/* Minetest-c55 Copyright (C) 2010-2011 celeron55, Perttu Ahola <celeron55@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <math.h> #include "noise.h" #include <iostream> #include "debug.h" #define NOISE_MAGIC_X 1619 #define NOISE_MAGIC_Y 31337 #define NOISE_MAGIC_Z 52591 #define NOISE_MAGIC_SEED 1013 double cos_lookup[16] = { 1.0,0.9238,0.7071,0.3826,0,-0.3826,-0.7071,-0.9238, 1.0,-0.9238,-0.7071,-0.3826,0,0.3826,0.7071,0.9238 }; double dotProduct(double vx, double vy, double wx, double wy){ return vx*wx+vy*wy; } double easeCurve(double t){ return 6*pow(t,5)-15*pow(t,4)+10*pow(t,3); } double linearInterpolation(double x0, double x1, double t){ return x0+(x1-x0)*t; } double biLinearInterpolation(double x0y0, double x1y0, double x0y1, double x1y1, double x, double y){ double tx = easeCurve(x); double ty = easeCurve(y); /*double tx = x; double ty = y;*/ double u = linearInterpolation(x0y0,x1y0,tx); double v = linearInterpolation(x0y1,x1y1,tx); return linearInterpolation(u,v,ty); } double triLinearInterpolation( double v000, double v100, double v010, double v110, double v001, double v101, double v011, double v111, double x, double y, double z) { /*double tx = easeCurve(x); double ty = easeCurve(y); double tz = easeCurve(z);*/ double tx = x; double ty = y; double tz = z; return( v000*(1-tx)*(1-ty)*(1-tz) + v100*tx*(1-ty)*(1-tz) + v010*(1-tx)*ty*(1-tz) + v110*tx*ty*(1-tz) + v001*(1-tx)*(1-ty)*tz + v101*tx*(1-ty)*tz + v011*(1-tx)*ty*tz + v111*tx*ty*tz ); } double noise2d(int x, int y, int seed) { int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n>>13)^n; n = (n * (n*n*60493+19990303) + 1376312589) & 0x7fffffff; return 1.0 - (double)n/1073741824; } double noise3d(int x, int y, int z, int seed) { int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z + NOISE_MAGIC_SEED * seed) & 0x7fffffff; n = (n>>13)^n; n = (n * (n*n*60493+19990303) + 1376312589) & 0x7fffffff; return 1.0 - (double)n/1073741824; } #if 0 double noise2d_gradient(double x, double y, int seed) { // Calculate the integer coordinates int x0 = (x > 0.0 ? (int)x : (int)x - 1); int y0 = (y > 0.0 ? (int)y : (int)y - 1); // Calculate the remaining part of the coordinates double xl = x - (double)x0; double yl = y - (double)y0; // Calculate random cosine lookup table indices for the integer corners. // They are looked up as unit vector gradients from the lookup table. int n00 = (int)((noise2d(x0, y0, seed)+1)*8); int n10 = (int)((noise2d(x0+1, y0, seed)+1)*8); int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8); int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8); // Make a dot product for the gradients and the positions, to get the values double s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl); double u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl); double v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl); double w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl); // Interpolate between the values return biLinearInterpolation(s,u,v,w,xl,yl); } #endif #if 1 double noise2d_gradient(double x, double y, int seed) { // Calculate the integer coordinates int x0 = (x > 0.0 ? (int)x : (int)x - 1); int y0 = (y > 0.0 ? (int)y : (int)y - 1); // Calculate the remaining part of the coordinates double xl = x - (double)x0; double yl = y - (double)y0; // Get values for corners of cube double v00 = noise2d(x0, y0, seed); double v10 = noise2d(x0+1, y0, seed); double v01 = noise2d(x0, y0+1, seed); double v11 = noise2d(x0+1, y0+1, seed); // Interpolate return biLinearInterpolation(v00,v10,v01,v11,xl,yl); } #endif double noise3d_gradient(double x, double y, double z, int seed) { // Calculate the integer coordinates int x0 = (x > 0.0 ? (int)x : (int)x - 1); int y0 = (y > 0.0 ? (int)y : (int)y - 1); int z0 = (z > 0.0 ? (int)z : (int)z - 1); // Calculate the remaining part of the coordinates double xl = x - (double)x0; double yl = y - (double)y0; double zl = z - (double)z0; // Get values for corners of cube double v000 = noise3d(x0, y0, z0, seed); double v100 = noise3d(x0+1, y0, z0, seed); double v010 = noise3d(x0, y0+1, z0, seed); double v110 = noise3d(x0+1, y0+1, z0, seed); double v001 = noise3d(x0, y0, z0+1, seed); double v101 = noise3d(x0+1, y0, z0+1, seed); double v011 = noise3d(x0, y0+1, z0+1, seed); double v111 = noise3d(x0+1, y0+1, z0+1, seed); // Interpolate return triLinearInterpolation(v000,v100,v010,v110,v001,v101,v011,v111,xl,yl,zl); } double noise2d_perlin(double x, double y, int seed, int octaves, double persistence) { double a = 0; double f = 1.0; double g = 1.0; for(int i=0; i<octaves; i++) { a += g * noise2d_gradient(x*f, y*f, seed+i); f *= 2.0; g *= persistence; } return a; } double noise2d_perlin_abs(double x, double y, int seed, int octaves, double persistence) { double a = 0; double f = 1.0; double g = 1.0; for(int i=0; i<octaves; i++) { a += g * fabs(noise2d_gradient(x*f, y*f, seed+i)); f *= 2.0; g *= persistence; } return a; } double noise3d_perlin(double x, double y, double z, int seed, int octaves, double persistence) { double a = 0; double f = 1.0; double g = 1.0; for(int i=0; i<octaves; i++) { a += g * noise3d_gradient(x*f, y*f, z*f, seed+i); f *= 2.0; g *= persistence; } return a; } double noise3d_perlin_abs(double x, double y, double z, int seed, int octaves, double persistence) { double a = 0; double f = 1.0; double g = 1.0; for(int i=0; i<octaves; i++) { a += g * fabs(noise3d_gradient(x*f, y*f, z*f, seed+i)); f *= 2.0; g *= persistence; } return a; } // -1->0, 0->1, 1->0 double contour(double v) { v = fabs(v); if(v >= 1.0) return 0.0; return (1.0-v); } double noise3d_param(const NoiseParams ¶m, double x, double y, double z) { double s = param.pos_scale; x /= s; y /= s; z /= s; if(param.type == NOISE_PERLIN) { return param.noise_scale*noise3d_perlin(x,y,z, param.seed, param.octaves, param.persistence); } else if(param.type == NOISE_PERLIN_ABS) { return param.noise_scale*noise3d_perlin_abs(x,y,z, param.seed, param.octaves, param.persistence); } else if(param.type == NOISE_PERLIN_CONTOUR) { return contour(param.noise_scale*noise3d_perlin(x,y,z, param.seed, param.octaves, param.persistence)); } else if(param.type == NOISE_PERLIN_CONTOUR_FLIP_YZ) { return contour(param.noise_scale*noise3d_perlin(x,z,y, param.seed, param.octaves, param.persistence)); } else assert(0); } /* NoiseBuffer */ NoiseBuffer::NoiseBuffer(): m_data(NULL) { } NoiseBuffer::~NoiseBuffer() { clear(); } void NoiseBuffer::clear() { if(m_data) delete[] m_data; m_data = NULL; m_size_x = 0; m_size_y = 0; m_size_z = 0; } void NoiseBuffer::create(const NoiseParams ¶m, double first_x, double first_y, double first_z, double last_x, double last_y, double last_z, double samplelength_x, double samplelength_y, double samplelength_z) { clear(); m_start_x = first_x - samplelength_x; m_start_y = first_y - samplelength_y; m_start_z = first_z - samplelength_z; m_samplelength_x = samplelength_x; m_samplelength_y = samplelength_y; m_samplelength_z = samplelength_z; m_size_x = (last_x - m_start_x)/samplelength_x + 2; m_size_y = (last_y - m_start_y)/samplelength_y + 2; m_size_z = (last_z - m_start_z)/samplelength_z + 2; m_data = new double[m_size_x*m_size_y*m_size_z]; for(int x=0; x<m_size_x; x++) for(int y=0; y<m_size_y; y++) for(int z=0; z<m_size_z; z++) { double xd = (m_start_x + (double)x*m_samplelength_x); double yd = (m_start_y + (double)y*m_samplelength_y); double zd = (m_start_z + (double)z*m_samplelength_z); double a = noise3d_param(param, xd,yd,zd); intSet(x,y,z, a); } } void NoiseBuffer::multiply(const NoiseParams ¶m) { assert(m_data != NULL); for(int x=0; x<m_size_x; x++) for(int y=0; y<m_size_y; y++) for(int z=0; z<m_size_z; z++) { double xd = (m_start_x + (double)x*m_samplelength_x); double yd = (m_start_y + (double)y*m_samplelength_y); double zd = (m_start_z + (double)z*m_samplelength_z); double a = noise3d_param(param, xd,yd,zd); intMultiply(x,y,z, a); } } // Deprecated void NoiseBuffer::create(int seed, int octaves, double persistence, bool abs, double first_x, double first_y, double first_z, double last_x, double last_y, double last_z, double samplelength_x, double samplelength_y, double samplelength_z) { NoiseParams param; param.type = abs ? NOISE_PERLIN_ABS : NOISE_PERLIN; param.seed = seed; param.octaves = octaves; param.persistence = persistence; create(param, first_x, first_y, first_z, last_x, last_y, last_z, samplelength_x, samplelength_y, samplelength_z); } void NoiseBuffer::intSet(int x, int y, int z, double d) { int i = m_size_x*m_size_y*z + m_size_x*y + x; assert(i >= 0); assert(i < m_size_x*m_size_y*m_size_z); m_data[i] = d; } void NoiseBuffer::intMultiply(int x, int y, int z, double d) { int i = m_size_x*m_size_y*z + m_size_x*y + x; assert(i >= 0); assert(i < m_size_x*m_size_y*m_size_z); m_data[i] = m_data[i] * d; } double NoiseBuffer::intGet(int x, int y, int z) { int i = m_size_x*m_size_y*z + m_size_x*y + x; assert(i >= 0); assert(i < m_size_x*m_size_y*m_size_z); return m_data[i]; } double NoiseBuffer::get(double x, double y, double z) { x -= m_start_x; y -= m_start_y; z -= m_start_z; x /= m_samplelength_x; y /= m_samplelength_y; z /= m_samplelength_z; // Calculate the integer coordinates int x0 = (x > 0.0 ? (int)x : (int)x - 1); int y0 = (y > 0.0 ? (int)y : (int)y - 1); int z0 = (z > 0.0 ? (int)z : (int)z - 1); // Calculate the remaining part of the coordinates double xl = x - (double)x0; double yl = y - (double)y0; double zl = z - (double)z0; // Get values for corners of cube double v000 = intGet(x0, y0, z0); double v100 = intGet(x0+1, y0, z0); double v010 = intGet(x0, y0+1, z0); double v110 = intGet(x0+1, y0+1, z0); double v001 = intGet(x0, y0, z0+1); double v101 = intGet(x0+1, y0, z0+1); double v011 = intGet(x0, y0+1, z0+1); double v111 = intGet(x0+1, y0+1, z0+1); // Interpolate return triLinearInterpolation(v000,v100,v010,v110,v001,v101,v011,v111,xl,yl,zl); }