/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "clientmap.h"
#include "client.h"
#include "mapblock_mesh.h"
#include <IMaterialRenderer.h>
#include <matrix4.h>
#include "mapsector.h"
#include "mapblock.h"
#include "profiler.h"
#include "settings.h"
#include "camera.h"               // CameraModes
#include "util/basic_macros.h"
#include "client/renderingengine.h"

#include <queue>

// struct MeshBufListList
void MeshBufListList::clear()
{
	for (auto &list : lists)
		list.clear();
}

void MeshBufListList::add(scene::IMeshBuffer *buf, v3s16 position, u8 layer)
{
	// Append to the correct layer
	std::vector<MeshBufList> &list = lists[layer];
	const video::SMaterial &m = buf->getMaterial();
	for (MeshBufList &l : list) {
		// comparing a full material is quite expensive so we don't do it if
		// not even first texture is equal
		if (l.m.TextureLayer[0].Texture != m.TextureLayer[0].Texture)
			continue;

		if (l.m == m) {
			l.bufs.emplace_back(position, buf);
			return;
		}
	}
	MeshBufList l;
	l.m = m;
	l.bufs.emplace_back(position, buf);
	list.emplace_back(l);
}

static void on_settings_changed(const std::string &name, void *data)
{
	static_cast<ClientMap*>(data)->onSettingChanged(name);
}
// ClientMap

ClientMap::ClientMap(
		Client *client,
		RenderingEngine *rendering_engine,
		MapDrawControl &control,
		s32 id
):
	Map(client),
	scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(),
		rendering_engine->get_scene_manager(), id),
	m_client(client),
	m_rendering_engine(rendering_engine),
	m_control(control),
	m_drawlist(MapBlockComparer(v3s16(0,0,0)))
{

	/*
	 * @Liso: Sadly C++ doesn't have introspection, so the only way we have to know
	 * the class is whith a name ;) Name property cames from ISceneNode base class.
	 */
	Name = "ClientMap";
	m_box = aabb3f(-BS*1000000,-BS*1000000,-BS*1000000,
			BS*1000000,BS*1000000,BS*1000000);

	/* TODO: Add a callback function so these can be updated when a setting
	 *       changes.  At this point in time it doesn't matter (e.g. /set
	 *       is documented to change server settings only)
	 *
	 * TODO: Local caching of settings is not optimal and should at some stage
	 *       be updated to use a global settings object for getting thse values
	 *       (as opposed to the this local caching). This can be addressed in
	 *       a later release.
	 */
	m_cache_trilinear_filter  = g_settings->getBool("trilinear_filter");
	m_cache_bilinear_filter   = g_settings->getBool("bilinear_filter");
	m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
	m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
	m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
	g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this);
}

void ClientMap::onSettingChanged(const std::string &name)
{
	if (name == "enable_raytraced_culling")
		m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
}

ClientMap::~ClientMap()
{
	g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this);
}

void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset)
{
	v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset;
	v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE);

	m_camera_position = pos;
	m_camera_direction = dir;
	m_camera_fov = fov;
	m_camera_offset = offset;

	v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset;
	v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE);

	// reorder the blocks when camera crosses block boundary
	if (previous_block != current_block)
		m_needs_update_drawlist = true;

	// reorder transparent meshes when camera crosses node boundary
	if (previous_node != current_node)
		m_needs_update_transparent_meshes = true;
}

MapSector * ClientMap::emergeSector(v2s16 p2d)
{
	// Check that it doesn't exist already
	MapSector *sector = getSectorNoGenerate(p2d);

	// Create it if it does not exist yet
	if (!sector) {
		sector = new MapSector(this, p2d, m_gamedef);
		m_sectors[p2d] = sector;
	}

	return sector;
}

void ClientMap::OnRegisterSceneNode()
{
	if(IsVisible)
	{
		SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
		SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
	}

	ISceneNode::OnRegisterSceneNode();
	// It's not needed to register this node to the shadow renderer
	// we have other way to find it
}

void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes,
		v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range)
{
	if (range <= 0.0f)
		range = m_control.wanted_range;

	v3s16 box_nodes_d = range * v3s16(1, 1, 1);
	// Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d'
	// can exceed the range of v3s16 when a large view range is used near the
	// world edges.
	v3s32 p_nodes_min(
		cam_pos_nodes.X - box_nodes_d.X,
		cam_pos_nodes.Y - box_nodes_d.Y,
		cam_pos_nodes.Z - box_nodes_d.Z);
	v3s32 p_nodes_max(
		cam_pos_nodes.X + box_nodes_d.X,
		cam_pos_nodes.Y + box_nodes_d.Y,
		cam_pos_nodes.Z + box_nodes_d.Z);
	// Take a fair amount as we will be dropping more out later
	// Umm... these additions are a bit strange but they are needed.
	*p_blocks_min = v3s16(
			p_nodes_min.X / MAP_BLOCKSIZE - 3,
			p_nodes_min.Y / MAP_BLOCKSIZE - 3,
			p_nodes_min.Z / MAP_BLOCKSIZE - 3);
	*p_blocks_max = v3s16(
			p_nodes_max.X / MAP_BLOCKSIZE + 1,
			p_nodes_max.Y / MAP_BLOCKSIZE + 1,
			p_nodes_max.Z / MAP_BLOCKSIZE + 1);
}

class MapBlockFlags
{
public:
	static constexpr u16 CHUNK_EDGE = 8;
	static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1;
	static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk

	MapBlockFlags(v3s16 min_pos, v3s16 max_pos)
			: min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1)
	{
		chunks.resize(volume.X * volume.Y * volume.Z);
	}

	class Chunk
	{
	public:
		inline u8 &getBits(v3s16 pos)
		{
			std::size_t address = getAddress(pos);
			return bits[address];
		}

	private:
		inline std::size_t getAddress(v3s16 pos) {
			std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE);
			return address;
		}

		std::array<u8, CHUNK_VOLUME> bits;
	};

	Chunk &getChunk(v3s16 pos)
	{
		v3s16 delta = (pos - min_pos) / CHUNK_EDGE;
		std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y;
		Chunk *chunk = chunks[address].get();
		if (!chunk) {
			chunk = new Chunk();
			chunks[address].reset(chunk);
		}
		return *chunk;
	}
private:
	std::vector<std::unique_ptr<Chunk>> chunks;
	v3s16 min_pos;
	v3s16 volume;
};

void ClientMap::updateDrawList()
{
	ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);

	m_needs_update_drawlist = false;

	for (auto &i : m_drawlist) {
		MapBlock *block = i.second;
		block->refDrop();
	}
	m_drawlist.clear();

	for (auto &block : m_keeplist) {
		block->refDrop();
	}
	m_keeplist.clear();

	v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);

	v3s16 p_blocks_min;
	v3s16 p_blocks_max;
	getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);

	// Number of blocks occlusion culled
	u32 blocks_occlusion_culled = 0;
	// Blocks visited by the algorithm
	u32 blocks_visited = 0;
	// Block sides that were not traversed
	u32 sides_skipped = 0;

	// No occlusion culling when free_move is on and camera is inside ground
	bool occlusion_culling_enabled = true;
	if (m_control.allow_noclip) {
		MapNode n = getNode(cam_pos_nodes);
		if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
			occlusion_culling_enabled = false;
	}

	v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
	m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));

	auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();

	// Uncomment to debug occluded blocks in the wireframe mode
	// TODO: Include this as a flag for an extended debugging setting
	// if (occlusion_culling_enabled && m_control.show_wireframe)
	// 	occlusion_culling_enabled = porting::getTimeS() & 1;

	std::queue<v3s16> blocks_to_consider;

	// Bits per block:
	// [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
	MapBlockFlags blocks_seen(p_blocks_min, p_blocks_max);

	// Start breadth-first search with the block the camera is in
	blocks_to_consider.push(camera_block);
	blocks_seen.getChunk(camera_block).getBits(camera_block) = 0x07; // mark all sides as visible

	std::set<v3s16> shortlist;
	MeshGrid mesh_grid = m_client->getMeshGrid();

	// Recursively walk the space and pick mapblocks for drawing
	while (blocks_to_consider.size() > 0) {

		v3s16 block_coord = blocks_to_consider.front();
		blocks_to_consider.pop();

		auto &flags = blocks_seen.getChunk(block_coord).getBits(block_coord);

		// Only visit each block once (it may have been queued up to three times)
		if ((flags & 0x80) == 0x80)
			continue;
		flags |= 0x80;

		blocks_visited++;

		// Get the sector, block and mesh
		MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));

		if (!sector)
			continue;

		MapBlock *block = sector->getBlockNoCreateNoEx(block_coord.Y);

		MapBlockMesh *mesh = block ? block->mesh : nullptr;

		// Calculate the coordinates for range and frutum culling
		v3f mesh_sphere_center;
		f32 mesh_sphere_radius;

		v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;

		if (mesh) {
			mesh_sphere_center = intToFloat(block_pos_nodes, BS)
					+ mesh->getBoundingSphereCenter();
			mesh_sphere_radius = mesh->getBoundingRadius();
		}
		else {
			mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
			mesh_sphere_radius = 0.0f;
		}

		// First, perform a simple distance check.
		if (!m_control.range_all &&
			mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
				m_control.wanted_range * BS + mesh_sphere_radius)
			continue; // Out of range, skip.

		// Frustum culling
		// Only do coarse culling here, to account for fast camera movement.
		// This is needed because this function is not called every frame.
		float frustum_cull_extra_radius = 300.0f;
		if (is_frustum_culled(mesh_sphere_center,
				mesh_sphere_radius + frustum_cull_extra_radius))
			continue;

		// Calculate the vector from the camera block to the current block
		// We use it to determine through which sides of the current block we can continue the search
		v3s16 look = block_coord - camera_block;

		// Occluded near sides will further occlude the far sides
		u8 visible_outer_sides = flags & 0x07;

		// Raytraced occlusion culling - send rays from the camera to the block's corners
		if (occlusion_culling_enabled && m_enable_raytraced_culling &&
				block && mesh &&
				visible_outer_sides != 0x07 && isBlockOccluded(block, cam_pos_nodes)) {
			blocks_occlusion_culled++;
			continue;
		}

		if (mesh_grid.cell_size > 1) {
			// Block meshes are stored in the corner block of a chunk
			// (where all coordinate are divisible by the chunk size)
			// Add them to the de-dup set.
			shortlist.emplace(mesh_grid.getMeshPos(block_coord.X), mesh_grid.getMeshPos(block_coord.Y), mesh_grid.getMeshPos(block_coord.Z));
			// All other blocks we can grab and add to the keeplist right away.
			if (block) {
				m_keeplist.push_back(block);
				block->refGrab();
			}
		}
		else if (mesh) {
			// without mesh chunking we can add the block to the drawlist
			block->refGrab();
			m_drawlist.emplace(block_coord, block);
		}

		// Decide which sides to traverse next or to block away

		// First, find the near sides that would occlude the far sides
		// * A near side can itself be occluded by a nearby block (the test above ^^)
		// * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)

		// mesh solid sides are +Z-Z+Y-Y+X-X
		// if we are inside the block's coordinates on an axis, 
		// treat these sides as opaque, as they should not allow to reach the far sides
		u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
			(look.Y == 0 ? 12 : 0) |
			(look.Z == 0 ? 48 : 0);

		// get the mask for the sides that are relevant based on the direction
		u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
				(look.Y > 0 ? 4 : 8) |
				(look.Z > 0 ? 16 : 32);
		
		// This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
		// Get he block's transparent sides
		u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;

		// compress block transparent sides to ZYX mask of see-through axes
		u8 near_transparency =  (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);

		// when we are inside the camera block, do not block any sides
		if (block_inner_sides == 0x3F)
			block_inner_sides = 0;

		near_transparency &= ~block_inner_sides & 0x3F;

		near_transparency |= (near_transparency >> 1);
		near_transparency = (near_transparency & 1) |
				((near_transparency >> 1) & 2) |
				((near_transparency >> 2) & 4);

		// combine with known visible sides that matter
		near_transparency &= visible_outer_sides;

		// The rule for any far side to be visible:
		// * Any of the adjacent near sides is transparent (different axes)
		// * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector

		// Calculate vector from camera to mapblock center. Because we only need relation between
		// coordinates we scale by 2 to avoid precision loss.
		v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + MAP_BLOCKSIZE - 1;

		// dominant axis flag
		u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
					((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
					((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);

		// Queue next blocks for processing:
		// - Examine "far" sides of the current blocks, i.e. never move towards the camera
		// - Only traverse the sides that are not occluded
		// - Only traverse the sides that are not opaque
		// When queueing, mark the relevant side on the next block as 'visible'
		for (s16 axis = 0; axis < 3; axis++) {

			// Select a bit from transparent_sides for the side
			u8 far_side_mask = 1 << (2 * axis);

			// axis flag
			u8 my_side = 1 << axis;
			u8 adjacent_sides = my_side ^ 0x07;

			auto traverse_far_side = [&](s8 next_pos_offset) {
				// far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
				bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
				side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);

				v3s16 next_pos = block_coord;
				next_pos[axis] += next_pos_offset;

				// If a side is a see-through, mark the next block's side as visible, and queue
				if (side_visible) {
					auto &next_flags = blocks_seen.getChunk(next_pos).getBits(next_pos);
					next_flags |= my_side;
					blocks_to_consider.push(next_pos);
				}
				else {
					sides_skipped++;
				}
			};


			// Test the '-' direction of the axis
			if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
				traverse_far_side(-1);

			// Test the '+' direction of the axis
			far_side_mask <<= 1;

			if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
				traverse_far_side(+1);
		}
	}

	g_profiler->avg("MapBlocks shortlist [#]", shortlist.size());

	assert(m_drawlist.empty() || shortlist.empty());
	for (auto pos : shortlist) {
		MapBlock * block = getBlockNoCreateNoEx(pos);
		if (block) {
			block->refGrab();
			m_drawlist.emplace(pos, block);
		}
	}

	g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
	g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
	g_profiler->avg("MapBlocks examined [#]", blocks_visited);
	g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
}

void ClientMap::touchMapBlocks()
{
	v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);

	v3s16 p_blocks_min;
	v3s16 p_blocks_max;
	getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);

	// Number of blocks currently loaded by the client
	u32 blocks_loaded = 0;
	// Number of blocks with mesh in rendering range
	u32 blocks_in_range_with_mesh = 0;

	for (const auto &sector_it : m_sectors) {
		MapSector *sector = sector_it.second;
		v2s16 sp = sector->getPos();

		blocks_loaded += sector->size();
		if (!m_control.range_all) {
			if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
					sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
				continue;
		}

		MapBlockVect sectorblocks;
		sector->getBlocks(sectorblocks);

		/*
			Loop through blocks in sector
		*/

		for (MapBlock *block : sectorblocks) {
			/*
				Compare block position to camera position, skip
				if not seen on display
			*/

			if (!block->mesh) {
				// Ignore if mesh doesn't exist
				continue;
			}

			v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
					+ block->mesh->getBoundingSphereCenter();
			f32 mesh_sphere_radius = block->mesh->getBoundingRadius();
			// First, perform a simple distance check.
			if (!m_control.range_all &&
				mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
					m_control.wanted_range * BS + mesh_sphere_radius)
				continue; // Out of range, skip.

			// Keep the block alive as long as it is in range.
			block->resetUsageTimer();
			blocks_in_range_with_mesh++;
		}
	}
	g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
	g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
}

void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass)
{
	bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT;

	std::string prefix;
	if (pass == scene::ESNRP_SOLID)
		prefix = "renderMap(SOLID): ";
	else
		prefix = "renderMap(TRANSPARENT): ";

	/*
		This is called two times per frame, reset on the non-transparent one
	*/
	if (pass == scene::ESNRP_SOLID)
		m_last_drawn_sectors.clear();

	/*
		Get animation parameters
	*/
	const float animation_time = m_client->getAnimationTime();
	const int crack = m_client->getCrackLevel();
	const u32 daynight_ratio = m_client->getEnv().getDayNightRatio();

	const v3f camera_position = m_camera_position;

	/*
		Get all blocks and draw all visible ones
	*/

	u32 vertex_count = 0;
	u32 drawcall_count = 0;

	// For limiting number of mesh animations per frame
	u32 mesh_animate_count = 0;
	//u32 mesh_animate_count_far = 0;

	/*
		Update transparent meshes
	*/
	if (is_transparent_pass)
		updateTransparentMeshBuffers();

	/*
		Draw the selected MapBlocks
	*/

	MeshBufListList grouped_buffers;
	std::vector<DrawDescriptor> draw_order;
	video::SMaterial previous_material;

	auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();

	const MeshGrid mesh_grid = m_client->getMeshGrid();
	for (auto &i : m_drawlist) {
		v3s16 block_pos = i.first;
		MapBlock *block = i.second;
		MapBlockMesh *block_mesh = block->mesh;

		// If the mesh of the block happened to get deleted, ignore it
		if (!block_mesh)
			continue;

		// Do exact frustum culling
		// (The one in updateDrawList is only coarse.)
		v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
				+ block_mesh->getBoundingSphereCenter();
		f32 mesh_sphere_radius = block_mesh->getBoundingRadius();
		if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius))
			continue;

		v3f block_pos_r = intToFloat(block->getPosRelative() + MAP_BLOCKSIZE / 2, BS);

		float d = camera_position.getDistanceFrom(block_pos_r);
		d = MYMAX(0,d - BLOCK_MAX_RADIUS);

		// Mesh animation
		if (pass == scene::ESNRP_SOLID) {
			// Pretty random but this should work somewhat nicely
			bool faraway = d >= BS * 50;
			if (block_mesh->isAnimationForced() || !faraway ||
					mesh_animate_count < (m_control.range_all ? 200 : 50)) {

				bool animated = block_mesh->animate(faraway, animation_time,
					crack, daynight_ratio);
				if (animated)
					mesh_animate_count++;
			} else {
				block_mesh->decreaseAnimationForceTimer();
			}
		}

		/*
			Get the meshbuffers of the block
		*/
		if (is_transparent_pass) {
			// In transparent pass, the mesh will give us
			// the partial buffers in the correct order
			for (auto &buffer : block_mesh->getTransparentBuffers())
				draw_order.emplace_back(block_pos, &buffer);
		}
		else {
			// otherwise, group buffers across meshes
			// using MeshBufListList
			for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
				scene::IMesh *mesh = block_mesh->getMesh(layer);
				assert(mesh);

				u32 c = mesh->getMeshBufferCount();
				for (u32 i = 0; i < c; i++) {
					scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);

					video::SMaterial& material = buf->getMaterial();
					video::IMaterialRenderer* rnd =
							driver->getMaterialRenderer(material.MaterialType);
					bool transparent = (rnd && rnd->isTransparent());
					if (!transparent) {
						if (buf->getVertexCount() == 0)
							errorstream << "Block [" << analyze_block(block)
									<< "] contains an empty meshbuf" << std::endl;

						grouped_buffers.add(buf, block_pos, layer);
					}
				}
			}
		}
	}

	// Capture draw order for all solid meshes
	for (auto &lists : grouped_buffers.lists) {
		for (MeshBufList &list : lists) {
			// iterate in reverse to draw closest blocks first
			for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) {
				draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
			}
		}
	}

	TimeTaker draw("Drawing mesh buffers");

	core::matrix4 m; // Model matrix
	v3f offset = intToFloat(m_camera_offset, BS);
	u32 material_swaps = 0;

	// Render all mesh buffers in order
	drawcall_count += draw_order.size();

	for (auto &descriptor : draw_order) {
		scene::IMeshBuffer *buf = descriptor.getBuffer();

		if (!descriptor.m_reuse_material) {
			auto &material = buf->getMaterial();

			// Apply filter settings
			material.setFlag(video::EMF_TRILINEAR_FILTER,
				m_cache_trilinear_filter);
			material.setFlag(video::EMF_BILINEAR_FILTER,
				m_cache_bilinear_filter);
			material.setFlag(video::EMF_ANISOTROPIC_FILTER,
				m_cache_anistropic_filter);
			material.setFlag(video::EMF_WIREFRAME,
				m_control.show_wireframe);

			// pass the shadow map texture to the buffer texture
			ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer();
			if (shadow && shadow->is_active()) {
				auto &layer = material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW];
				layer.Texture = shadow->get_texture();
				layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
				layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
				// Do not enable filter on shadow texture to avoid visual artifacts
				// with colored shadows.
				// Filtering is done in shader code anyway
				layer.BilinearFilter = false;
				layer.AnisotropicFilter = false;
				layer.TrilinearFilter = false;
			}
			driver->setMaterial(material);
			++material_swaps;
			material.TextureLayer[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr;
		}

		v3f block_wpos = intToFloat(mesh_grid.getMeshPos(descriptor.m_pos) * MAP_BLOCKSIZE, BS);
		m.setTranslation(block_wpos - offset);

		driver->setTransform(video::ETS_WORLD, m);
		descriptor.draw(driver);
		vertex_count += buf->getIndexCount();
	}

	g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));

	// Log only on solid pass because values are the same
	if (pass == scene::ESNRP_SOLID) {
		g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count);
	}

	if (pass == scene::ESNRP_TRANSPARENT) {
		g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size());
	}

	g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
	g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
	g_profiler->avg(prefix + "material swaps [#]", material_swaps);
}

static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step,
	float step_multiplier, float start_distance, float end_distance,
	const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d,
	int *result, bool *sunlight_seen)
{
	int brightness_sum = 0;
	int brightness_count = 0;
	float distance = start_distance;
	dir.normalize();
	v3f pf = p0;
	pf += dir * distance;
	int noncount = 0;
	bool nonlight_seen = false;
	bool allow_allowing_non_sunlight_propagates = false;
	bool allow_non_sunlight_propagates = false;
	// Check content nearly at camera position
	{
		v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS);
		MapNode n = map->getNode(p);
		if(ndef->getLightingFlags(n).has_light &&
				!ndef->getLightingFlags(n).sunlight_propagates)
			allow_allowing_non_sunlight_propagates = true;
	}
	// If would start at CONTENT_IGNORE, start closer
	{
		v3s16 p = floatToInt(pf, BS);
		MapNode n = map->getNode(p);
		if(n.getContent() == CONTENT_IGNORE){
			float newd = 2*BS;
			pf = p0 + dir * 2*newd;
			distance = newd;
			sunlight_min_d = 0;
		}
	}
	for (int i=0; distance < end_distance; i++) {
		pf += dir * step;
		distance += step;
		step *= step_multiplier;

		v3s16 p = floatToInt(pf, BS);
		MapNode n = map->getNode(p);
		ContentLightingFlags f = ndef->getLightingFlags(n);
		if (allow_allowing_non_sunlight_propagates && i == 0 &&
				f.has_light && !f.sunlight_propagates) {
			allow_non_sunlight_propagates = true;
		}

		if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){
			nonlight_seen = true;
			noncount++;
			if(noncount >= 4)
				break;
			continue;
		}

		if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen)
			if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN)
				*sunlight_seen = true;
		noncount = 0;
		brightness_sum += decode_light(n.getLightBlend(daylight_factor, f));
		brightness_count++;
	}
	*result = 0;
	if(brightness_count == 0)
		return false;
	*result = brightness_sum / brightness_count;
	/*std::cerr<<"Sampled "<<brightness_count<<" points; result="
			<<(*result)<<std::endl;*/
	return true;
}

int ClientMap::getBackgroundBrightness(float max_d, u32 daylight_factor,
		int oldvalue, bool *sunlight_seen_result)
{
	ScopeProfiler sp(g_profiler, "CM::getBackgroundBrightness", SPT_AVG);
	static v3f z_directions[50] = {
		v3f(-100, 0, 0)
	};
	static f32 z_offsets[50] = {
		-1000,
	};

	if (z_directions[0].X < -99) {
		for (u32 i = 0; i < ARRLEN(z_directions); i++) {
			// Assumes FOV of 72 and 16/9 aspect ratio
			z_directions[i] = v3f(
				0.02 * myrand_range(-100, 100),
				1.0,
				0.01 * myrand_range(-100, 100)
			).normalize();
			z_offsets[i] = 0.01 * myrand_range(0,100);
		}
	}

	int sunlight_seen_count = 0;
	float sunlight_min_d = max_d*0.8;
	if(sunlight_min_d > 35*BS)
		sunlight_min_d = 35*BS;
	std::vector<int> values;
	values.reserve(ARRLEN(z_directions));
	for (u32 i = 0; i < ARRLEN(z_directions); i++) {
		v3f z_dir = z_directions[i];
		core::CMatrix4<f32> a;
		a.buildRotateFromTo(v3f(0,1,0), z_dir);
		v3f dir = m_camera_direction;
		a.rotateVect(dir);
		int br = 0;
		float step = BS*1.5;
		if(max_d > 35*BS)
			step = max_d / 35 * 1.5;
		float off = step * z_offsets[i];
		bool sunlight_seen_now = false;
		bool ok = getVisibleBrightness(this, m_camera_position, dir,
				step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor,
				sunlight_min_d,
				&br, &sunlight_seen_now);
		if(sunlight_seen_now)
			sunlight_seen_count++;
		if(!ok)
			continue;
		values.push_back(br);
		// Don't try too much if being in the sun is clear
		if(sunlight_seen_count >= 20)
			break;
	}
	int brightness_sum = 0;
	int brightness_count = 0;
	std::sort(values.begin(), values.end());
	u32 num_values_to_use = values.size();
	if(num_values_to_use >= 10)
		num_values_to_use -= num_values_to_use/2;
	else if(num_values_to_use >= 7)
		num_values_to_use -= num_values_to_use/3;
	u32 first_value_i = (values.size() - num_values_to_use) / 2;

	for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) {
		brightness_sum += values[i];
		brightness_count++;
	}

	int ret = 0;
	if(brightness_count == 0){
		MapNode n = getNode(floatToInt(m_camera_position, BS));
		ContentLightingFlags f = m_nodedef->getLightingFlags(n);
		if(f.has_light){
			ret = decode_light(n.getLightBlend(daylight_factor, f));
		} else {
			ret = oldvalue;
		}
	} else {
		ret = brightness_sum / brightness_count;
	}

	*sunlight_seen_result = (sunlight_seen_count > 0);
	return ret;
}

void ClientMap::renderPostFx(CameraMode cam_mode)
{
	// Sadly ISceneManager has no "post effects" render pass, in that case we
	// could just register for that and handle it in renderMap().

	MapNode n = getNode(floatToInt(m_camera_position, BS));

	const ContentFeatures& features = m_nodedef->get(n);
	video::SColor post_effect_color = features.post_effect_color;

	// If the camera is in a solid node, make everything black.
	// (first person mode only)
	if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST &&
		!m_control.allow_noclip) {
		post_effect_color = video::SColor(255, 0, 0, 0);
	}

	if (post_effect_color.getAlpha() != 0) {
		// Draw a full-screen rectangle
		video::IVideoDriver* driver = SceneManager->getVideoDriver();
		v2u32 ss = driver->getScreenSize();
		core::rect<s32> rect(0,0, ss.X, ss.Y);
		driver->draw2DRectangle(post_effect_color, rect);
	}
}

void ClientMap::PrintInfo(std::ostream &out)
{
	out<<"ClientMap: ";
}

void ClientMap::renderMapShadows(video::IVideoDriver *driver,
		const video::SMaterial &material, s32 pass, int frame, int total_frames)
{
	bool is_transparent_pass = pass != scene::ESNRP_SOLID;
	std::string prefix;
	if (is_transparent_pass)
		prefix = "renderMap(SHADOW TRANS): ";
	else
		prefix = "renderMap(SHADOW SOLID): ";

	u32 drawcall_count = 0;
	u32 vertex_count = 0;

	MeshBufListList grouped_buffers;
	std::vector<DrawDescriptor> draw_order;


	int count = 0;
	int low_bound = is_transparent_pass ? 0 : m_drawlist_shadow.size() / total_frames * frame;
	int high_bound = is_transparent_pass ? m_drawlist_shadow.size() : m_drawlist_shadow.size() / total_frames * (frame + 1);

	// transparent pass should be rendered in one go
	if (is_transparent_pass && frame != total_frames - 1) {
		return;
	}

	const MeshGrid mesh_grid = m_client->getMeshGrid();
	for (const auto &i : m_drawlist_shadow) {
		// only process specific part of the list & break early
		++count;
		if (count <= low_bound)
			continue;
		if (count > high_bound)
			break;

		v3s16 block_pos = i.first;
		MapBlock *block = i.second;

		// If the mesh of the block happened to get deleted, ignore it
		if (!block->mesh)
			continue;

		/*
			Get the meshbuffers of the block
		*/
		if (is_transparent_pass) {
			// In transparent pass, the mesh will give us
			// the partial buffers in the correct order
			for (auto &buffer : block->mesh->getTransparentBuffers())
				draw_order.emplace_back(block_pos, &buffer);
		}
		else {
			// otherwise, group buffers across meshes
			// using MeshBufListList
			MapBlockMesh *mapBlockMesh = block->mesh;
			assert(mapBlockMesh);

			for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
				scene::IMesh *mesh = mapBlockMesh->getMesh(layer);
				assert(mesh);

				u32 c = mesh->getMeshBufferCount();
				for (u32 i = 0; i < c; i++) {
					scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);

					video::SMaterial &mat = buf->getMaterial();
					auto rnd = driver->getMaterialRenderer(mat.MaterialType);
					bool transparent = rnd && rnd->isTransparent();
					if (!transparent)
						grouped_buffers.add(buf, block_pos, layer);
				}
			}
		}
	}

	u32 buffer_count = 0;
	for (auto &lists : grouped_buffers.lists)
		for (MeshBufList &list : lists)
			buffer_count += list.bufs.size();

	draw_order.reserve(draw_order.size() + buffer_count);

	// Capture draw order for all solid meshes
	for (auto &lists : grouped_buffers.lists) {
		for (MeshBufList &list : lists) {
			// iterate in reverse to draw closest blocks first
			for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it)
				draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
		}
	}

	TimeTaker draw("Drawing shadow mesh buffers");

	core::matrix4 m; // Model matrix
	v3f offset = intToFloat(m_camera_offset, BS);
	u32 material_swaps = 0;

	// Render all mesh buffers in order
	drawcall_count += draw_order.size();

	for (auto &descriptor : draw_order) {
		scene::IMeshBuffer *buf = descriptor.getBuffer();

		if (!descriptor.m_reuse_material) {
			// override some material properties
			video::SMaterial local_material = buf->getMaterial();
			local_material.MaterialType = material.MaterialType;
			local_material.BackfaceCulling = material.BackfaceCulling;
			local_material.FrontfaceCulling = material.FrontfaceCulling;
			local_material.BlendOperation = material.BlendOperation;
			local_material.Lighting = false;
			driver->setMaterial(local_material);
			++material_swaps;
		}

		v3f block_wpos = intToFloat(mesh_grid.getMeshPos(descriptor.m_pos) * MAP_BLOCKSIZE, BS);
		m.setTranslation(block_wpos - offset);

		driver->setTransform(video::ETS_WORLD, m);
		descriptor.draw(driver);
		vertex_count += buf->getIndexCount();
	}

	// restore the driver material state
	video::SMaterial clean;
	clean.BlendOperation = video::EBO_ADD;
	driver->setMaterial(clean); // reset material to defaults
	driver->draw3DLine(v3f(), v3f(), video::SColor(0));

	g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
	g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
	g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
	g_profiler->avg(prefix + "material swaps [#]", material_swaps);
}

/*
	Custom update draw list for the pov of shadow light.
*/
void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length)
{
	ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG);

	v3s16 cam_pos_nodes = floatToInt(shadow_light_pos, BS);
	v3s16 p_blocks_min;
	v3s16 p_blocks_max;
	getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max, radius + length);

	for (auto &i : m_drawlist_shadow) {
		MapBlock *block = i.second;
		block->refDrop();
	}
	m_drawlist_shadow.clear();

	// Number of blocks currently loaded by the client
	u32 blocks_loaded = 0;
	// Number of blocks with mesh in rendering range
	u32 blocks_in_range_with_mesh = 0;
	// Number of blocks occlusion culled
	u32 blocks_occlusion_culled = 0;

	std::set<v3s16> shortlist;
	MeshGrid mesh_grid = m_client->getMeshGrid();

	for (auto &sector_it : m_sectors) {
		MapSector *sector = sector_it.second;
		if (!sector)
			continue;
		blocks_loaded += sector->size();

		MapBlockVect sectorblocks;
		sector->getBlocks(sectorblocks);

		/*
			Loop through blocks in sector
		*/
		for (MapBlock *block : sectorblocks) {
			if (mesh_grid.cell_size == 1 && !block->mesh) {
				// fast out in the case of no mesh chunking
				continue;
			}

			v3f block_pos = intToFloat(block->getPos() * MAP_BLOCKSIZE, BS);
			v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos);
			if (projection.getDistanceFrom(block_pos) > radius)
				continue;

			if (mesh_grid.cell_size > 1) {
				// Block meshes are stored in the corner block of a chunk
				// (where all coordinate are divisible by the chunk size)
				// Add them to the de-dup set.
				shortlist.emplace(mesh_grid.getMeshPos(block->getPos()));
			}
			if (!block->mesh) {
				// Ignore if mesh doesn't exist
				continue;
			}

			blocks_in_range_with_mesh++;

			// This block is in range. Reset usage timer.
			block->resetUsageTimer();

			// Add to set
			if (m_drawlist_shadow.emplace(block->getPos(), block).second) {
				block->refGrab();
			}
		}
	}
	for (auto pos : shortlist) {
		MapBlock * block = getBlockNoCreateNoEx(pos);
		if (block && block->mesh && m_drawlist_shadow.emplace(pos, block).second) {
			block->refGrab();
		}
	}

	g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh);
	g_profiler->avg("SHADOW MapBlocks occlusion culled [#]", blocks_occlusion_culled);
	g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size());
	g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded);
}

void ClientMap::reportMetrics(u64 save_time_us, u32 saved_blocks, u32 all_blocks)
{
	g_profiler->avg("CM::reportMetrics loaded blocks [#]", all_blocks);
}

void ClientMap::updateTransparentMeshBuffers()
{
	ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG);
	u32 sorted_blocks = 0;
	u32 unsorted_blocks = 0;
	f32 sorting_distance_sq = pow(m_cache_transparency_sorting_distance * BS, 2.0f);


	// Update the order of transparent mesh buffers in each mesh
	for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) {
		MapBlock* block = it->second;
		if (!block->mesh)
			continue;

		if (m_needs_update_transparent_meshes ||
				block->mesh->getTransparentBuffers().size() == 0) {

			v3s16 block_pos = block->getPos();
			v3f block_pos_f = intToFloat(block_pos * MAP_BLOCKSIZE + MAP_BLOCKSIZE / 2, BS);
			f32 distance = m_camera_position.getDistanceFromSQ(block_pos_f);
			if (distance <= sorting_distance_sq) {
				block->mesh->updateTransparentBuffers(m_camera_position, block_pos);
				++sorted_blocks;
			}
			else {
				block->mesh->consolidateTransparentBuffers();
				++unsorted_blocks;
			}
		}
	}

	g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks);
	g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks);
	m_needs_update_transparent_meshes = false;
}

scene::IMeshBuffer* ClientMap::DrawDescriptor::getBuffer()
{
	return m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer;
}

void ClientMap::DrawDescriptor::draw(video::IVideoDriver* driver)
{
	if (m_use_partial_buffer) {
		m_partial_buffer->beforeDraw();
		driver->drawMeshBuffer(m_partial_buffer->getBuffer());
		m_partial_buffer->afterDraw();
	} else {
		driver->drawMeshBuffer(m_buffer);
	}
}