
light_accu.x += (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z );
light_accu.y += (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z );
light_accu.z += (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z );
}
//normalize [-1,+1] to [0,1] -> obsolete
light_accu.normalize_pack_xyz(dest->LightTangent[0],1.f, 0.f);
dest->Tex[1].x = dest->Tex[0].x;
dest->Tex[1].y = dest->Tex[0].y;
}
else if (Material.org.Lighting)
{
//dest->LightTangent[0].x = 0.f;
//dest->LightTangent[0].y = 0.f;
//dest->LightTangent[0].z = 0.f;
}
#endif //if BURNING_MATERIAL_MAX_LIGHT_TANGENT > 0
#endif // SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
clipandproject:
// test vertex visible
dest[0].flag = (u32) (clipToFrustumTest(dest) | VertexCache.vSize[VertexCache.vType].Format);
dest[1].flag = dest[0].flag;
// to DC Space, project homogenous vertex
if ( (dest[0].flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE )
{
ndc_2_dc_and_project ( dest+1, dest, s4DVertex_ofs(1));
}
}
//todo: this should return only index
s4DVertexPair* CBurningVideoDriver::VertexCache_getVertex ( const u32 sourceIndex ) const
{
for ( size_t i = 0; i < VERTEXCACHE_ELEMENT; ++i )
{
if ( VertexCache.info[ i ].index == sourceIndex )
{
return VertexCache.mem.data + s4DVertex_ofs(i);
}
}
return VertexCache.mem.data; //error
}
/*
Cache based on linear walk indices
fill blockwise on the next 16(Cache_Size) unique vertices in indexlist
merge the next 16 vertices with the current
*/
void CBurningVideoDriver::VertexCache_get(s4DVertexPair* face[4])
{
// next primitive must be complete in cache
if ( VertexCache.indicesIndex - VertexCache.indicesRun < VertexCache.primitiveHasVertex &&
VertexCache.indicesIndex < VertexCache.indexCount
)
{
size_t i;
//memset(info, VERTEXCACHE_MISS, sizeof(info));
for (i = 0; i != VERTEXCACHE_ELEMENT; ++i)
{
VertexCache.info_temp[i].hit = VERTEXCACHE_MISS;
VertexCache.info_temp[i].index = VERTEXCACHE_MISS;
}
// rewind to start of primitive
VertexCache.indicesIndex = VertexCache.indicesRun;
// get the next unique vertices cache line
u32 fillIndex = 0;
u32 dIndex = 0;
u32 sourceIndex = 0;
while ( VertexCache.indicesIndex < VertexCache.indexCount &&
fillIndex < VERTEXCACHE_ELEMENT
)
{
switch ( VertexCache.iType )
{
case E4IT_16BIT:
sourceIndex = ((u16*)VertexCache.indices) [ VertexCache.indicesIndex ];
break;
case E4IT_32BIT:
sourceIndex = ((u32*)VertexCache.indices) [ VertexCache.indicesIndex ];
break;
default:
case E4IT_NONE:
sourceIndex = VertexCache.indicesIndex;
break;
}
VertexCache.indicesIndex += 1;
// if not exist, push back
s32 exist = 0;
for ( dIndex = 0; dIndex < fillIndex; ++dIndex )
{
if (VertexCache.info_temp[ dIndex ].index == sourceIndex )
{
exist = 1;
break;
}
}
if ( 0 == exist )
{
VertexCache.info_temp[fillIndex++].index = sourceIndex;
}
}
// clear marks
for ( i = 0; i!= VERTEXCACHE_ELEMENT; ++i )
{
VertexCache.info[i].hit = 0;
}
// mark all existing
for ( i = 0; i!= fillIndex; ++i )
{
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( VertexCache.info[ dIndex ].index == VertexCache.info_temp[i].index )
{
VertexCache.info_temp[i].hit = dIndex;
VertexCache.info[ dIndex ].hit = 1;
break;
}
}
}
// fill new
for ( i = 0; i!= fillIndex; ++i )
{
if (VertexCache.info_temp[i].hit != VERTEXCACHE_MISS )
continue;
for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex )
{
if ( 0 == VertexCache.info[dIndex].hit )
{
VertexCache_fill (VertexCache.info_temp[i].index, dIndex );
VertexCache.info[dIndex].hit += 1;
VertexCache.info_temp[i].hit = dIndex;
break;
}
}
}
}
//const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun );
const u32 i0 = VertexCache.pType != scene::EPT_TRIANGLE_FAN ? VertexCache.indicesRun : 0;
switch ( VertexCache.iType )
{
case E4IT_16BIT:
{
const u16* p = (const u16*) VertexCache.indices;
face[0] = VertexCache_getVertex ( p[ i0 ] );
face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] );
face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] );
}
break;
case E4IT_32BIT:
{
const u32* p = (const u32*) VertexCache.indices;
face[0] = VertexCache_getVertex ( p[ i0 ] );
face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] );
face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] );
}
break;
case E4IT_NONE:
face[0] = VertexCache_getVertex ( VertexCache.indicesRun + 0 );
face[1] = VertexCache_getVertex ( VertexCache.indicesRun + 1 );
face[2] = VertexCache_getVertex ( VertexCache.indicesRun + 2 );
break;
default:
face[0] = face[1] = face[2] = VertexCache_getVertex(VertexCache.indicesRun + 0);
break;
}
face[3] = face[0]; // quad unsupported
VertexCache.indicesRun += VertexCache.indicesPitch;
}
/*!
*/
int CBurningVideoDriver::VertexCache_reset ( const void* vertices, u32 vertexCount,
const void* indices, u32 primitiveCount,
E_VERTEX_TYPE vType,
scene::E_PRIMITIVE_TYPE pType,
E_INDEX_TYPE iType)
{
// These calls would lead to crashes due to wrong index usage.
// The vertex cache needs to be rewritten for these primitives.
if (0 == CurrentShader ||
pType == scene::EPT_POINTS || pType == scene::EPT_LINE_STRIP ||
pType == scene::EPT_LINE_LOOP || pType == scene::EPT_LINES ||
pType == scene::EPT_POLYGON ||
pType == scene::EPT_POINT_SPRITES)
{
return 1;
}
VertexCache.vertices = vertices;
VertexCache.vertexCount = vertexCount;
switch (Material.org.MaterialType) // (Material.Fallback_MaterialType)
{
case EMT_REFLECTION_2_LAYER:
case EMT_TRANSPARENT_REFLECTION_2_LAYER:
VertexCache.vType = E4VT_REFLECTION_MAP;
break;
default:
VertexCache.vType = (e4DVertexType)vType;
break;
}
//check material
SVSize* vSize = VertexCache.vSize;
for (int m = (int)vSize[VertexCache.vType].TexSize-1; m >= 0 ; --m)
{
ITexture* tex = MAT_TEXTURE(m);
if (!tex)
{
vSize[E4VT_NO_TEXTURE] = vSize[VertexCache.vType];
vSize[E4VT_NO_TEXTURE].TexSize = m;
vSize[E4VT_NO_TEXTURE].TexCooSize = m;
VertexCache.vType = E4VT_NO_TEXTURE;
//flags downconvert?
}
}
VertexCache.indices = indices;
VertexCache.indicesIndex = 0;
VertexCache.indicesRun = 0;
switch ( iType )
{
case EIT_16BIT: VertexCache.iType = E4IT_16BIT; break;
case EIT_32BIT: VertexCache.iType = E4IT_32BIT; break;
default:
VertexCache.iType = (e4DIndexType)iType; break;
}
if (!VertexCache.indices)
VertexCache.iType = E4IT_NONE;
VertexCache.pType = pType;
VertexCache.primitiveHasVertex = 3;
VertexCache.indicesPitch = 1;
switch ( VertexCache.pType )
{
// most types here will not work as expected, only triangles/triangle_fan
// is known to work.
case scene::EPT_POINTS:
VertexCache.indexCount = primitiveCount;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 1;
break;
case scene::EPT_LINE_STRIP:
VertexCache.indexCount = primitiveCount+1;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 2;
break;
case scene::EPT_LINE_LOOP:
VertexCache.indexCount = primitiveCount+1;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 2;
break;
case scene::EPT_LINES:
VertexCache.indexCount = 2*primitiveCount;
VertexCache.indicesPitch = 2;
VertexCache.primitiveHasVertex = 2;
break;
case scene::EPT_TRIANGLE_STRIP:
VertexCache.indexCount = primitiveCount+2;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 3;
break;
case scene::EPT_TRIANGLES:
VertexCache.indexCount = primitiveCount + primitiveCount + primitiveCount;
VertexCache.indicesPitch = 3;
VertexCache.primitiveHasVertex = 3;
break;
case scene::EPT_TRIANGLE_FAN:
VertexCache.indexCount = primitiveCount + 2;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 3;
break;
case scene::EPT_QUAD_STRIP:
VertexCache.indexCount = 2*primitiveCount + 2;
VertexCache.indicesPitch = 2;
VertexCache.primitiveHasVertex = 4;
break;
case scene::EPT_QUADS:
VertexCache.indexCount = 4*primitiveCount;
VertexCache.indicesPitch = 4;
VertexCache.primitiveHasVertex = 4;
break;
case scene::EPT_POLYGON:
VertexCache.indexCount = primitiveCount+1;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = primitiveCount;
break;
case scene::EPT_POINT_SPRITES:
VertexCache.indexCount = primitiveCount;
VertexCache.indicesPitch = 1;
VertexCache.primitiveHasVertex = 1;
break;
}
//memset( VertexCache.info, VERTEXCACHE_MISS, sizeof ( VertexCache.info ) );
for (size_t i = 0; i != VERTEXCACHE_ELEMENT; ++i)
{
VertexCache.info[i].hit = VERTEXCACHE_MISS;
VertexCache.info[i].index = VERTEXCACHE_MISS;
}
return 0;
}
//! draws a vertex primitive list
void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (VertexCache_reset(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType))
return;
if ((u32)Material.org.MaterialType < MaterialRenderers.size())
{
MaterialRenderers[Material.org.MaterialType].Renderer->OnRender(this, vType);
}
//Matrices needed for this primitive
transform_calc(ETS_PROJ_MODEL_VIEW);
if ( Material.org.Lighting || (EyeSpace.TL_Flag & (TL_TEXTURE_TRANSFORM | TL_FOG)) )
{
transform_calc(ETS_MODEL_VIEW);
transform_calc(ETS_NORMAL);
}
s4DVertexPair* face[4];
size_t vOut;
size_t vertex_from_clipper; // from VertexCache or CurrentOut
size_t has_vertex_run;
for ( size_t primitive_run = 0; primitive_run < primitiveCount; ++primitive_run)
{
//collect pointer to face vertices
VertexCache_get(face);
register size_t clipMask_i;
register size_t clipMask_o;
clipMask_i = face[0]->flag;
clipMask_o = face[0]->flag;
for (has_vertex_run = 1; has_vertex_run < VertexCache.primitiveHasVertex; ++has_vertex_run)
{
clipMask_i |= face[has_vertex_run]->flag; // if fully outside or outside on same side
clipMask_o &= face[has_vertex_run]->flag; // if fully inside
}
clipMask_i &= VERTEX4D_CLIPMASK;
clipMask_o &= VERTEX4D_CLIPMASK;
if (clipMask_i != VERTEX4D_INSIDE )
{
// if primitive fully outside or outside on same side
continue;
vOut = 0;
vertex_from_clipper = 0;
}
else if (clipMask_o == VERTEX4D_INSIDE )
{
// if primitive fully inside
vOut = VertexCache.primitiveHasVertex;
vertex_from_clipper = 0;
}
else
#if defined(SOFTWARE_DRIVER_2_CLIPPING)
{
// else if not complete inside clipping necessary
// check: clipping should reuse vertexcache (try to minimize clipping)
for (has_vertex_run = 0; has_vertex_run < VertexCache.primitiveHasVertex; ++has_vertex_run)
{
memcpy_s4DVertexPair(Clipper.data + s4DVertex_ofs(has_vertex_run), face[has_vertex_run]);
}
vOut = clipToFrustum(VertexCache.primitiveHasVertex);
vertex_from_clipper = 1;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project(Clipper.data + s4DVertex_proj(0), Clipper.data, s4DVertex_ofs(vOut));
}
#else
{
continue;
vOut = 0;
vertex_from_clipper = 0;
}
#endif
// re-tesselate ( triangle-fan, 0-1-2,0-2-3.. )
for (has_vertex_run = 0; (has_vertex_run + VertexCache.primitiveHasVertex) <= vOut; has_vertex_run += 1)
{
// set from clipped geometry
if (vertex_from_clipper)
{
face[0] = Clipper.data + s4DVertex_ofs(0);
face[1] = Clipper.data + s4DVertex_ofs(has_vertex_run + 1);
face[2] = Clipper.data + s4DVertex_ofs(has_vertex_run + 2);
}
//area of primitive in device space
f32 dc_area = screenarea_inside(face);
//geometric clipping has problem with invisible or very small Triangles
//size_t sign = dc_area < 0.001f ? CULL_BACK : dc_area > 0.001f ? CULL_FRONT : CULL_INVISIBLE;
ieee754 t;
t.f = dc_area;
size_t sign = t.fields.sign ? CULL_BACK : CULL_FRONT;
sign |= t.abs.frac_exp < 981668463 /*0.01f*/ ? CULL_INVISIBLE : 0;
if (Material.CullFlag & sign)
break; //continue;
//select mipmap ratio between drawing space and texture space
dc_area = reciprocal_zero(dc_area);
// select mipmap
for (size_t m = 0; m < VertexCache.vSize[VertexCache.vType].TexSize; ++m)
{
video::CSoftwareTexture2* tex = MAT_TEXTURE(m);
//only guessing: take more detail (lower mipmap) in light+bump textures
//assume transparent add is ~50% transparent -> more detail
f32 lod_bias = Material.org.MaterialType == EMT_TRANSPARENT_ADD_COLOR ? 0.1f : 0.33f;
lod_bias *= tex->get_lod_bias();
s32 lodFactor = lodFactor_inside(face, m, dc_area, lod_bias);
CurrentShader->setTextureParam(m, tex, lodFactor);
//currently shader receives texture coordinate as Pixelcoo of 1 Texture
select_polygon_mipmap_inside(face, m, tex->getTexBound());
}
CurrentShader->drawWireFrameTriangle(face[0] + 1, face[1] + 1, face[2] + 1);
vertex_from_clipper = 1;
}
}
//release texture
for (size_t m = 0; m < VertexCache.vSize[VertexCache.vType].TexSize; ++m)
{
CurrentShader->setTextureParam(m, 0, 0);
}
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void CBurningVideoDriver::setAmbientLight(const SColorf& color)
{
EyeSpace.Global_AmbientLight.setColorf ( color );
}
//! adds a dynamic light
s32 CBurningVideoDriver::addDynamicLight(const SLight& dl)
{
(void) CNullDriver::addDynamicLight( dl );
SBurningShaderLight l;
// l.org = dl;
l.Type = dl.Type;
l.LightIsOn = true;
l.AmbientColor.setColorf ( dl.AmbientColor );
l.DiffuseColor.setColorf ( dl.DiffuseColor );
l.SpecularColor.setColorf ( dl.SpecularColor );
//should always be valid?
sVec4 nDirection;
nDirection.x = dl.Direction.X;
nDirection.y = dl.Direction.Y;
nDirection.z = dl.Direction.Z;
nDirection.normalize_dir_xyz();
switch ( dl.Type )
{
case ELT_DIRECTIONAL:
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 0.f;
l.constantAttenuation = 1.f;
l.linearAttenuation = 0.f;
l.quadraticAttenuation = 0.f;
l.spotDirection.x = -nDirection.x;
l.spotDirection.y = -nDirection.y;
l.spotDirection.z = -nDirection.z;
l.spotDirection.w = 0.f;
l.spotCosCutoff = -1.f;
l.spotCosInnerCutoff = 1.f;
l.spotExponent = 0.f;
break;
case ELT_POINT:
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 1.f;
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = dl.Attenuation.Y;
l.quadraticAttenuation = dl.Attenuation.Z;
l.spotDirection.x = -nDirection.x;
l.spotDirection.y = -nDirection.y;
l.spotDirection.z = -nDirection.z;
l.spotDirection.w = 0.f;
l.spotCosCutoff = -1.f;
l.spotCosInnerCutoff = 1.f;
l.spotExponent = 0.f;
break;
case ELT_SPOT:
l.pos.x = dl.Position.X;
l.pos.y = dl.Position.Y;
l.pos.z = dl.Position.Z;
l.pos.w = 1.f;
l.constantAttenuation = dl.Attenuation.X;
l.linearAttenuation = dl.Attenuation.Y;
l.quadraticAttenuation = dl.Attenuation.Z;
l.spotDirection.x = nDirection.x;
l.spotDirection.y = nDirection.y;
l.spotDirection.z = nDirection.z;
l.spotDirection.w = 0.0f;
l.spotCosCutoff = cosf(dl.OuterCone * 2.0f * core::DEGTORAD * 0.5f);
l.spotCosInnerCutoff = cosf(dl.InnerCone * 2.0f * core::DEGTORAD * 0.5f);
l.spotExponent = dl.Falloff;
break;
default:
break;
}
//which means ETS_VIEW
setTransform(ETS_WORLD,irr::core::IdentityMatrix);
transform_calc(ETS_MODEL_VIEW);
const core::matrix4* matrix = Transformation[TransformationStack];
transformVec4Vec4(matrix[ETS_MODEL_VIEW], &l.pos4.x, &l.pos.x );
rotateVec3Vec4(matrix[ETS_MODEL_VIEW], &l.spotDirection4.x, &l.spotDirection.x );
EyeSpace.Light.push_back ( l );
return EyeSpace.Light.size() - 1;
}
//! Turns a dynamic light on or off
void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn)
{
if((u32)lightIndex < EyeSpace.Light.size())
{
EyeSpace.Light[lightIndex].LightIsOn = turnOn;
}
}
//! deletes all dynamic lights there are
void CBurningVideoDriver::deleteAllDynamicLights()
{
EyeSpace.reset ();
CNullDriver::deleteAllDynamicLights();
}
//! returns the maximal amount of dynamic lights the device can handle
u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const
{
return 8; //no limit 8 only for convenience
}
//! sets a material
void CBurningVideoDriver::setMaterial(const SMaterial& material)
{
// ---------- Override
Material.org = material;
OverrideMaterial.apply(Material.org);
const SMaterial& in = Material.org;
// ---------- Notify Shader
// unset old material
u32 mi;
mi = (u32)Material.lastMaterial.MaterialType;
if (mi != material.MaterialType && mi < MaterialRenderers.size())
MaterialRenderers[mi].Renderer->OnUnsetMaterial();
// set new material.
mi = (u32)in.MaterialType;
if (mi < MaterialRenderers.size())
MaterialRenderers[mi].Renderer->OnSetMaterial(
in, Material.lastMaterial, Material.resetRenderStates, this);
Material.lastMaterial = in;
Material.resetRenderStates = false;
//CSoftware2MaterialRenderer sets Material.Fallback_MaterialType
//Material.Fallback_MaterialType = material.MaterialType;
//-----------------
//Material.org = material;
Material.CullFlag = CULL_INVISIBLE | (in.BackfaceCulling ? CULL_BACK : 0) | (in.FrontfaceCulling ? CULL_FRONT : 0);
size_t* flag = TransformationFlag[TransformationStack];
#ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM
for (u32 m = 0; m < BURNING_MATERIAL_MAX_TEXTURES /*&& m < vSize[VertexCache.vType].TexSize*/; ++m)
{
setTransform((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + m),in.getTextureMatrix(m));
flag[ETS_TEXTURE_0+m] &= ~ETF_TEXGEN_MASK;
}
#endif
#ifdef SOFTWARE_DRIVER_2_LIGHTING
Material.AmbientColor.setA8R8G8B8( in.AmbientColor.color );
Material.DiffuseColor.setA8R8G8B8( in.ColorMaterial ? 0xFFFFFFFF : in.DiffuseColor.color );
Material.EmissiveColor.setA8R8G8B8(in.EmissiveColor.color );
Material.SpecularColor.setA8R8G8B8( in.SpecularColor.color );
burning_setbit(EyeSpace.TL_Flag, in.Lighting, TL_LIGHT);
burning_setbit( EyeSpace.TL_Flag, (in.Shininess != 0.f) & (in.SpecularColor.color & 0x00ffffff), TL_SPECULAR );
burning_setbit( EyeSpace.TL_Flag, in.FogEnable, TL_FOG );
burning_setbit( EyeSpace.TL_Flag, in.NormalizeNormals, TL_NORMALIZE_NORMALS );
//if (EyeSpace.Flags & SPECULAR ) EyeSpace.Flags |= NORMALIZE_NORMALS;
#endif
//--------------- setCurrentShader
ITexture* texture0 = in.getTexture(0);
ITexture* texture1 = in.getTexture(1);
//ITexture* texture2 = in.getTexture(2);
//ITexture* texture3 = in.getTexture(3);
//visual studio code analysis
u32 maxTex = BURNING_MATERIAL_MAX_TEXTURES;
if (maxTex < 1) texture0 = 0;
if (maxTex < 2) texture1 = 0;
//if (maxTex < 3) texture2 = 0;
//if (maxTex < 4) texture3 = 0;
EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP);
//todo: seperate depth test from depth write
Material.depth_write = getWriteZBuffer(in);
Material.depth_test = in.ZBuffer != ECFN_DISABLED && Material.depth_write;
EBurningFFShader shader = Material.depth_test ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ;
switch (Material.Fallback_MaterialType) //(Material.org.MaterialType)
{
case EMT_ONETEXTURE_BLEND:
shader = ETR_TEXTURE_BLEND;
break;
case EMT_TRANSPARENT_ALPHA_CHANNEL_REF:
Material.org.MaterialTypeParam = 0.5f;
//fallthrough
case EMT_TRANSPARENT_ALPHA_CHANNEL:
if (texture0 && texture0->hasAlpha())
{
shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ;
}
else
{
//fall back to EMT_TRANSPARENT_VERTEX_ALPHA
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
}
break;
case EMT_TRANSPARENT_ADD_COLOR:
shader = Material.depth_test ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA;
break;
case EMT_LIGHTMAP:
case EMT_LIGHTMAP_LIGHTING:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1;
break;
case EMT_LIGHTMAP_M2:
case EMT_LIGHTMAP_LIGHTING_M2:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2;
break;
case EMT_LIGHTMAP_LIGHTING_M4:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_M4:
if (texture1)
shader = ETR_TEXTURE_LIGHTMAP_M4;
break;
case EMT_LIGHTMAP_ADD:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD;
break;
case EMT_DETAIL_MAP:
if (texture1)
shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP;
break;
case EMT_SPHERE_MAP:
flag[ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_SPHERE;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM;
break;
case EMT_REFLECTION_2_LAYER:
case EMT_TRANSPARENT_REFLECTION_2_LAYER:
if (texture1)
{
shader = ETR_TRANSPARENT_REFLECTION_2_LAYER;
flag[ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM;
}
break;
case EMT_NORMAL_MAP_SOLID:
case EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR:
case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA:
if (texture1)
{
shader = ETR_NORMAL_MAP_SOLID;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP;
}
break;
case EMT_PARALLAX_MAP_SOLID:
case EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR:
case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA:
if (texture1)
{
shader = ETR_NORMAL_MAP_SOLID;
EyeSpace.TL_Flag |= TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP;
}
break;
default:
break;
}
if (!texture0)
{
shader = Material.depth_test ? ETR_GOURAUD :
shader == ETR_TEXTURE_GOURAUD_VERTEX_ALPHA ?
ETR_GOURAUD_ALPHA_NOZ: // 2D Gradient
ETR_GOURAUD_NOZ;
shader = ETR_COLOR;
}
if (in.Wireframe)
{
IBurningShader* candidate = BurningShader[shader];
if (!candidate || (candidate && !candidate->canWireFrame()))
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
}
if (in.PointCloud)
{
IBurningShader* candidate = BurningShader[shader];
if (!candidate || (candidate && !candidate->canPointCloud()))
{
shader = ETR_TEXTURE_GOURAUD_WIRE;
}
}
//shader = ETR_REFERENCE;
// switchToTriangleRenderer
CurrentShader = BurningShader[shader];
if (CurrentShader)
{
CurrentShader->setTLFlag(EyeSpace.TL_Flag);
if (EyeSpace.TL_Flag & TL_FOG) CurrentShader->setFog(FogColor);
if (EyeSpace.TL_Flag & TL_SCISSOR) CurrentShader->setScissor(Scissor);
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
CurrentShader->OnSetMaterial(Material);
CurrentShader->pushEdgeTest(in.Wireframe, in.PointCloud, 0);
}
/*
mi = (u32)Material.org.MaterialType;
if (mi < MaterialRenderers.size())
MaterialRenderers[mi].Renderer->OnRender(this, (video::E_VERTEX_TYPE)VertexCache.vType);
*/
}
//! Sets the fog mode.
void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog);
EyeSpace.fog_scale = reciprocal_zero2(FogEnd - FogStart);
}
#if defined(SOFTWARE_DRIVER_2_LIGHTING) && BURNING_MATERIAL_MAX_COLORS > 0
/*!
applies lighting model
*/
void CBurningVideoDriver::lightVertex_eye(s4DVertex *dest, u32 vertexargb)
{
//gl_FrontLightModelProduct.sceneColor = gl_FrontMaterial.emission + gl_FrontMaterial.ambient * gl_LightModel.ambient
sVec3Color ambient;
sVec3Color diffuse;
sVec3Color specular;
// the universe started in darkness..
ambient = EyeSpace.Global_AmbientLight;
diffuse.set(0.f);
specular.set(0.f);
u32 i;
f32 dot;
f32 distance;
f32 attenuation;
sVec4 vp; // unit vector vertex to light
sVec4 lightHalf; // blinn-phong reflection
f32 spotDot; // cos of angle between spotlight and point on surface
for (i = 0; i < EyeSpace.Light.size(); ++i)
{
const SBurningShaderLight& light = EyeSpace.Light[i];
if (!light.LightIsOn)
continue;
switch (light.Type)
{
case ELT_DIRECTIONAL:
//angle between normal and light vector
dot = EyeSpace.normal.dot_xyz(light.spotDirection4);
// accumulate ambient
ambient.add_rgb(light.AmbientColor);
// diffuse component
if (dot > 0.f)
diffuse.mad_rgb(light.DiffuseColor, dot);
break;
case ELT_POINT:
// surface to light
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
distance = vp.length_xyz();
attenuation = light.constantAttenuation
+ light.linearAttenuation * distance
+ light.quadraticAttenuation * (distance * distance);
attenuation = reciprocal_one(attenuation);
//att = clamp(1.0 - dist/radius, 0.0, 1.0); att *= att
// accumulate ambient
ambient.mad_rgb(light.AmbientColor, attenuation);
// build diffuse reflection
//angle between normal and light vector
vp.mul_xyz(reciprocal_zero(distance)); //normalize
dot = EyeSpace.normal.dot_xyz(vp);
if (dot <= 0.f) continue;
// diffuse component
diffuse.mad_rgb(light.DiffuseColor, dot * attenuation);
if (!(EyeSpace.TL_Flag & TL_SPECULAR))
continue;
lightHalf.x = vp.x + 0.f; // EyeSpace.cam_eye_pos.x;
lightHalf.y = vp.y + 0.f; // EyeSpace.cam_eye_pos.y;
lightHalf.z = vp.z - 1.f; // EyeSpace.cam_eye_pos.z;
lightHalf.normalize_dir_xyz();
//specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation
specular.mad_rgb(light.SpecularColor,
powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess)*attenuation
);
break;
case ELT_SPOT:
// surface to light
vp.x = light.pos4.x - EyeSpace.vertex.x;
vp.y = light.pos4.y - EyeSpace.vertex.y;
vp.z = light.pos4.z - EyeSpace.vertex.z;
distance = vp.length_xyz();
//normalize
vp.mul_xyz(reciprocal_zero(distance));
// point on surface inside cone of illumination
spotDot = vp.dot_minus_xyz(light.spotDirection4);
if (spotDot < light.spotCosCutoff)
continue;
attenuation = light.constantAttenuation
+ light.linearAttenuation * distance
+ light.quadraticAttenuation * distance * distance;
attenuation = reciprocal_one(attenuation);
attenuation *= powf_limit(spotDot, light.spotExponent);
// accumulate ambient
ambient.mad_rgb(light.AmbientColor, attenuation);
// build diffuse reflection
//angle between normal and light vector
dot = EyeSpace.normal.dot_xyz(vp);
if (dot < 0.f) continue;
// diffuse component
diffuse.mad_rgb(light.DiffuseColor, dot * attenuation);
if (!(EyeSpace.TL_Flag & TL_SPECULAR))
continue;
lightHalf.x = vp.x + 0.f; // EyeSpace.cam_eye_pos.x;
lightHalf.y = vp.y + 0.f; // EyeSpace.cam_eye_pos.y;
lightHalf.z = vp.z - 1.f; // EyeSpace.cam_eye_pos.z;
lightHalf.normalize_dir_xyz();
//specular += light.SpecularColor * pow(max(dot(Eyespace.normal,lighthalf),0,Material.org.Shininess)*attenuation
specular.mad_rgb(light.SpecularColor,
powf_limit(EyeSpace.normal.dot_xyz(lightHalf), Material.org.Shininess)*attenuation
);
break;
default:
break;
}
}
// sum up lights
sVec3Color dColor;
dColor.set(0.f);
dColor.mad_rgbv(diffuse, Material.DiffuseColor);
//diffuse * vertex color.
//has to move to shader (for vertex color only this will fit [except clamping])
sVec3Color c;
c.setA8R8G8B8(vertexargb);
dColor.r *= c.r;
dColor.g *= c.g;
dColor.b *= c.b;
//separate specular
#if defined(SOFTWARE_DRIVER_2_USE_SEPARATE_SPECULAR_COLOR)
if ((VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_COLOR_2_FOG))
{
specular.sat_xyz(dest->Color[1], Material.SpecularColor);
}
else
if ( !(EyeSpace.TL_Flag & TL_LIGHT0_IS_NORMAL_MAP) &&
(VertexCache.vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_MASK_LIGHT)
)
{
specular.sat_xyz(dest->LightTangent[0], Material.SpecularColor);
}
else
#endif
{
dColor.mad_rgbv(specular, Material.SpecularColor);
}
dColor.mad_rgbv(ambient, Material.AmbientColor);
dColor.add_rgb(Material.EmissiveColor);
dColor.sat(dest->Color[0], vertexargb);
}
#endif
CImage* getImage(const video::ITexture* texture)
{
if (!texture) return 0;
CImage* img = 0;
switch (texture->getDriverType())
{
case EDT_BURNINGSVIDEO:
img = ((CSoftwareTexture2*)texture)->getImage();
break;
case EDT_SOFTWARE:
img = ((CSoftwareTexture*)texture)->getImage();
break;
default:
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
break;
}
return img;
}
/*
draw2DImage with single color scales into destination quad & cliprect(more like viewport)
draw2DImage with 4 color scales on destination and cliprect is scissor
*/
static const u16 quad_triangle_indexList[6] = { 0,1,2,0,2,3 };
#if defined(SOFTWARE_DRIVER_2_2D_AS_2D)
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getOriginalSize() != texture->getSize())
{
core::rect<s32> destRect(destPos, sourceRect.getSize());
SColor c4[4] = { color,color,color,color };
draw2DImage(texture, destRect, sourceRect, clipRect, c4, useAlphaChannelOfTexture);
return;
}
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
if (useAlphaChannelOfTexture)
((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha(
RenderTargetSurface, destPos, sourceRect, color, clipRect);
else
((CSoftwareTexture2*)texture)->getImage()->copyTo(
RenderTargetSurface, destPos, sourceRect, clipRect);
}
}
//! Draws a part of the texture into the rectangle.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (texture)
{
if (texture->getDriverType() != EDT_BURNINGSVIDEO)
{
os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR);
return;
}
u32 argb = (colors ? colors[0].color : 0xFFFFFFFF);
eBlitter op = useAlphaChannelOfTexture ?
(argb == 0xFFFFFFFF ? BLITTER_TEXTURE_ALPHA_BLEND : BLITTER_TEXTURE_ALPHA_COLOR_BLEND) : BLITTER_TEXTURE;
StretchBlit(op, RenderTargetSurface, clipRect, &destRect,
((CSoftwareTexture2*)texture)->getImage(), &sourceRect, &texture->getOriginalSize(), argb);
}
}
//!Draws an 2d rectangle with a gradient.
void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> p(position);
if (clip) p.clipAgainst(*clip);
if (p.isValid()) drawRectangle(RenderTargetSurface, p, colorLeftUp);
}
#endif //defined(SOFTWARE_DRIVER_2_2D_AS_2D)
#if 0
void transform_for_BlitJob2D( SBlitJob& out,
const S3DVertex quad2DVertices[4], const core::dimension2d<u32>& renderTargetSize,
CBurningVideoDriver* driver
)
{
//assume. z = 0.f, w = 1.f
//MVP 2D
core::matrix4 m;
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f);
m.setTranslation(core::vector3df(-1.f, 1.f, 0));
//setTransform(ETS_WORLD, m);
//m.setTranslation(core::vector3df(0.375f, 0.375f, 0.0f));
//setTransform(ETS_VIEW, m);
s4DVertexPair v[4*sizeof_s4DVertexPairRel];
for (int i = 0; i < 4; ++i)
{
m.transformVect(&v[s4DVertex_ofs(i)].Pos.x, quad2DVertices[i].Pos);
v[s4DVertex_ofs(i)].Tex[0].x = quad2DVertices[i].TCoords.X;
v[s4DVertex_ofs(i)].Tex[0].y = quad2DVertices[i].TCoords.Y;
v[s4DVertex_ofs(i)].Color[0].setA8R8G8B8(quad2DVertices[i].Color.color);
v[s4DVertex_ofs(i)].flag = VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_1;
v[s4DVertex_ofs(i)].flag |= clipToFrustumTest(v + i);
}
size_t vOut = driver->clipToFrustum(4);
struct s2DVertex
{
union
{
struct {
f32 x, y;
f32 u, v;
f32 a, r, g, b;
};
f32 attr[8];
};
// f = a * t + b * ( 1 - t )
void interpolate(const s2DVertex& b, const s2DVertex& a, const f32 t)
{
for (int i = 0; i < 8; ++i)
{
attr[i] = b.attr[i] + ((a.attr[i] - b.attr[i]) * t);
}
}
};
// 0 5
f32 m2[2];
m2[0] = renderTargetSize.Width ? 2.f / renderTargetSize.Width : 0.f;
m2[1] = renderTargetSize.Height ? -2.f / renderTargetSize.Height : 0.f;
s2DVertex p[4];
for (int i = 0; i < 4; ++i)
{
p[i].x = quad2DVertices[i].Pos.X*m2[0] - 1.f;
p[i].y = quad2DVertices[i].Pos.Y*m2[1] + 1.f;
p[i].u = quad2DVertices[i].TCoords.X;
p[i].v = quad2DVertices[i].TCoords.Y;
p[i].a = quad2DVertices[i].Color.getAlpha() * (1.f / 255.f);
p[i].r = quad2DVertices[i].Color.getRed() * (1.f / 255.f);
p[i].g = quad2DVertices[i].Color.getBlue() * (1.f / 255.f);
p[i].b = quad2DVertices[i].Color.getGreen() * (1.f / 255.f);
}
}
#endif
//! Enable the 2d override material
void CBurningVideoDriver::enableMaterial2D(bool enable)
{
CNullDriver::enableMaterial2D(enable);
burning_setbit(TransformationFlag[1][ETS_PROJECTION], 0, ETF_VALID);
}
size_t compare_2d_material(const SMaterial& a, const SMaterial& b)
{
size_t flag = 0;
flag |= a.MaterialType == b.MaterialType ? 0 : 1;
flag |= a.ZBuffer == b.ZBuffer ? 0 : 2;
flag |= a.TextureLayer[0].Texture == b.TextureLayer[0].Texture ? 0 : 4;
flag |= a.TextureLayer[0].BilinearFilter == b.TextureLayer[0].BilinearFilter ? 0 : 8;
flag |= a.MaterialTypeParam == b.MaterialTypeParam ? 0 : 16;
if (flag) return flag;
flag |= a.TextureLayer[1].Texture == b.TextureLayer[1].Texture ? 0 : 32;
flag |= a.ZWriteEnable == b.ZWriteEnable ? 0 : 64;
return flag;
}
void CBurningVideoDriver::setRenderStates2DMode(const video::SColor& color, video::ITexture* texture, bool useAlphaChannelOfTexture)
{
//save current 3D Material
//Material.save3D = Material.org;
//build new 2D Material
bool vertexAlpha = color.getAlpha() < 255;
//2D uses textureAlpa*vertexAlpha 3D not..
if (useAlphaChannelOfTexture && texture && texture->hasAlpha())
{
Material.mat2D.MaterialType = EMT_TRANSPARENT_ALPHA_CHANNEL;
}
else if (vertexAlpha)
{
Material.mat2D.MaterialType = EMT_TRANSPARENT_VERTEX_ALPHA;
}
else
{
Material.mat2D.MaterialType = EMT_SOLID;
}
Material.mat2D.ZBuffer = ECFN_DISABLED;
Material.mat2D.ZWriteEnable = EZW_OFF;
Material.mat2D.Lighting = false;
Material.mat2D.setTexture(0, (video::ITexture*)texture);
//used for text. so stay as sharp as possible (like HW Driver)
bool mip = false;
const SMaterial& currentMaterial = (!OverrideMaterial2DEnabled) ? InitMaterial2D : OverrideMaterial2D;
mip = currentMaterial.TextureLayer[0].BilinearFilter;
Material.mat2D.setFlag(video::EMF_BILINEAR_FILTER, mip);
//switch to 2D Matrix Stack [ Material set Texture Matrix ]
TransformationStack = 1;
//2D GUI Matrix
if (!(TransformationFlag[TransformationStack][ETS_PROJECTION] & ETF_VALID))
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m(core::matrix4::EM4CONST_NOTHING);
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f);
m.setTranslation(core::vector3df(-1.f, 1.f, 0));
setTransform(ETS_PROJECTION, m);
m.makeIdentity();
setTransform(ETS_WORLD, m);
if ( mip ) m.setTranslation(core::vector3df(0.375f, 0.375f, 0.0f));
setTransform(ETS_VIEW, m);
buildNDCToDCMatrix(Transformation_ETS_CLIPSCALE[TransformationStack], ViewPort, mip ? -0.187f : 0.f);
}
//compare
if (compare_2d_material(Material.org,Material.mat2D))
{
setMaterial(Material.mat2D);
}
if (CurrentShader)
{
CurrentShader->setPrimitiveColor(color.color);
}
}
void CBurningVideoDriver::setRenderStates3DMode()
{
//restoreRenderStates3DMode
//setMaterial(Material.save3D);
//switch to 3D Matrix Stack
TransformationStack = 0;
}
//! draws a vertex primitive list in 2d
void CBurningVideoDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
bool useAlphaChannelOfTexture = false;
video::SColor color(0xFFFFFFFF);
switch (Material.org.MaterialType)
{
case EMT_TRANSPARENT_ALPHA_CHANNEL:
useAlphaChannelOfTexture = true;
break;
case EMT_TRANSPARENT_VERTEX_ALPHA:
color.setAlpha(127);
break;
default:
break;
}
setRenderStates2DMode(color, Material.org.getTexture(0), useAlphaChannelOfTexture);
drawVertexPrimitiveList(vertices, vertexCount,
indexList, primitiveCount,
vType, pType, iType);
setRenderStates3DMode();
}
//setup a quad
#if defined(SOFTWARE_DRIVER_2_2D_AS_3D)
//! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
// clip these coordinates
core::rect<s32> targetRect(destPos, sourceRect.getSize());
if (clipRect)
{
targetRect.clipAgainst(*clipRect);
if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0)
return;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
targetRect.clipAgainst(core::rect<s32>(0, 0, (s32)renderTargetSize.Width, (s32)renderTargetSize.Height));
if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0)
return;
// ok, we've clipped everything.
// now draw it.
const core::dimension2d<s32> sourceSize(targetRect.getSize());
const core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner + (targetRect.UpperLeftCorner - destPos));
const core::dimension2d<u32>& tex_orgsize = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(tex_orgsize.Width);
const f32 invH = 1.f / static_cast<f32>(tex_orgsize.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
sourcePos.Y * invH,
(sourcePos.X + sourceSize.Width) * invW,
(sourcePos.Y + sourceSize.Height) * invH);
Quad2DVertices[0].Color = color;
Quad2DVertices[1].Color = color;
Quad2DVertices[2].Color = color;
Quad2DVertices[3].Color = color;
Quad2DVertices[0].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
//SBlitJob job;
//transform_for_BlitJob2D(job, Quad2DVertices, renderTargetSize,this);
setRenderStates2DMode(color, (video::ITexture*) texture, useAlphaChannelOfTexture);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT);
setRenderStates3DMode();
}
//! Draws a part of the texture into the rectangle.
void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
const core::dimension2d<u32>& st = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(st.Width);
const f32 invH = 1.f / static_cast<f32>(st.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
sourceRect.UpperLeftCorner.Y * invH,
sourceRect.LowerRightCorner.X * invW,
sourceRect.LowerRightCorner.Y *invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
Quad2DVertices[0].Color = useColor[0];
Quad2DVertices[1].Color = useColor[3];
Quad2DVertices[2].Color = useColor[2];
Quad2DVertices[3].Color = useColor[1];
Quad2DVertices[0].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (clipRect)
{
if (!clipRect->isValid())
return;
//glEnable(GL_SCISSOR_TEST);
EyeSpace.TL_Flag |= TL_SCISSOR;
setScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
video::SColor alphaTest;
alphaTest.color = useColor[0].color & useColor[0].color & useColor[0].color & useColor[0].color;
//SBlitJob job;
//transform_for_BlitJob2D(job, Quad2DVertices, renderTargetSize, this);
setRenderStates2DMode(alphaTest, (video::ITexture*) texture, useAlphaChannelOfTexture);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT);
if (clipRect)
EyeSpace.TL_Flag &= ~TL_SCISSOR;
setRenderStates3DMode();
}
//!Draws an 2d rectangle with a gradient.
void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
Quad2DVertices[0].Color = colorLeftUp;
Quad2DVertices[1].Color = colorRightUp;
Quad2DVertices[2].Color = colorRightDown;
Quad2DVertices[3].Color = colorLeftDown;
Quad2DVertices[0].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[1].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f);
Quad2DVertices[2].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f);
Quad2DVertices[3].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f);
Quad2DVertices[0].TCoords.X = 0.f;
Quad2DVertices[0].TCoords.Y = 0.f;
Quad2DVertices[1].TCoords.X = 0.f;
Quad2DVertices[1].TCoords.Y = 0.f;
Quad2DVertices[2].TCoords.X = 0.f;
Quad2DVertices[3].TCoords.Y = 0.f;
Quad2DVertices[3].TCoords.X = 0.f;
Quad2DVertices[3].TCoords.Y = 0.f;
video::SColor alphaTest;
alphaTest.color = colorLeftUp.color & colorRightUp.color & colorRightDown.color & colorLeftDown.color;
setRenderStates2DMode(alphaTest, 0, 0);
drawVertexPrimitiveList(Quad2DVertices, 4,
quad_triangle_indexList, 2,
EVT_STANDARD, scene::EPT_TRIANGLES, EIT_16BIT);
setRenderStates3DMode();
}
#endif // SOFTWARE_DRIVER_2_2D_AS_3D
//! Draws a 2d line.
void CBurningVideoDriver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
drawLine(RenderTargetSurface, start, end, color );
}
//! Draws a pixel
void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor & color)
{
RenderTargetSurface->setPixel(x, y, color, true);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void CBurningVideoDriver::OnResize(const core::dimension2d<u32>& size)
{
// make sure width and height are multiples of 2
core::dimension2d<u32> realSize(size);
/*
if (realSize.Width % 2)
realSize.Width += 1;
if (realSize.Height % 2)
realSize.Height += 1;
*/
if (ScreenSize != realSize)
{
if (ViewPort.getWidth() == (s32)ScreenSize.Width &&
ViewPort.getHeight() == (s32)ScreenSize.Height)
{
ViewPort.UpperLeftCorner.X = 0;
ViewPort.UpperLeftCorner.Y = 0;
ViewPort.LowerRightCorner.X = realSize.Width;
ViewPort.LowerRightCorner.X = realSize.Height;
}
ScreenSize = realSize;
bool resetRT = (RenderTargetSurface == BackBuffer);
if (BackBuffer)
BackBuffer->drop();
BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, realSize);
if (resetRT)
setRenderTargetImage(BackBuffer);
}
}
//! returns the current render target size
const core::dimension2d<u32>& CBurningVideoDriver::getCurrentRenderTargetSize() const
{
return RenderTargetSize;
}
//! Draws a 3d line.
void CBurningVideoDriver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color_start)
{
SColor color_end = color_start;
VertexCache.primitiveHasVertex = 2;
VertexCache.vType = E4VT_LINE;
s4DVertex* v = Clipper.data;
transform_calc(ETS_PROJ_MODEL_VIEW);
const core::matrix4* matrix = Transformation[TransformationStack];
matrix[ETS_PROJ_MODEL_VIEW].transformVect ( &v[0].Pos.x, start );
matrix[ETS_PROJ_MODEL_VIEW].transformVect ( &v[2].Pos.x, end );
#if BURNING_MATERIAL_MAX_COLORS > 0
v[0].Color[0].setA8R8G8B8 ( color_start.color );
v[2].Color[0].setA8R8G8B8 ( color_end.color );
#endif
u32 i;
for (i = 0; i < 4; i += sizeof_s4DVertexPairRel)
{
v[i + 0].flag = (u32)(VertexCache.vSize[VertexCache.vType].Format);
v[i + 1].flag = v[i + 0].flag;
}
size_t g;
size_t vOut;
// vertices count per line
vOut = clipToFrustum (VertexCache.primitiveHasVertex);
if ( vOut < VertexCache.primitiveHasVertex)
return;
vOut *= sizeof_s4DVertexPairRel;
// to DC Space, project homogenous vertex
ndc_2_dc_and_project ( v + 1, v, vOut );
// unproject vertex color
#if 0
#if BURNING_MATERIAL_MAX_COLORS > 0
for ( g = 0; g != vOut; g+= 2 )
{
v[ g + 1].Color[0].setA8R8G8B8 ( color.color );
}
#endif
#endif
IBurningShader * shader = 0;
if ( CurrentShader && CurrentShader->canWireFrame() ) shader = CurrentShader;
else shader = BurningShader [ ETR_TEXTURE_GOURAUD_WIRE ];
shader = BurningShader [ ETR_TEXTURE_GOURAUD_WIRE ];
shader->pushEdgeTest(1,0,1);
shader->setRenderTarget(RenderTargetSurface, ViewPort);
for ( g = 0; g <= vOut - 4; g += sizeof_s4DVertexPairRel)
{
shader->drawLine ( v + 1 + g, v + 1 + g + sizeof_s4DVertexPairRel);
}
shader->popEdgeTest();
}
//! \return Returns the name of the video driver. Example: In case of the DirectX8
//! driver, it would return "Direct3D8.1".
const wchar_t* CBurningVideoDriver::getName() const
{
#ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL
return L"Burning's Video 0.51 beautiful";
#elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST )
return L"Burning's Video 0.51 ultra fast";
#elif defined ( BURNINGVIDEO_RENDERER_FAST )
return L"Burning's Video 0.51 fast";
#elif defined ( BURNINGVIDEO_RENDERER_CE )
return L"Burning's Video 0.51 CE";
#else
return L"Burning's Video 0.51";
#endif
}
//! Returns the graphics card vendor name.
core::stringc CBurningVideoDriver::getVendorInfo()
{
return "Burning's Video: Ing. Thomas Alten (c) 2006-2020";
}
//! Returns type of video driver
E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const
{
return EDT_BURNINGSVIDEO;
}
//! returns color format
ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const
{
return BURNINGSHADER_COLOR_FORMAT;
}
//! Creates a render target texture.
ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name, const ECOLOR_FORMAT format)
{
IImage* img = createImage(BURNINGSHADER_COLOR_FORMAT, size);
ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET,this);
img->drop();
addTexture(tex);
tex->drop();
return tex;
}
void CBurningVideoDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
if ((flag & ECBF_COLOR) && RenderTargetSurface)
RenderTargetSurface->fill(color);
if ((flag & ECBF_DEPTH) && DepthBuffer)
DepthBuffer->clear(depth);
if ((flag & ECBF_STENCIL) && StencilBuffer)
StencilBuffer->clear(stencil);
}
#if 0
void CBurningVideoDriver::saveBuffer()
{
static int shotCount = 0;
char buf[256];
if (BackBuffer)
{
sprintf(buf, "shot/%04d_b.png", shotCount);
writeImageToFile(BackBuffer, buf);
}
if (StencilBuffer)
{
CImage stencil(ECF_A8R8G8B8, StencilBuffer->getSize(), StencilBuffer->lock(), true, false);
sprintf(buf, "shot/%04d_s.ppm", shotCount);
writeImageToFile(&stencil, buf);
}
shotCount += 1;
}
#endif
//! Returns an image created from the last rendered frame.
IImage* CBurningVideoDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target != video::ERT_FRAME_BUFFER)
return 0;
if (BackBuffer)
{
IImage* tmp = createImage(BackBuffer->getColorFormat(), BackBuffer->getDimension());
BackBuffer->copyTo(tmp);
return tmp;
}
else
return 0;
}
ITexture* CBurningVideoDriver::createDeviceDependentTexture(const io::path& name, IImage* image)
{
u32 flags =
((TextureCreationFlags & ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0)
| ((TextureCreationFlags & ETCF_AUTO_GENERATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP_AUTO : 0)
| ((TextureCreationFlags & ETCF_ALLOW_NON_POWER_2) ? CSoftwareTexture2::ALLOW_NPOT : 0)
#if defined(IRRLICHT_sRGB)
| ((TextureCreationFlags & ETCF_IMAGE_IS_LINEAR) ? CSoftwareTexture2::IMAGE_IS_LINEAR : 0)
| ((TextureCreationFlags & ETCF_TEXTURE_IS_LINEAR) ? CSoftwareTexture2::TEXTURE_IS_LINEAR : 0)
#endif
;
CSoftwareTexture2* texture = new CSoftwareTexture2(image, name, flags, this);
return texture;
}
ITexture* CBurningVideoDriver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image)
{
return 0;
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 CBurningVideoDriver::getMaximalPrimitiveCount() const
{
return 0x7FFFFFFF;
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow.
void CBurningVideoDriver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible)
{
const u32 count = triangles.size();
if (!StencilBuffer || !count)
return;
Material.org.MaterialType = video::EMT_SOLID;
Material.org.Lighting = false;
Material.org.ZWriteEnable = video::EZW_OFF;
Material.org.ZBuffer = ECFN_LESS;
CurrentShader = BurningShader[ETR_STENCIL_SHADOW];
CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort);
CurrentShader->pushEdgeTest(Material.org.Wireframe, 0,0);
//setMaterial
EyeSpace.TL_Flag &= ~(TL_TEXTURE_TRANSFORM | TL_LIGHT0_IS_NORMAL_MAP);
CurrentShader->setTLFlag(EyeSpace.TL_Flag);
//glStencilMask(~0);
//glStencilFunc(GL_ALWAYS, 0, ~0);
//glEnable(GL_DEPTH_CLAMP);
if (zfail)
{
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
Material.CullFlag = CULL_FRONT | CULL_INVISIBLE;
CurrentShader->setStencilOp( StencilOp_KEEP, StencilOp_INCR, StencilOp_KEEP);
drawVertexPrimitiveList (triangles.const_pointer(), count, 0, count/3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE);
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
Material.CullFlag = CULL_BACK | CULL_INVISIBLE;
CurrentShader->setStencilOp( StencilOp_KEEP, StencilOp_DECR, StencilOp_KEEP);
drawVertexPrimitiveList (triangles.const_pointer(), count, 0, count/3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE);
}
else // zpass
{
Material.org.BackfaceCulling = true;
Material.org.FrontfaceCulling = false;
Material.CullFlag = CULL_BACK | CULL_INVISIBLE;
CurrentShader->setStencilOp( StencilOp_KEEP, StencilOp_KEEP, StencilOp_INCR);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE);
Material.org.BackfaceCulling = false;
Material.org.FrontfaceCulling = true;
Material.CullFlag = CULL_FRONT | CULL_INVISIBLE;
CurrentShader->setStencilOp(StencilOp_KEEP, StencilOp_KEEP, StencilOp_DECR);
drawVertexPrimitiveList(triangles.const_pointer(), count, 0, count / 3, (video::E_VERTEX_TYPE) E4VT_SHADOW, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) E4IT_NONE);
}
//glDisable(GL_DEPTH_CLAMP);
}
//! Fills the stencil shadow with color. After the shadow volume has been drawn
//! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this
//! to draw the color of the shadow.
void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
// draw a shadow rectangle covering the entire screen using stencil buffer
const u32 h = RenderTargetSurface->getDimension().Height;
const u32 w = RenderTargetSurface->getDimension().Width;
tVideoSample *dst;
const tStencilSample* stencil;
#if defined(SOFTWARE_DRIVER_2_32BIT)
const u32 alpha = extractAlpha(leftUpEdge.color);
const u32 src = leftUpEdge.color;
#else
const u16 alpha = extractAlpha( leftUpEdge.color ) >> 3;
const u32 src = video::A8R8G8B8toA1R5G5B5( leftUpEdge.color );
#endif
for ( u32 y = 0; y < h; ++y )
{
dst = (tVideoSample*)RenderTargetSurface->getData() + ( y * w );
stencil = (tStencilSample*)StencilBuffer->lock() + (y * w);
for ( u32 x = 0; x < w; ++x )
{
if ( stencil[x] )
{
#if defined(SOFTWARE_DRIVER_2_32BIT)
dst[x] = PixelBlend32 ( dst[x], src,alpha );
#else
dst[x] = PixelBlend16( dst[x], src, alpha );
#endif
}
}
}
if ( clearStencilBuffer )
StencilBuffer->clear(0);
}
core::dimension2du CBurningVideoDriver::getMaxTextureSize() const
{
return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE ? SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE : 1 << 20,
SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE ? SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE : 1 << 20);
}
bool CBurningVideoDriver::queryTextureFormat(ECOLOR_FORMAT format) const
{
return format == BURNINGSHADER_COLOR_FORMAT;
}
bool CBurningVideoDriver::needsTransparentRenderPass(const irr::video::SMaterial& material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); // || material.isTransparent();
}
s32 CBurningVideoDriver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 materialID = -1;
IBurningShader* shader = new IBurningShader(
this, materialID,
vertexShaderProgram, 0, video::EVST_VS_1_1,
pixelShaderProgram, 0, video::EPST_PS_1_1,
0, 0, EGST_GS_4_0,
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0,
callback, baseMaterial, userData);
shader->drop();
return materialID;
}
//! Adds a new material renderer to the VideoDriver, based on a high level shading language.
s32 CBurningVideoDriver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData
)
{
s32 materialID = -1;
IBurningShader* shader = new IBurningShader(
this, materialID,
vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget,
pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget,
geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget,
inType, outType, verticesOut,
callback, baseMaterial, userData);
shader->drop();
return materialID;
}
void CBurningVideoDriver::setFallback_Material(E_MATERIAL_TYPE fallback_MaterialType)
{
//this should be in material....
Material.Fallback_MaterialType = fallback_MaterialType;
}
void CBurningVideoDriver::setBasicRenderStates(const SMaterial& material,
const SMaterial& lastMaterial,
bool resetAllRenderstates)
{
}
//! Return an index constant for the vertex shader based on a name.
s32 CBurningVideoDriver::getVertexShaderConstantID(const c8* name)
{
return -1;
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const f32* floats, int count)
{
return true;
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const s32* ints, int count)
{
return true;
}
bool CBurningVideoDriver::setVertexShaderConstant(s32 index, const u32* ints, int count)
{
return true;
}
void CBurningVideoDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
}
//! Return an index constant for the pixel shader based on a name.
s32 CBurningVideoDriver::getPixelShaderConstantID(const c8* name)
{
return -1;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const f32* floats, int count)
{
return false;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const s32* ints, int count)
{
return false;
}
bool CBurningVideoDriver::setPixelShaderConstant(s32 index, const u32* ints, int count)
{
return false;
}
void CBurningVideoDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount = 1)
{
}
//! Get pointer to the IVideoDriver interface
/** \return Pointer to the IVideoDriver interface */
IVideoDriver* CBurningVideoDriver::getVideoDriver()
{
return this;
}
} // end namespace video
} // end namespace irr
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
namespace irr
{
namespace video
{
//! creates a video driver
IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter)
{
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
return new CBurningVideoDriver(params, io, presenter);
#else
return 0;
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
}
} // end namespace video
} // end namespace irr