forked from Mirrorlandia_minetest/minetest
d5456da69d
Store the rotation in the node as a 4x4 transformation matrix internally (through IDummyTransformationSceneNode), which allows more manipulations without losing precision or having gimbal lock issues. Network rotation is still transmitted as Eulers, though, not as matrix. But it will stay this way in 5.0.
435 lines
9.7 KiB
C++
435 lines
9.7 KiB
C++
/*
|
|
Minetest
|
|
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "basic_macros.h"
|
|
#include "irrlichttypes.h"
|
|
#include "irr_v2d.h"
|
|
#include "irr_v3d.h"
|
|
#include "irr_aabb3d.h"
|
|
#include <matrix4.h>
|
|
|
|
#define rangelim(d, min, max) ((d) < (min) ? (min) : ((d) > (max) ? (max) : (d)))
|
|
#define myfloor(x) ((x) < 0.0 ? (int)(x) - 1 : (int)(x))
|
|
// The naive swap performs better than the xor version
|
|
#define SWAP(t, x, y) do { \
|
|
t temp = x; \
|
|
x = y; \
|
|
y = temp; \
|
|
} while (0)
|
|
|
|
|
|
inline s16 getContainerPos(s16 p, s16 d)
|
|
{
|
|
return (p >= 0 ? p : p - d + 1) / d;
|
|
}
|
|
|
|
inline v2s16 getContainerPos(v2s16 p, s16 d)
|
|
{
|
|
return v2s16(
|
|
getContainerPos(p.X, d),
|
|
getContainerPos(p.Y, d)
|
|
);
|
|
}
|
|
|
|
inline v3s16 getContainerPos(v3s16 p, s16 d)
|
|
{
|
|
return v3s16(
|
|
getContainerPos(p.X, d),
|
|
getContainerPos(p.Y, d),
|
|
getContainerPos(p.Z, d)
|
|
);
|
|
}
|
|
|
|
inline v2s16 getContainerPos(v2s16 p, v2s16 d)
|
|
{
|
|
return v2s16(
|
|
getContainerPos(p.X, d.X),
|
|
getContainerPos(p.Y, d.Y)
|
|
);
|
|
}
|
|
|
|
inline v3s16 getContainerPos(v3s16 p, v3s16 d)
|
|
{
|
|
return v3s16(
|
|
getContainerPos(p.X, d.X),
|
|
getContainerPos(p.Y, d.Y),
|
|
getContainerPos(p.Z, d.Z)
|
|
);
|
|
}
|
|
|
|
inline void getContainerPosWithOffset(s16 p, s16 d, s16 &container, s16 &offset)
|
|
{
|
|
container = (p >= 0 ? p : p - d + 1) / d;
|
|
offset = p & (d - 1);
|
|
}
|
|
|
|
inline void getContainerPosWithOffset(const v2s16 &p, s16 d, v2s16 &container, v2s16 &offset)
|
|
{
|
|
getContainerPosWithOffset(p.X, d, container.X, offset.X);
|
|
getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
|
|
}
|
|
|
|
inline void getContainerPosWithOffset(const v3s16 &p, s16 d, v3s16 &container, v3s16 &offset)
|
|
{
|
|
getContainerPosWithOffset(p.X, d, container.X, offset.X);
|
|
getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
|
|
getContainerPosWithOffset(p.Z, d, container.Z, offset.Z);
|
|
}
|
|
|
|
|
|
inline bool isInArea(v3s16 p, s16 d)
|
|
{
|
|
return (
|
|
p.X >= 0 && p.X < d &&
|
|
p.Y >= 0 && p.Y < d &&
|
|
p.Z >= 0 && p.Z < d
|
|
);
|
|
}
|
|
|
|
inline bool isInArea(v2s16 p, s16 d)
|
|
{
|
|
return (
|
|
p.X >= 0 && p.X < d &&
|
|
p.Y >= 0 && p.Y < d
|
|
);
|
|
}
|
|
|
|
inline bool isInArea(v3s16 p, v3s16 d)
|
|
{
|
|
return (
|
|
p.X >= 0 && p.X < d.X &&
|
|
p.Y >= 0 && p.Y < d.Y &&
|
|
p.Z >= 0 && p.Z < d.Z
|
|
);
|
|
}
|
|
|
|
inline void sortBoxVerticies(v3s16 &p1, v3s16 &p2) {
|
|
if (p1.X > p2.X)
|
|
SWAP(s16, p1.X, p2.X);
|
|
if (p1.Y > p2.Y)
|
|
SWAP(s16, p1.Y, p2.Y);
|
|
if (p1.Z > p2.Z)
|
|
SWAP(s16, p1.Z, p2.Z);
|
|
}
|
|
|
|
inline v3s16 componentwise_min(const v3s16 &a, const v3s16 &b)
|
|
{
|
|
return v3s16(MYMIN(a.X, b.X), MYMIN(a.Y, b.Y), MYMIN(a.Z, b.Z));
|
|
}
|
|
|
|
inline v3s16 componentwise_max(const v3s16 &a, const v3s16 &b)
|
|
{
|
|
return v3s16(MYMAX(a.X, b.X), MYMAX(a.Y, b.Y), MYMAX(a.Z, b.Z));
|
|
}
|
|
|
|
|
|
/** Returns \p f wrapped to the range [-360, 360]
|
|
*
|
|
* See test.cpp for example cases.
|
|
*
|
|
* \note This is also used in cases where degrees wrapped to the range [0, 360]
|
|
* is innapropriate (e.g. pitch needs negative values)
|
|
*
|
|
* \internal functionally equivalent -- although precision may vary slightly --
|
|
* to fmodf((f), 360.0f) however empirical tests indicate that this approach is
|
|
* faster.
|
|
*/
|
|
inline float modulo360f(float f)
|
|
{
|
|
int sign;
|
|
int whole;
|
|
float fraction;
|
|
|
|
if (f < 0) {
|
|
f = -f;
|
|
sign = -1;
|
|
} else {
|
|
sign = 1;
|
|
}
|
|
|
|
whole = f;
|
|
|
|
fraction = f - whole;
|
|
whole %= 360;
|
|
|
|
return sign * (whole + fraction);
|
|
}
|
|
|
|
|
|
/** Returns \p f wrapped to the range [0, 360]
|
|
*/
|
|
inline float wrapDegrees_0_360(float f)
|
|
{
|
|
float value = modulo360f(f);
|
|
return value < 0 ? value + 360 : value;
|
|
}
|
|
|
|
|
|
/** Returns \p v3f wrapped to the range [0, 360]
|
|
*/
|
|
inline v3f wrapDegrees_0_360_v3f(v3f v)
|
|
{
|
|
v3f value_v3f;
|
|
value_v3f.X = modulo360f(v.X);
|
|
value_v3f.Y = modulo360f(v.Y);
|
|
value_v3f.Z = modulo360f(v.Z);
|
|
|
|
// Now that values are wrapped, use to get values for certain ranges
|
|
value_v3f.X = value_v3f.X < 0 ? value_v3f.X + 360 : value_v3f.X;
|
|
value_v3f.Y = value_v3f.Y < 0 ? value_v3f.Y + 360 : value_v3f.Y;
|
|
value_v3f.Z = value_v3f.Z < 0 ? value_v3f.Z + 360 : value_v3f.Z;
|
|
return value_v3f;
|
|
}
|
|
|
|
|
|
/** Returns \p f wrapped to the range [-180, 180]
|
|
*/
|
|
inline float wrapDegrees_180(float f)
|
|
{
|
|
float value = modulo360f(f + 180);
|
|
if (value < 0)
|
|
value += 360;
|
|
return value - 180;
|
|
}
|
|
|
|
/*
|
|
Pseudo-random (VC++ rand() sucks)
|
|
*/
|
|
#define MYRAND_RANGE 0xffffffff
|
|
u32 myrand();
|
|
void mysrand(unsigned int seed);
|
|
void myrand_bytes(void *out, size_t len);
|
|
int myrand_range(int min, int max);
|
|
|
|
/*
|
|
Miscellaneous functions
|
|
*/
|
|
|
|
inline u32 get_bits(u32 x, u32 pos, u32 len)
|
|
{
|
|
u32 mask = (1 << len) - 1;
|
|
return (x >> pos) & mask;
|
|
}
|
|
|
|
inline void set_bits(u32 *x, u32 pos, u32 len, u32 val)
|
|
{
|
|
u32 mask = (1 << len) - 1;
|
|
*x &= ~(mask << pos);
|
|
*x |= (val & mask) << pos;
|
|
}
|
|
|
|
inline u32 calc_parity(u32 v)
|
|
{
|
|
v ^= v >> 16;
|
|
v ^= v >> 8;
|
|
v ^= v >> 4;
|
|
v &= 0xf;
|
|
return (0x6996 >> v) & 1;
|
|
}
|
|
|
|
u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed);
|
|
|
|
bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
|
|
f32 camera_fov, f32 range, f32 *distance_ptr=NULL);
|
|
|
|
s16 adjustDist(s16 dist, float zoom_fov);
|
|
|
|
/*
|
|
Returns nearest 32-bit integer for given floating point number.
|
|
<cmath> and <math.h> in VC++ don't provide round().
|
|
*/
|
|
inline s32 myround(f32 f)
|
|
{
|
|
return (s32)(f < 0.f ? (f - 0.5f) : (f + 0.5f));
|
|
}
|
|
|
|
inline constexpr f32 sqr(f32 f)
|
|
{
|
|
return f * f;
|
|
}
|
|
|
|
/*
|
|
Returns integer position of node in given floating point position
|
|
*/
|
|
inline v3s16 floatToInt(v3f p, f32 d)
|
|
{
|
|
return v3s16(
|
|
(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
|
|
(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
|
|
(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
|
|
}
|
|
|
|
/*
|
|
Returns integer position of node in given double precision position
|
|
*/
|
|
inline v3s16 doubleToInt(v3d p, double d)
|
|
{
|
|
return v3s16(
|
|
(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
|
|
(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
|
|
(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
|
|
}
|
|
|
|
/*
|
|
Returns floating point position of node in given integer position
|
|
*/
|
|
inline v3f intToFloat(v3s16 p, f32 d)
|
|
{
|
|
return v3f(
|
|
(f32)p.X * d,
|
|
(f32)p.Y * d,
|
|
(f32)p.Z * d
|
|
);
|
|
}
|
|
|
|
// Random helper. Usually d=BS
|
|
inline aabb3f getNodeBox(v3s16 p, float d)
|
|
{
|
|
return aabb3f(
|
|
(float)p.X * d - 0.5f * d,
|
|
(float)p.Y * d - 0.5f * d,
|
|
(float)p.Z * d - 0.5f * d,
|
|
(float)p.X * d + 0.5f * d,
|
|
(float)p.Y * d + 0.5f * d,
|
|
(float)p.Z * d + 0.5f * d
|
|
);
|
|
}
|
|
|
|
|
|
class IntervalLimiter
|
|
{
|
|
public:
|
|
IntervalLimiter() = default;
|
|
|
|
/*
|
|
dtime: time from last call to this method
|
|
wanted_interval: interval wanted
|
|
return value:
|
|
true: action should be skipped
|
|
false: action should be done
|
|
*/
|
|
bool step(float dtime, float wanted_interval)
|
|
{
|
|
m_accumulator += dtime;
|
|
if (m_accumulator < wanted_interval)
|
|
return false;
|
|
m_accumulator -= wanted_interval;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
float m_accumulator = 0.0f;
|
|
};
|
|
|
|
|
|
/*
|
|
Splits a list into "pages". For example, the list [1,2,3,4,5] split
|
|
into two pages would be [1,2,3],[4,5]. This function computes the
|
|
minimum and maximum indices of a single page.
|
|
|
|
length: Length of the list that should be split
|
|
page: Page number, 1 <= page <= pagecount
|
|
pagecount: The number of pages, >= 1
|
|
minindex: Receives the minimum index (inclusive).
|
|
maxindex: Receives the maximum index (exclusive).
|
|
|
|
Ensures 0 <= minindex <= maxindex <= length.
|
|
*/
|
|
inline void paging(u32 length, u32 page, u32 pagecount, u32 &minindex, u32 &maxindex)
|
|
{
|
|
if (length < 1 || pagecount < 1 || page < 1 || page > pagecount) {
|
|
// Special cases or invalid parameters
|
|
minindex = maxindex = 0;
|
|
} else if(pagecount <= length) {
|
|
// Less pages than entries in the list:
|
|
// Each page contains at least one entry
|
|
minindex = (length * (page-1) + (pagecount-1)) / pagecount;
|
|
maxindex = (length * page + (pagecount-1)) / pagecount;
|
|
} else {
|
|
// More pages than entries in the list:
|
|
// Make sure the empty pages are at the end
|
|
if (page < length) {
|
|
minindex = page-1;
|
|
maxindex = page;
|
|
} else {
|
|
minindex = 0;
|
|
maxindex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline float cycle_shift(float value, float by = 0, float max = 1)
|
|
{
|
|
if (value + by < 0) return value + by + max;
|
|
if (value + by > max) return value + by - max;
|
|
return value + by;
|
|
}
|
|
|
|
inline bool is_power_of_two(u32 n)
|
|
{
|
|
return n != 0 && (n & (n - 1)) == 0;
|
|
}
|
|
|
|
// Compute next-higher power of 2 efficiently, e.g. for power-of-2 texture sizes.
|
|
// Public Domain: https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
|
inline u32 npot2(u32 orig) {
|
|
orig--;
|
|
orig |= orig >> 1;
|
|
orig |= orig >> 2;
|
|
orig |= orig >> 4;
|
|
orig |= orig >> 8;
|
|
orig |= orig >> 16;
|
|
return orig + 1;
|
|
}
|
|
|
|
// Gradual steps towards the target value in a wrapped (circular) system
|
|
// using the shorter of both ways
|
|
template<typename T>
|
|
inline void wrappedApproachShortest(T ¤t, const T target, const T stepsize,
|
|
const T maximum)
|
|
{
|
|
T delta = target - current;
|
|
if (delta < 0)
|
|
delta += maximum;
|
|
|
|
if (delta > stepsize && maximum - delta > stepsize) {
|
|
current += (delta < maximum / 2) ? stepsize : -stepsize;
|
|
if (current >= maximum)
|
|
current -= maximum;
|
|
} else {
|
|
current = target;
|
|
}
|
|
}
|
|
|
|
void setPitchYawRollRad(core::matrix4 &m, const v3f &rot);
|
|
|
|
inline void setPitchYawRoll(core::matrix4 &m, const v3f &rot)
|
|
{
|
|
setPitchYawRollRad(m, rot * core::DEGTORAD64);
|
|
}
|
|
|
|
v3f getPitchYawRollRad(const core::matrix4 &m);
|
|
|
|
inline v3f getPitchYawRoll(const core::matrix4 &m)
|
|
{
|
|
return getPitchYawRollRad(m) * core::RADTODEG64;
|
|
}
|