minetest/src/nodedef.cpp
Loïc Blot 3e50850260 TileLayer: use shared_ptr for FrameSpec vector (#6171)
* TileLayer: use shared_ptr for vector framespec
This reduce memory copy of TileLayer from (4 to 16) * FrameSpec where FrameSpec = (sizeof(int) + 3 * sizeof(ptr)) to int + sizeof(ptr)

Callgrind difference

Before: https://lut.im/RGkiJqQb8T/LeQIEXpAuRzfl7gd.png
After: https://lut.im/bcqmwee1xu/cTwtptY5tRuS9lp0.png

* Fix one push_back to use vector::emplace_back & optimize inclusions
2017-07-26 20:12:48 +02:00

2043 lines
57 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "nodedef.h"
#include "itemdef.h"
#ifndef SERVER
#include "mesh.h"
#include "client.h"
#include "client/renderingengine.h"
#include "client/tile.h"
#include <IMeshManipulator.h>
#endif
#include "log.h"
#include "settings.h"
#include "nameidmapping.h"
#include "util/numeric.h"
#include "util/serialize.h"
#include "exceptions.h"
#include "debug.h"
#include "gamedef.h"
#include "mapnode.h"
#include <fstream> // Used in applyTextureOverrides()
/*
NodeBox
*/
void NodeBox::reset()
{
type = NODEBOX_REGULAR;
// default is empty
fixed.clear();
// default is sign/ladder-like
wall_top = aabb3f(-BS/2, BS/2-BS/16., -BS/2, BS/2, BS/2, BS/2);
wall_bottom = aabb3f(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2);
wall_side = aabb3f(-BS/2, -BS/2, -BS/2, -BS/2+BS/16., BS/2, BS/2);
// no default for other parts
connect_top.clear();
connect_bottom.clear();
connect_front.clear();
connect_left.clear();
connect_back.clear();
connect_right.clear();
}
void NodeBox::serialize(std::ostream &os, u16 protocol_version) const
{
// Protocol >= 21
int version = 2;
if (protocol_version >= 27)
version = 3;
writeU8(os, version);
switch (type) {
case NODEBOX_LEVELED:
case NODEBOX_FIXED:
if (version == 1)
writeU8(os, NODEBOX_FIXED);
else
writeU8(os, type);
writeU16(os, fixed.size());
for (std::vector<aabb3f>::const_iterator
i = fixed.begin();
i != fixed.end(); ++i)
{
writeV3F1000(os, i->MinEdge);
writeV3F1000(os, i->MaxEdge);
}
break;
case NODEBOX_WALLMOUNTED:
writeU8(os, type);
writeV3F1000(os, wall_top.MinEdge);
writeV3F1000(os, wall_top.MaxEdge);
writeV3F1000(os, wall_bottom.MinEdge);
writeV3F1000(os, wall_bottom.MaxEdge);
writeV3F1000(os, wall_side.MinEdge);
writeV3F1000(os, wall_side.MaxEdge);
break;
case NODEBOX_CONNECTED:
if (version <= 2) {
// send old clients nodes that can't be walked through
// to prevent abuse
writeU8(os, NODEBOX_FIXED);
writeU16(os, 1);
writeV3F1000(os, v3f(-BS/2, -BS/2, -BS/2));
writeV3F1000(os, v3f(BS/2, BS/2, BS/2));
} else {
writeU8(os, type);
#define WRITEBOX(box) do { \
writeU16(os, (box).size()); \
for (std::vector<aabb3f>::const_iterator \
i = (box).begin(); \
i != (box).end(); ++i) { \
writeV3F1000(os, i->MinEdge); \
writeV3F1000(os, i->MaxEdge); \
}; } while (0)
WRITEBOX(fixed);
WRITEBOX(connect_top);
WRITEBOX(connect_bottom);
WRITEBOX(connect_front);
WRITEBOX(connect_left);
WRITEBOX(connect_back);
WRITEBOX(connect_right);
}
break;
default:
writeU8(os, type);
break;
}
}
void NodeBox::deSerialize(std::istream &is)
{
int version = readU8(is);
if (version < 1 || version > 3)
throw SerializationError("unsupported NodeBox version");
reset();
type = (enum NodeBoxType)readU8(is);
if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED)
{
u16 fixed_count = readU16(is);
while(fixed_count--)
{
aabb3f box;
box.MinEdge = readV3F1000(is);
box.MaxEdge = readV3F1000(is);
fixed.push_back(box);
}
}
else if(type == NODEBOX_WALLMOUNTED)
{
wall_top.MinEdge = readV3F1000(is);
wall_top.MaxEdge = readV3F1000(is);
wall_bottom.MinEdge = readV3F1000(is);
wall_bottom.MaxEdge = readV3F1000(is);
wall_side.MinEdge = readV3F1000(is);
wall_side.MaxEdge = readV3F1000(is);
}
else if (type == NODEBOX_CONNECTED)
{
#define READBOXES(box) do { \
count = readU16(is); \
(box).reserve(count); \
while (count--) { \
v3f min = readV3F1000(is); \
v3f max = readV3F1000(is); \
(box).push_back(aabb3f(min, max)); }; } while (0)
u16 count;
READBOXES(fixed);
READBOXES(connect_top);
READBOXES(connect_bottom);
READBOXES(connect_front);
READBOXES(connect_left);
READBOXES(connect_back);
READBOXES(connect_right);
}
}
/*
TileDef
*/
void TileDef::serialize(std::ostream &os, u16 protocol_version) const
{
if (protocol_version >= 30)
writeU8(os, 4);
else if (protocol_version >= 29)
writeU8(os, 3);
else if (protocol_version >= 26)
writeU8(os, 2);
else
writeU8(os, 1);
os << serializeString(name);
animation.serialize(os, protocol_version);
writeU8(os, backface_culling);
if (protocol_version >= 26) {
writeU8(os, tileable_horizontal);
writeU8(os, tileable_vertical);
}
if (protocol_version >= 30) {
writeU8(os, has_color);
if (has_color) {
writeU8(os, color.getRed());
writeU8(os, color.getGreen());
writeU8(os, color.getBlue());
}
}
}
void TileDef::deSerialize(std::istream &is, const u8 contenfeatures_version, const NodeDrawType drawtype)
{
int version = readU8(is);
name = deSerializeString(is);
animation.deSerialize(is, version >= 3 ? 29 : 26);
if (version >= 1)
backface_culling = readU8(is);
if (version >= 2) {
tileable_horizontal = readU8(is);
tileable_vertical = readU8(is);
}
if (version >= 4) {
has_color = readU8(is);
if (has_color) {
color.setRed(readU8(is));
color.setGreen(readU8(is));
color.setBlue(readU8(is));
}
}
if ((contenfeatures_version < 8) &&
((drawtype == NDT_MESH) ||
(drawtype == NDT_FIRELIKE) ||
(drawtype == NDT_LIQUID) ||
(drawtype == NDT_PLANTLIKE)))
backface_culling = false;
}
/*
SimpleSoundSpec serialization
*/
static void serializeSimpleSoundSpec(const SimpleSoundSpec &ss,
std::ostream &os, u8 version)
{
os<<serializeString(ss.name);
writeF1000(os, ss.gain);
if (version >= 11)
writeF1000(os, ss.pitch);
}
static void deSerializeSimpleSoundSpec(SimpleSoundSpec &ss, std::istream &is, u8 version)
{
ss.name = deSerializeString(is);
ss.gain = readF1000(is);
if (version >= 11)
ss.pitch = readF1000(is);
}
void TextureSettings::readSettings()
{
connected_glass = g_settings->getBool("connected_glass");
opaque_water = g_settings->getBool("opaque_water");
bool enable_shaders = g_settings->getBool("enable_shaders");
bool enable_bumpmapping = g_settings->getBool("enable_bumpmapping");
bool enable_parallax_occlusion = g_settings->getBool("enable_parallax_occlusion");
bool smooth_lighting = g_settings->getBool("smooth_lighting");
enable_mesh_cache = g_settings->getBool("enable_mesh_cache");
enable_minimap = g_settings->getBool("enable_minimap");
std::string leaves_style_str = g_settings->get("leaves_style");
// Mesh cache is not supported in combination with smooth lighting
if (smooth_lighting)
enable_mesh_cache = false;
use_normal_texture = enable_shaders &&
(enable_bumpmapping || enable_parallax_occlusion);
if (leaves_style_str == "fancy") {
leaves_style = LEAVES_FANCY;
} else if (leaves_style_str == "simple") {
leaves_style = LEAVES_SIMPLE;
} else {
leaves_style = LEAVES_OPAQUE;
}
}
/*
ContentFeatures
*/
ContentFeatures::ContentFeatures()
{
reset();
}
ContentFeatures::~ContentFeatures()
{
}
void ContentFeatures::reset()
{
/*
Cached stuff
*/
#ifndef SERVER
solidness = 2;
visual_solidness = 0;
backface_culling = true;
#endif
has_on_construct = false;
has_on_destruct = false;
has_after_destruct = false;
/*
Actual data
NOTE: Most of this is always overridden by the default values given
in builtin.lua
*/
name = "";
groups.clear();
// Unknown nodes can be dug
groups["dig_immediate"] = 2;
drawtype = NDT_NORMAL;
mesh = "";
#ifndef SERVER
for(u32 i = 0; i < 24; i++)
mesh_ptr[i] = NULL;
minimap_color = video::SColor(0, 0, 0, 0);
#endif
visual_scale = 1.0;
for(u32 i = 0; i < 6; i++)
tiledef[i] = TileDef();
for(u16 j = 0; j < CF_SPECIAL_COUNT; j++)
tiledef_special[j] = TileDef();
alpha = 255;
post_effect_color = video::SColor(0, 0, 0, 0);
param_type = CPT_NONE;
param_type_2 = CPT2_NONE;
is_ground_content = false;
light_propagates = false;
sunlight_propagates = false;
walkable = true;
pointable = true;
diggable = true;
climbable = false;
buildable_to = false;
floodable = false;
rightclickable = true;
leveled = 0;
liquid_type = LIQUID_NONE;
liquid_alternative_flowing = "";
liquid_alternative_source = "";
liquid_viscosity = 0;
liquid_renewable = true;
liquid_range = LIQUID_LEVEL_MAX+1;
drowning = 0;
light_source = 0;
damage_per_second = 0;
node_box = NodeBox();
selection_box = NodeBox();
collision_box = NodeBox();
waving = 0;
legacy_facedir_simple = false;
legacy_wallmounted = false;
sound_footstep = SimpleSoundSpec();
sound_dig = SimpleSoundSpec("__group");
sound_dug = SimpleSoundSpec();
connects_to.clear();
connects_to_ids.clear();
connect_sides = 0;
color = video::SColor(0xFFFFFFFF);
palette_name = "";
palette = NULL;
}
void ContentFeatures::serialize(std::ostream &os, u16 protocol_version) const
{
if (protocol_version < 31) {
serializeOld(os, protocol_version);
return;
}
// version
u8 version = (protocol_version >= 34) ? 11 : 10;
writeU8(os, version);
// general
os << serializeString(name);
writeU16(os, groups.size());
for (ItemGroupList::const_iterator i = groups.begin(); i != groups.end();
++i) {
os << serializeString(i->first);
writeS16(os, i->second);
}
writeU8(os, param_type);
writeU8(os, param_type_2);
// visual
writeU8(os, drawtype);
os << serializeString(mesh);
writeF1000(os, visual_scale);
writeU8(os, 6);
for (u32 i = 0; i < 6; i++)
tiledef[i].serialize(os, protocol_version);
for (u32 i = 0; i < 6; i++)
tiledef_overlay[i].serialize(os, protocol_version);
writeU8(os, CF_SPECIAL_COUNT);
for (u32 i = 0; i < CF_SPECIAL_COUNT; i++) {
tiledef_special[i].serialize(os, protocol_version);
}
writeU8(os, alpha);
writeU8(os, color.getRed());
writeU8(os, color.getGreen());
writeU8(os, color.getBlue());
os << serializeString(palette_name);
writeU8(os, waving);
writeU8(os, connect_sides);
writeU16(os, connects_to_ids.size());
for (std::set<content_t>::const_iterator i = connects_to_ids.begin();
i != connects_to_ids.end(); ++i)
writeU16(os, *i);
writeU8(os, post_effect_color.getAlpha());
writeU8(os, post_effect_color.getRed());
writeU8(os, post_effect_color.getGreen());
writeU8(os, post_effect_color.getBlue());
writeU8(os, leveled);
// lighting
writeU8(os, light_propagates);
writeU8(os, sunlight_propagates);
writeU8(os, light_source);
// map generation
writeU8(os, is_ground_content);
// interaction
writeU8(os, walkable);
writeU8(os, pointable);
writeU8(os, diggable);
writeU8(os, climbable);
writeU8(os, buildable_to);
writeU8(os, rightclickable);
writeU32(os, damage_per_second);
// liquid
writeU8(os, liquid_type);
os << serializeString(liquid_alternative_flowing);
os << serializeString(liquid_alternative_source);
writeU8(os, liquid_viscosity);
writeU8(os, liquid_renewable);
writeU8(os, liquid_range);
writeU8(os, drowning);
writeU8(os, floodable);
// node boxes
node_box.serialize(os, protocol_version);
selection_box.serialize(os, protocol_version);
collision_box.serialize(os, protocol_version);
// sound
serializeSimpleSoundSpec(sound_footstep, os, version);
serializeSimpleSoundSpec(sound_dig, os, version);
serializeSimpleSoundSpec(sound_dug, os, version);
// legacy
writeU8(os, legacy_facedir_simple);
writeU8(os, legacy_wallmounted);
}
void ContentFeatures::correctAlpha(TileDef *tiles, int length)
{
// alpha == 0 means that the node is using texture alpha
if (alpha == 0 || alpha == 255)
return;
for (int i = 0; i < length; i++) {
if (tiles[i].name == "")
continue;
std::stringstream s;
s << tiles[i].name << "^[noalpha^[opacity:" << ((int)alpha);
tiles[i].name = s.str();
}
}
void ContentFeatures::deSerialize(std::istream &is)
{
// version detection
int version = readU8(is);
if (version < 9) {
deSerializeOld(is, version);
return;
} else if (version > 11) {
throw SerializationError("unsupported ContentFeatures version");
}
// general
name = deSerializeString(is);
groups.clear();
u32 groups_size = readU16(is);
for (u32 i = 0; i < groups_size; i++) {
std::string name = deSerializeString(is);
int value = readS16(is);
groups[name] = value;
}
param_type = (enum ContentParamType) readU8(is);
param_type_2 = (enum ContentParamType2) readU8(is);
// visual
drawtype = (enum NodeDrawType) readU8(is);
mesh = deSerializeString(is);
visual_scale = readF1000(is);
if (readU8(is) != 6)
throw SerializationError("unsupported tile count");
for (u32 i = 0; i < 6; i++)
tiledef[i].deSerialize(is, version, drawtype);
if (version >= 10)
for (u32 i = 0; i < 6; i++)
tiledef_overlay[i].deSerialize(is, version, drawtype);
if (readU8(is) != CF_SPECIAL_COUNT)
throw SerializationError("unsupported CF_SPECIAL_COUNT");
for (u32 i = 0; i < CF_SPECIAL_COUNT; i++)
tiledef_special[i].deSerialize(is, version, drawtype);
alpha = readU8(is);
color.setRed(readU8(is));
color.setGreen(readU8(is));
color.setBlue(readU8(is));
palette_name = deSerializeString(is);
waving = readU8(is);
connect_sides = readU8(is);
u16 connects_to_size = readU16(is);
connects_to_ids.clear();
for (u16 i = 0; i < connects_to_size; i++)
connects_to_ids.insert(readU16(is));
post_effect_color.setAlpha(readU8(is));
post_effect_color.setRed(readU8(is));
post_effect_color.setGreen(readU8(is));
post_effect_color.setBlue(readU8(is));
leveled = readU8(is);
// lighting-related
light_propagates = readU8(is);
sunlight_propagates = readU8(is);
light_source = readU8(is);
light_source = MYMIN(light_source, LIGHT_MAX);
// map generation
is_ground_content = readU8(is);
// interaction
walkable = readU8(is);
pointable = readU8(is);
diggable = readU8(is);
climbable = readU8(is);
buildable_to = readU8(is);
rightclickable = readU8(is);
damage_per_second = readU32(is);
// liquid
liquid_type = (enum LiquidType) readU8(is);
liquid_alternative_flowing = deSerializeString(is);
liquid_alternative_source = deSerializeString(is);
liquid_viscosity = readU8(is);
liquid_renewable = readU8(is);
liquid_range = readU8(is);
drowning = readU8(is);
floodable = readU8(is);
// node boxes
node_box.deSerialize(is);
selection_box.deSerialize(is);
collision_box.deSerialize(is);
// sounds
deSerializeSimpleSoundSpec(sound_footstep, is, version);
deSerializeSimpleSoundSpec(sound_dig, is, version);
deSerializeSimpleSoundSpec(sound_dug, is, version);
// read legacy properties
legacy_facedir_simple = readU8(is);
legacy_wallmounted = readU8(is);
}
#ifndef SERVER
void ContentFeatures::fillTileAttribs(ITextureSource *tsrc, TileLayer *tile,
TileDef *tiledef, u32 shader_id, bool use_normal_texture,
bool backface_culling, u8 material_type)
{
tile->shader_id = shader_id;
tile->texture = tsrc->getTextureForMesh(tiledef->name, &tile->texture_id);
tile->material_type = material_type;
// Normal texture and shader flags texture
if (use_normal_texture) {
tile->normal_texture = tsrc->getNormalTexture(tiledef->name);
}
tile->flags_texture = tsrc->getShaderFlagsTexture(tile->normal_texture ? true : false);
// Material flags
tile->material_flags = 0;
if (backface_culling)
tile->material_flags |= MATERIAL_FLAG_BACKFACE_CULLING;
if (tiledef->animation.type != TAT_NONE)
tile->material_flags |= MATERIAL_FLAG_ANIMATION;
if (tiledef->tileable_horizontal)
tile->material_flags |= MATERIAL_FLAG_TILEABLE_HORIZONTAL;
if (tiledef->tileable_vertical)
tile->material_flags |= MATERIAL_FLAG_TILEABLE_VERTICAL;
// Color
tile->has_color = tiledef->has_color;
if (tiledef->has_color)
tile->color = tiledef->color;
else
tile->color = color;
// Animation parameters
int frame_count = 1;
if (tile->material_flags & MATERIAL_FLAG_ANIMATION) {
int frame_length_ms;
tiledef->animation.determineParams(tile->texture->getOriginalSize(),
&frame_count, &frame_length_ms, NULL);
tile->animation_frame_count = frame_count;
tile->animation_frame_length_ms = frame_length_ms;
}
if (frame_count == 1) {
tile->material_flags &= ~MATERIAL_FLAG_ANIMATION;
} else {
std::ostringstream os(std::ios::binary);
if (!tile->frames) {
tile->frames = std::make_shared<std::vector<FrameSpec>>();
}
tile->frames->resize(frame_count);
for (int i = 0; i < frame_count; i++) {
FrameSpec frame;
os.str("");
os << tiledef->name;
tiledef->animation.getTextureModifer(os,
tile->texture->getOriginalSize(), i);
frame.texture = tsrc->getTextureForMesh(os.str(), &frame.texture_id);
if (tile->normal_texture)
frame.normal_texture = tsrc->getNormalTexture(os.str());
frame.flags_texture = tile->flags_texture;
(*tile->frames)[i] = frame;
}
}
}
#endif
#ifndef SERVER
void ContentFeatures::updateTextures(ITextureSource *tsrc, IShaderSource *shdsrc,
scene::IMeshManipulator *meshmanip, Client *client, const TextureSettings &tsettings)
{
// minimap pixel color - the average color of a texture
if (tsettings.enable_minimap && tiledef[0].name != "")
minimap_color = tsrc->getTextureAverageColor(tiledef[0].name);
// Figure out the actual tiles to use
TileDef tdef[6];
for (u32 j = 0; j < 6; j++) {
tdef[j] = tiledef[j];
if (tdef[j].name == "")
tdef[j].name = "unknown_node.png";
}
// also the overlay tiles
TileDef tdef_overlay[6];
for (u32 j = 0; j < 6; j++)
tdef_overlay[j] = tiledef_overlay[j];
// also the special tiles
TileDef tdef_spec[6];
for (u32 j = 0; j < CF_SPECIAL_COUNT; j++)
tdef_spec[j] = tiledef_special[j];
bool is_liquid = false;
u8 material_type = (alpha == 255) ?
TILE_MATERIAL_BASIC : TILE_MATERIAL_ALPHA;
switch (drawtype) {
default:
case NDT_NORMAL:
material_type = (alpha == 255) ?
TILE_MATERIAL_OPAQUE : TILE_MATERIAL_ALPHA;
solidness = 2;
break;
case NDT_AIRLIKE:
solidness = 0;
break;
case NDT_LIQUID:
assert(liquid_type == LIQUID_SOURCE);
if (tsettings.opaque_water)
alpha = 255;
solidness = 1;
is_liquid = true;
break;
case NDT_FLOWINGLIQUID:
assert(liquid_type == LIQUID_FLOWING);
solidness = 0;
if (tsettings.opaque_water)
alpha = 255;
is_liquid = true;
break;
case NDT_GLASSLIKE:
solidness = 0;
visual_solidness = 1;
break;
case NDT_GLASSLIKE_FRAMED:
solidness = 0;
visual_solidness = 1;
break;
case NDT_GLASSLIKE_FRAMED_OPTIONAL:
solidness = 0;
visual_solidness = 1;
drawtype = tsettings.connected_glass ? NDT_GLASSLIKE_FRAMED : NDT_GLASSLIKE;
break;
case NDT_ALLFACES:
solidness = 0;
visual_solidness = 1;
break;
case NDT_ALLFACES_OPTIONAL:
if (tsettings.leaves_style == LEAVES_FANCY) {
drawtype = NDT_ALLFACES;
solidness = 0;
visual_solidness = 1;
} else if (tsettings.leaves_style == LEAVES_SIMPLE) {
for (u32 j = 0; j < 6; j++) {
if (tdef_spec[j].name != "")
tdef[j].name = tdef_spec[j].name;
}
drawtype = NDT_GLASSLIKE;
solidness = 0;
visual_solidness = 1;
} else {
drawtype = NDT_NORMAL;
solidness = 2;
for (u32 i = 0; i < 6; i++)
tdef[i].name += std::string("^[noalpha");
}
if (waving >= 1)
material_type = TILE_MATERIAL_WAVING_LEAVES;
break;
case NDT_PLANTLIKE:
solidness = 0;
if (waving >= 1)
material_type = TILE_MATERIAL_WAVING_PLANTS;
break;
case NDT_FIRELIKE:
solidness = 0;
break;
case NDT_MESH:
case NDT_NODEBOX:
solidness = 0;
if (waving == 1)
material_type = TILE_MATERIAL_WAVING_PLANTS;
else if (waving == 2)
material_type = TILE_MATERIAL_WAVING_LEAVES;
break;
case NDT_TORCHLIKE:
case NDT_SIGNLIKE:
case NDT_FENCELIKE:
case NDT_RAILLIKE:
solidness = 0;
break;
case NDT_PLANTLIKE_ROOTED:
solidness = 2;
break;
}
if (is_liquid) {
// Vertex alpha is no longer supported, correct if necessary.
correctAlpha(tdef, 6);
correctAlpha(tdef_overlay, 6);
correctAlpha(tdef_spec, CF_SPECIAL_COUNT);
material_type = (alpha == 255) ?
TILE_MATERIAL_LIQUID_OPAQUE : TILE_MATERIAL_LIQUID_TRANSPARENT;
}
u32 tile_shader = shdsrc->getShader("nodes_shader", material_type, drawtype);
u8 overlay_material = material_type;
if (overlay_material == TILE_MATERIAL_OPAQUE)
overlay_material = TILE_MATERIAL_BASIC;
else if (overlay_material == TILE_MATERIAL_LIQUID_OPAQUE)
overlay_material = TILE_MATERIAL_LIQUID_TRANSPARENT;
u32 overlay_shader = shdsrc->getShader("nodes_shader", overlay_material, drawtype);
// Tiles (fill in f->tiles[])
for (u16 j = 0; j < 6; j++) {
fillTileAttribs(tsrc, &tiles[j].layers[0], &tdef[j], tile_shader,
tsettings.use_normal_texture,
tdef[j].backface_culling, material_type);
if (tdef_overlay[j].name != "")
fillTileAttribs(tsrc, &tiles[j].layers[1], &tdef_overlay[j],
overlay_shader, tsettings.use_normal_texture,
tdef[j].backface_culling, overlay_material);
}
u8 special_material = material_type;
if (drawtype == NDT_PLANTLIKE_ROOTED) {
if (waving == 1)
special_material = TILE_MATERIAL_WAVING_PLANTS;
else if (waving == 2)
special_material = TILE_MATERIAL_WAVING_LEAVES;
}
u32 special_shader = shdsrc->getShader("nodes_shader", special_material, drawtype);
// Special tiles (fill in f->special_tiles[])
for (u16 j = 0; j < CF_SPECIAL_COUNT; j++) {
fillTileAttribs(tsrc, &special_tiles[j].layers[0], &tdef_spec[j],
special_shader, tsettings.use_normal_texture,
tdef_spec[j].backface_culling, special_material);
}
if (param_type_2 == CPT2_COLOR ||
param_type_2 == CPT2_COLORED_FACEDIR ||
param_type_2 == CPT2_COLORED_WALLMOUNTED)
palette = tsrc->getPalette(palette_name);
if ((drawtype == NDT_MESH) && (mesh != "")) {
// Meshnode drawtype
// Read the mesh and apply scale
mesh_ptr[0] = client->getMesh(mesh);
if (mesh_ptr[0]){
v3f scale = v3f(1.0, 1.0, 1.0) * BS * visual_scale;
scaleMesh(mesh_ptr[0], scale);
recalculateBoundingBox(mesh_ptr[0]);
meshmanip->recalculateNormals(mesh_ptr[0], true, false);
}
} else if ((drawtype == NDT_NODEBOX) &&
((node_box.type == NODEBOX_REGULAR) ||
(node_box.type == NODEBOX_FIXED)) &&
(!node_box.fixed.empty())) {
//Convert regular nodebox nodes to meshnodes
//Change the drawtype and apply scale
drawtype = NDT_MESH;
mesh_ptr[0] = convertNodeboxesToMesh(node_box.fixed);
v3f scale = v3f(1.0, 1.0, 1.0) * visual_scale;
scaleMesh(mesh_ptr[0], scale);
recalculateBoundingBox(mesh_ptr[0]);
meshmanip->recalculateNormals(mesh_ptr[0], true, false);
}
//Cache 6dfacedir and wallmounted rotated clones of meshes
if (tsettings.enable_mesh_cache && mesh_ptr[0] &&
(param_type_2 == CPT2_FACEDIR
|| param_type_2 == CPT2_COLORED_FACEDIR)) {
for (u16 j = 1; j < 24; j++) {
mesh_ptr[j] = cloneMesh(mesh_ptr[0]);
rotateMeshBy6dFacedir(mesh_ptr[j], j);
recalculateBoundingBox(mesh_ptr[j]);
meshmanip->recalculateNormals(mesh_ptr[j], true, false);
}
} else if (tsettings.enable_mesh_cache && mesh_ptr[0]
&& (param_type_2 == CPT2_WALLMOUNTED ||
param_type_2 == CPT2_COLORED_WALLMOUNTED)) {
static const u8 wm_to_6d[6] = { 20, 0, 16 + 1, 12 + 3, 8, 4 + 2 };
for (u16 j = 1; j < 6; j++) {
mesh_ptr[j] = cloneMesh(mesh_ptr[0]);
rotateMeshBy6dFacedir(mesh_ptr[j], wm_to_6d[j]);
recalculateBoundingBox(mesh_ptr[j]);
meshmanip->recalculateNormals(mesh_ptr[j], true, false);
}
rotateMeshBy6dFacedir(mesh_ptr[0], wm_to_6d[0]);
recalculateBoundingBox(mesh_ptr[0]);
meshmanip->recalculateNormals(mesh_ptr[0], true, false);
}
}
#endif
/*
CNodeDefManager
*/
class CNodeDefManager: public IWritableNodeDefManager {
public:
CNodeDefManager();
virtual ~CNodeDefManager();
void clear();
virtual IWritableNodeDefManager *clone();
inline virtual const ContentFeatures& get(content_t c) const;
inline virtual const ContentFeatures& get(const MapNode &n) const;
virtual bool getId(const std::string &name, content_t &result) const;
virtual content_t getId(const std::string &name) const;
virtual bool getIds(const std::string &name, std::set<content_t> &result) const;
virtual const ContentFeatures& get(const std::string &name) const;
content_t allocateId();
virtual content_t set(const std::string &name, const ContentFeatures &def);
virtual content_t allocateDummy(const std::string &name);
virtual void removeNode(const std::string &name);
virtual void updateAliases(IItemDefManager *idef);
virtual void applyTextureOverrides(const std::string &override_filepath);
virtual void updateTextures(IGameDef *gamedef,
void (*progress_cbk)(void *progress_args, u32 progress, u32 max_progress),
void *progress_cbk_args);
void serialize(std::ostream &os, u16 protocol_version) const;
void deSerialize(std::istream &is);
inline virtual void setNodeRegistrationStatus(bool completed);
virtual void pendNodeResolve(NodeResolver *nr);
virtual bool cancelNodeResolveCallback(NodeResolver *nr);
virtual void runNodeResolveCallbacks();
virtual void resetNodeResolveState();
virtual void mapNodeboxConnections();
virtual bool nodeboxConnects(MapNode from, MapNode to, u8 connect_face);
virtual core::aabbox3d<s16> getSelectionBoxIntUnion() const
{
return m_selection_box_int_union;
}
private:
void addNameIdMapping(content_t i, std::string name);
/*!
* Recalculates m_selection_box_int_union based on
* m_selection_box_union.
*/
void fixSelectionBoxIntUnion();
// Features indexed by id
std::vector<ContentFeatures> m_content_features;
// A mapping for fast converting back and forth between names and ids
NameIdMapping m_name_id_mapping;
// Like m_name_id_mapping, but only from names to ids, and includes
// item aliases too. Updated by updateAliases()
// Note: Not serialized.
std::unordered_map<std::string, content_t> m_name_id_mapping_with_aliases;
// A mapping from groups to a list of content_ts (and their levels)
// that belong to it. Necessary for a direct lookup in getIds().
// Note: Not serialized.
std::unordered_map<std::string, GroupItems> m_group_to_items;
// Next possibly free id
content_t m_next_id;
// NodeResolvers to callback once node registration has ended
std::vector<NodeResolver *> m_pending_resolve_callbacks;
// True when all nodes have been registered
bool m_node_registration_complete;
//! The union of all nodes' selection boxes.
aabb3f m_selection_box_union;
/*!
* The smallest box in node coordinates that
* contains all nodes' selection boxes.
*/
core::aabbox3d<s16> m_selection_box_int_union;
};
CNodeDefManager::CNodeDefManager()
{
clear();
}
CNodeDefManager::~CNodeDefManager()
{
#ifndef SERVER
for (u32 i = 0; i < m_content_features.size(); i++) {
ContentFeatures *f = &m_content_features[i];
for (u32 j = 0; j < 24; j++) {
if (f->mesh_ptr[j])
f->mesh_ptr[j]->drop();
}
}
#endif
}
void CNodeDefManager::clear()
{
m_content_features.clear();
m_name_id_mapping.clear();
m_name_id_mapping_with_aliases.clear();
m_group_to_items.clear();
m_next_id = 0;
m_selection_box_union.reset(0,0,0);
m_selection_box_int_union.reset(0,0,0);
resetNodeResolveState();
u32 initial_length = 0;
initial_length = MYMAX(initial_length, CONTENT_UNKNOWN + 1);
initial_length = MYMAX(initial_length, CONTENT_AIR + 1);
initial_length = MYMAX(initial_length, CONTENT_IGNORE + 1);
m_content_features.resize(initial_length);
// Set CONTENT_UNKNOWN
{
ContentFeatures f;
f.name = "unknown";
// Insert directly into containers
content_t c = CONTENT_UNKNOWN;
m_content_features[c] = f;
addNameIdMapping(c, f.name);
}
// Set CONTENT_AIR
{
ContentFeatures f;
f.name = "air";
f.drawtype = NDT_AIRLIKE;
f.param_type = CPT_LIGHT;
f.light_propagates = true;
f.sunlight_propagates = true;
f.walkable = false;
f.pointable = false;
f.diggable = false;
f.buildable_to = true;
f.floodable = true;
f.is_ground_content = true;
// Insert directly into containers
content_t c = CONTENT_AIR;
m_content_features[c] = f;
addNameIdMapping(c, f.name);
}
// Set CONTENT_IGNORE
{
ContentFeatures f;
f.name = "ignore";
f.drawtype = NDT_AIRLIKE;
f.param_type = CPT_NONE;
f.light_propagates = false;
f.sunlight_propagates = false;
f.walkable = false;
f.pointable = false;
f.diggable = false;
f.buildable_to = true; // A way to remove accidental CONTENT_IGNOREs
f.is_ground_content = true;
// Insert directly into containers
content_t c = CONTENT_IGNORE;
m_content_features[c] = f;
addNameIdMapping(c, f.name);
}
}
IWritableNodeDefManager *CNodeDefManager::clone()
{
CNodeDefManager *mgr = new CNodeDefManager();
*mgr = *this;
return mgr;
}
inline const ContentFeatures& CNodeDefManager::get(content_t c) const
{
return c < m_content_features.size()
? m_content_features[c] : m_content_features[CONTENT_UNKNOWN];
}
inline const ContentFeatures& CNodeDefManager::get(const MapNode &n) const
{
return get(n.getContent());
}
bool CNodeDefManager::getId(const std::string &name, content_t &result) const
{
std::unordered_map<std::string, content_t>::const_iterator
i = m_name_id_mapping_with_aliases.find(name);
if(i == m_name_id_mapping_with_aliases.end())
return false;
result = i->second;
return true;
}
content_t CNodeDefManager::getId(const std::string &name) const
{
content_t id = CONTENT_IGNORE;
getId(name, id);
return id;
}
bool CNodeDefManager::getIds(const std::string &name,
std::set<content_t> &result) const
{
//TimeTaker t("getIds", NULL, PRECISION_MICRO);
if (name.substr(0,6) != "group:") {
content_t id = CONTENT_IGNORE;
bool exists = getId(name, id);
if (exists)
result.insert(id);
return exists;
}
std::string group = name.substr(6);
std::unordered_map<std::string, GroupItems>::const_iterator
i = m_group_to_items.find(group);
if (i == m_group_to_items.end())
return true;
const GroupItems &items = i->second;
for (GroupItems::const_iterator j = items.begin();
j != items.end(); ++j) {
if ((*j).second != 0)
result.insert((*j).first);
}
//printf("getIds: %dus\n", t.stop());
return true;
}
const ContentFeatures& CNodeDefManager::get(const std::string &name) const
{
content_t id = CONTENT_UNKNOWN;
getId(name, id);
return get(id);
}
// returns CONTENT_IGNORE if no free ID found
content_t CNodeDefManager::allocateId()
{
for (content_t id = m_next_id;
id >= m_next_id; // overflow?
++id) {
while (id >= m_content_features.size()) {
m_content_features.push_back(ContentFeatures());
}
const ContentFeatures &f = m_content_features[id];
if (f.name == "") {
m_next_id = id + 1;
return id;
}
}
// If we arrive here, an overflow occurred in id.
// That means no ID was found
return CONTENT_IGNORE;
}
/*!
* Returns the smallest box that contains all boxes
* in the vector. Box_union is expanded.
* @param[in] boxes the vector containing the boxes
* @param[in, out] box_union the union of the arguments
*/
void boxVectorUnion(const std::vector<aabb3f> &boxes, aabb3f *box_union)
{
for (std::vector<aabb3f>::const_iterator it = boxes.begin();
it != boxes.end(); ++it) {
box_union->addInternalBox(*it);
}
}
/*!
* Returns a box that contains the nodebox in every case.
* The argument node_union is expanded.
* @param[in] nodebox the nodebox to be measured
* @param[in] features used to decide whether the nodebox
* can be rotated
* @param[in, out] box_union the union of the arguments
*/
void getNodeBoxUnion(const NodeBox &nodebox, const ContentFeatures &features,
aabb3f *box_union)
{
switch(nodebox.type) {
case NODEBOX_FIXED:
case NODEBOX_LEVELED: {
// Raw union
aabb3f half_processed(0, 0, 0, 0, 0, 0);
boxVectorUnion(nodebox.fixed, &half_processed);
// Set leveled boxes to maximal
if (nodebox.type == NODEBOX_LEVELED) {
half_processed.MaxEdge.Y = +BS / 2;
}
if (features.param_type_2 == CPT2_FACEDIR ||
features.param_type_2 == CPT2_COLORED_FACEDIR) {
// Get maximal coordinate
f32 coords[] = {
fabsf(half_processed.MinEdge.X),
fabsf(half_processed.MinEdge.Y),
fabsf(half_processed.MinEdge.Z),
fabsf(half_processed.MaxEdge.X),
fabsf(half_processed.MaxEdge.Y),
fabsf(half_processed.MaxEdge.Z) };
f32 max = 0;
for (int i = 0; i < 6; i++) {
if (max < coords[i]) {
max = coords[i];
}
}
// Add the union of all possible rotated boxes
box_union->addInternalPoint(-max, -max, -max);
box_union->addInternalPoint(+max, +max, +max);
} else {
box_union->addInternalBox(half_processed);
}
break;
}
case NODEBOX_WALLMOUNTED: {
// Add fix boxes
box_union->addInternalBox(nodebox.wall_top);
box_union->addInternalBox(nodebox.wall_bottom);
// Find maximal coordinate in the X-Z plane
f32 coords[] = {
fabsf(nodebox.wall_side.MinEdge.X),
fabsf(nodebox.wall_side.MinEdge.Z),
fabsf(nodebox.wall_side.MaxEdge.X),
fabsf(nodebox.wall_side.MaxEdge.Z) };
f32 max = 0;
for (int i = 0; i < 4; i++) {
if (max < coords[i]) {
max = coords[i];
}
}
// Add the union of all possible rotated boxes
box_union->addInternalPoint(-max, nodebox.wall_side.MinEdge.Y, -max);
box_union->addInternalPoint(max, nodebox.wall_side.MaxEdge.Y, max);
break;
}
case NODEBOX_CONNECTED: {
// Add all possible connected boxes
boxVectorUnion(nodebox.fixed, box_union);
boxVectorUnion(nodebox.connect_top, box_union);
boxVectorUnion(nodebox.connect_bottom, box_union);
boxVectorUnion(nodebox.connect_front, box_union);
boxVectorUnion(nodebox.connect_left, box_union);
boxVectorUnion(nodebox.connect_back, box_union);
boxVectorUnion(nodebox.connect_right, box_union);
break;
}
default: {
// NODEBOX_REGULAR
box_union->addInternalPoint(-BS / 2, -BS / 2, -BS / 2);
box_union->addInternalPoint(+BS / 2, +BS / 2, +BS / 2);
}
}
}
inline void CNodeDefManager::fixSelectionBoxIntUnion()
{
m_selection_box_int_union.MinEdge.X = floorf(
m_selection_box_union.MinEdge.X / BS + 0.5f);
m_selection_box_int_union.MinEdge.Y = floorf(
m_selection_box_union.MinEdge.Y / BS + 0.5f);
m_selection_box_int_union.MinEdge.Z = floorf(
m_selection_box_union.MinEdge.Z / BS + 0.5f);
m_selection_box_int_union.MaxEdge.X = ceilf(
m_selection_box_union.MaxEdge.X / BS - 0.5f);
m_selection_box_int_union.MaxEdge.Y = ceilf(
m_selection_box_union.MaxEdge.Y / BS - 0.5f);
m_selection_box_int_union.MaxEdge.Z = ceilf(
m_selection_box_union.MaxEdge.Z / BS - 0.5f);
}
// IWritableNodeDefManager
content_t CNodeDefManager::set(const std::string &name, const ContentFeatures &def)
{
// Pre-conditions
assert(name != "");
assert(name == def.name);
// Don't allow redefining ignore (but allow air and unknown)
if (name == "ignore") {
warningstream << "NodeDefManager: Ignoring "
"CONTENT_IGNORE redefinition"<<std::endl;
return CONTENT_IGNORE;
}
content_t id = CONTENT_IGNORE;
if (!m_name_id_mapping.getId(name, id)) { // ignore aliases
// Get new id
id = allocateId();
if (id == CONTENT_IGNORE) {
warningstream << "NodeDefManager: Absolute "
"limit reached" << std::endl;
return CONTENT_IGNORE;
}
assert(id != CONTENT_IGNORE);
addNameIdMapping(id, name);
}
m_content_features[id] = def;
verbosestream << "NodeDefManager: registering content id \"" << id
<< "\": name=\"" << def.name << "\""<<std::endl;
getNodeBoxUnion(def.selection_box, def, &m_selection_box_union);
fixSelectionBoxIntUnion();
// Add this content to the list of all groups it belongs to
// FIXME: This should remove a node from groups it no longer
// belongs to when a node is re-registered
for (ItemGroupList::const_iterator i = def.groups.begin();
i != def.groups.end(); ++i) {
std::string group_name = i->first;
std::unordered_map<std::string, GroupItems>::iterator
j = m_group_to_items.find(group_name);
if (j == m_group_to_items.end()) {
m_group_to_items[group_name].push_back(
std::make_pair(id, i->second));
} else {
GroupItems &items = j->second;
items.push_back(std::make_pair(id, i->second));
}
}
return id;
}
content_t CNodeDefManager::allocateDummy(const std::string &name)
{
assert(name != ""); // Pre-condition
ContentFeatures f;
f.name = name;
return set(name, f);
}
void CNodeDefManager::removeNode(const std::string &name)
{
// Pre-condition
assert(name != "");
// Erase name from name ID mapping
content_t id = CONTENT_IGNORE;
if (m_name_id_mapping.getId(name, id)) {
m_name_id_mapping.eraseName(name);
m_name_id_mapping_with_aliases.erase(name);
}
// Erase node content from all groups it belongs to
for (std::unordered_map<std::string, GroupItems>::iterator iter_groups =
m_group_to_items.begin(); iter_groups != m_group_to_items.end();) {
GroupItems &items = iter_groups->second;
for (GroupItems::iterator iter_groupitems = items.begin();
iter_groupitems != items.end();) {
if (iter_groupitems->first == id)
items.erase(iter_groupitems++);
else
++iter_groupitems;
}
// Check if group is empty
if (items.size() == 0)
m_group_to_items.erase(iter_groups++);
else
++iter_groups;
}
}
void CNodeDefManager::updateAliases(IItemDefManager *idef)
{
std::set<std::string> all;
idef->getAll(all);
m_name_id_mapping_with_aliases.clear();
for (std::set<std::string>::const_iterator
i = all.begin(); i != all.end(); ++i) {
const std::string &name = *i;
const std::string &convert_to = idef->getAlias(name);
content_t id;
if (m_name_id_mapping.getId(convert_to, id)) {
m_name_id_mapping_with_aliases.insert(
std::make_pair(name, id));
}
}
}
void CNodeDefManager::applyTextureOverrides(const std::string &override_filepath)
{
infostream << "CNodeDefManager::applyTextureOverrides(): Applying "
"overrides to textures from " << override_filepath << std::endl;
std::ifstream infile(override_filepath.c_str());
std::string line;
int line_c = 0;
while (std::getline(infile, line)) {
line_c++;
if (trim(line) == "")
continue;
std::vector<std::string> splitted = str_split(line, ' ');
if (splitted.size() != 3) {
errorstream << override_filepath
<< ":" << line_c << " Could not apply texture override \""
<< line << "\": Syntax error" << std::endl;
continue;
}
content_t id;
if (!getId(splitted[0], id))
continue; // Ignore unknown node
ContentFeatures &nodedef = m_content_features[id];
if (splitted[1] == "top")
nodedef.tiledef[0].name = splitted[2];
else if (splitted[1] == "bottom")
nodedef.tiledef[1].name = splitted[2];
else if (splitted[1] == "right")
nodedef.tiledef[2].name = splitted[2];
else if (splitted[1] == "left")
nodedef.tiledef[3].name = splitted[2];
else if (splitted[1] == "back")
nodedef.tiledef[4].name = splitted[2];
else if (splitted[1] == "front")
nodedef.tiledef[5].name = splitted[2];
else if (splitted[1] == "all" || splitted[1] == "*")
for (int i = 0; i < 6; i++)
nodedef.tiledef[i].name = splitted[2];
else if (splitted[1] == "sides")
for (int i = 2; i < 6; i++)
nodedef.tiledef[i].name = splitted[2];
else {
errorstream << override_filepath
<< ":" << line_c << " Could not apply texture override \""
<< line << "\": Unknown node side \""
<< splitted[1] << "\"" << std::endl;
continue;
}
}
}
void CNodeDefManager::updateTextures(IGameDef *gamedef,
void (*progress_callback)(void *progress_args, u32 progress, u32 max_progress),
void *progress_callback_args)
{
#ifndef SERVER
infostream << "CNodeDefManager::updateTextures(): Updating "
"textures in node definitions" << std::endl;
Client *client = (Client *)gamedef;
ITextureSource *tsrc = client->tsrc();
IShaderSource *shdsrc = client->getShaderSource();
scene::IMeshManipulator *meshmanip =
RenderingEngine::get_scene_manager()->getMeshManipulator();
TextureSettings tsettings;
tsettings.readSettings();
u32 size = m_content_features.size();
for (u32 i = 0; i < size; i++) {
ContentFeatures *f = &(m_content_features[i]);
f->updateTextures(tsrc, shdsrc, meshmanip, client, tsettings);
progress_callback(progress_callback_args, i, size);
}
#endif
}
void CNodeDefManager::serialize(std::ostream &os, u16 protocol_version) const
{
writeU8(os, 1); // version
u16 count = 0;
std::ostringstream os2(std::ios::binary);
for (u32 i = 0; i < m_content_features.size(); i++) {
if (i == CONTENT_IGNORE || i == CONTENT_AIR
|| i == CONTENT_UNKNOWN)
continue;
const ContentFeatures *f = &m_content_features[i];
if (f->name == "")
continue;
writeU16(os2, i);
// Wrap it in a string to allow different lengths without
// strict version incompatibilities
std::ostringstream wrapper_os(std::ios::binary);
f->serialize(wrapper_os, protocol_version);
os2<<serializeString(wrapper_os.str());
// must not overflow
u16 next = count + 1;
FATAL_ERROR_IF(next < count, "Overflow");
count++;
}
writeU16(os, count);
os << serializeLongString(os2.str());
}
void CNodeDefManager::deSerialize(std::istream &is)
{
clear();
int version = readU8(is);
if (version != 1)
throw SerializationError("unsupported NodeDefinitionManager version");
u16 count = readU16(is);
std::istringstream is2(deSerializeLongString(is), std::ios::binary);
ContentFeatures f;
for (u16 n = 0; n < count; n++) {
u16 i = readU16(is2);
// Read it from the string wrapper
std::string wrapper = deSerializeString(is2);
std::istringstream wrapper_is(wrapper, std::ios::binary);
f.deSerialize(wrapper_is);
// Check error conditions
if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) {
warningstream << "NodeDefManager::deSerialize(): "
"not changing builtin node " << i << std::endl;
continue;
}
if (f.name == "") {
warningstream << "NodeDefManager::deSerialize(): "
"received empty name" << std::endl;
continue;
}
// Ignore aliases
u16 existing_id;
if (m_name_id_mapping.getId(f.name, existing_id) && i != existing_id) {
warningstream << "NodeDefManager::deSerialize(): "
"already defined with different ID: " << f.name << std::endl;
continue;
}
// All is ok, add node definition with the requested ID
if (i >= m_content_features.size())
m_content_features.resize((u32)(i) + 1);
m_content_features[i] = f;
addNameIdMapping(i, f.name);
verbosestream << "deserialized " << f.name << std::endl;
getNodeBoxUnion(f.selection_box, f, &m_selection_box_union);
fixSelectionBoxIntUnion();
}
}
void CNodeDefManager::addNameIdMapping(content_t i, std::string name)
{
m_name_id_mapping.set(i, name);
m_name_id_mapping_with_aliases.insert(std::make_pair(name, i));
}
IWritableNodeDefManager *createNodeDefManager()
{
return new CNodeDefManager();
}
//// Serialization of old ContentFeatures formats
void ContentFeatures::serializeOld(std::ostream &os, u16 protocol_version) const
{
u8 compatible_param_type_2 = param_type_2;
if ((protocol_version < 28)
&& (compatible_param_type_2 == CPT2_MESHOPTIONS))
compatible_param_type_2 = CPT2_NONE;
else if (protocol_version < 30) {
if (compatible_param_type_2 == CPT2_COLOR)
compatible_param_type_2 = CPT2_NONE;
else if (compatible_param_type_2 == CPT2_COLORED_FACEDIR)
compatible_param_type_2 = CPT2_FACEDIR;
else if (compatible_param_type_2 == CPT2_COLORED_WALLMOUNTED)
compatible_param_type_2 = CPT2_WALLMOUNTED;
}
float compatible_visual_scale = visual_scale;
if (protocol_version < 30 && drawtype == NDT_PLANTLIKE)
compatible_visual_scale = sqrt(visual_scale);
TileDef compatible_tiles[6];
for (u8 i = 0; i < 6; i++) {
compatible_tiles[i] = tiledef[i];
if (tiledef_overlay[i].name != "") {
std::stringstream s;
s << "(" << tiledef[i].name << ")^(" << tiledef_overlay[i].name
<< ")";
compatible_tiles[i].name = s.str();
}
}
// Protocol >= 24
if (protocol_version < 31) {
writeU8(os, protocol_version < 27 ? 7 : 8);
os << serializeString(name);
writeU16(os, groups.size());
for (ItemGroupList::const_iterator i = groups.begin();
i != groups.end(); ++i) {
os << serializeString(i->first);
writeS16(os, i->second);
}
writeU8(os, drawtype);
writeF1000(os, compatible_visual_scale);
writeU8(os, 6);
for (u32 i = 0; i < 6; i++)
compatible_tiles[i].serialize(os, protocol_version);
writeU8(os, CF_SPECIAL_COUNT);
for (u32 i = 0; i < CF_SPECIAL_COUNT; i++)
tiledef_special[i].serialize(os, protocol_version);
writeU8(os, alpha);
writeU8(os, post_effect_color.getAlpha());
writeU8(os, post_effect_color.getRed());
writeU8(os, post_effect_color.getGreen());
writeU8(os, post_effect_color.getBlue());
writeU8(os, param_type);
writeU8(os, compatible_param_type_2);
writeU8(os, is_ground_content);
writeU8(os, light_propagates);
writeU8(os, sunlight_propagates);
writeU8(os, walkable);
writeU8(os, pointable);
writeU8(os, diggable);
writeU8(os, climbable);
writeU8(os, buildable_to);
os << serializeString(""); // legacy: used to be metadata_name
writeU8(os, liquid_type);
os << serializeString(liquid_alternative_flowing);
os << serializeString(liquid_alternative_source);
writeU8(os, liquid_viscosity);
writeU8(os, liquid_renewable);
writeU8(os, light_source);
writeU32(os, damage_per_second);
node_box.serialize(os, protocol_version);
selection_box.serialize(os, protocol_version);
writeU8(os, legacy_facedir_simple);
writeU8(os, legacy_wallmounted);
serializeSimpleSoundSpec(sound_footstep, os, 10);
serializeSimpleSoundSpec(sound_dig, os, 10);
serializeSimpleSoundSpec(sound_dug, os, 10);
writeU8(os, rightclickable);
writeU8(os, drowning);
writeU8(os, leveled);
writeU8(os, liquid_range);
writeU8(os, waving);
os << serializeString(mesh);
collision_box.serialize(os, protocol_version);
writeU8(os, floodable);
writeU16(os, connects_to_ids.size());
for (std::set<content_t>::const_iterator i = connects_to_ids.begin();
i != connects_to_ids.end(); ++i)
writeU16(os, *i);
writeU8(os, connect_sides);
} else {
throw SerializationError("ContentFeatures::serialize(): "
"Unsupported version requested");
}
}
void ContentFeatures::deSerializeOld(std::istream &is, int version)
{
if (version == 5) // In PROTOCOL_VERSION 13
{
name = deSerializeString(is);
groups.clear();
u32 groups_size = readU16(is);
for(u32 i=0; i<groups_size; i++){
std::string name = deSerializeString(is);
int value = readS16(is);
groups[name] = value;
}
drawtype = (enum NodeDrawType)readU8(is);
visual_scale = readF1000(is);
if (readU8(is) != 6)
throw SerializationError("unsupported tile count");
for (u32 i = 0; i < 6; i++)
tiledef[i].deSerialize(is, version, drawtype);
if (readU8(is) != CF_SPECIAL_COUNT)
throw SerializationError("unsupported CF_SPECIAL_COUNT");
for (u32 i = 0; i < CF_SPECIAL_COUNT; i++)
tiledef_special[i].deSerialize(is, version, drawtype);
alpha = readU8(is);
post_effect_color.setAlpha(readU8(is));
post_effect_color.setRed(readU8(is));
post_effect_color.setGreen(readU8(is));
post_effect_color.setBlue(readU8(is));
param_type = (enum ContentParamType)readU8(is);
param_type_2 = (enum ContentParamType2)readU8(is);
is_ground_content = readU8(is);
light_propagates = readU8(is);
sunlight_propagates = readU8(is);
walkable = readU8(is);
pointable = readU8(is);
diggable = readU8(is);
climbable = readU8(is);
buildable_to = readU8(is);
deSerializeString(is); // legacy: used to be metadata_name
liquid_type = (enum LiquidType)readU8(is);
liquid_alternative_flowing = deSerializeString(is);
liquid_alternative_source = deSerializeString(is);
liquid_viscosity = readU8(is);
light_source = readU8(is);
light_source = MYMIN(light_source, LIGHT_MAX);
damage_per_second = readU32(is);
node_box.deSerialize(is);
selection_box.deSerialize(is);
legacy_facedir_simple = readU8(is);
legacy_wallmounted = readU8(is);
deSerializeSimpleSoundSpec(sound_footstep, is, version);
deSerializeSimpleSoundSpec(sound_dig, is, version);
deSerializeSimpleSoundSpec(sound_dug, is, version);
} else if (version == 6) {
name = deSerializeString(is);
groups.clear();
u32 groups_size = readU16(is);
for (u32 i = 0; i < groups_size; i++) {
std::string name = deSerializeString(is);
int value = readS16(is);
groups[name] = value;
}
drawtype = (enum NodeDrawType)readU8(is);
visual_scale = readF1000(is);
if (readU8(is) != 6)
throw SerializationError("unsupported tile count");
for (u32 i = 0; i < 6; i++)
tiledef[i].deSerialize(is, version, drawtype);
// CF_SPECIAL_COUNT in version 6 = 2
if (readU8(is) != 2)
throw SerializationError("unsupported CF_SPECIAL_COUNT");
for (u32 i = 0; i < 2; i++)
tiledef_special[i].deSerialize(is, version, drawtype);
alpha = readU8(is);
post_effect_color.setAlpha(readU8(is));
post_effect_color.setRed(readU8(is));
post_effect_color.setGreen(readU8(is));
post_effect_color.setBlue(readU8(is));
param_type = (enum ContentParamType)readU8(is);
param_type_2 = (enum ContentParamType2)readU8(is);
is_ground_content = readU8(is);
light_propagates = readU8(is);
sunlight_propagates = readU8(is);
walkable = readU8(is);
pointable = readU8(is);
diggable = readU8(is);
climbable = readU8(is);
buildable_to = readU8(is);
deSerializeString(is); // legacy: used to be metadata_name
liquid_type = (enum LiquidType)readU8(is);
liquid_alternative_flowing = deSerializeString(is);
liquid_alternative_source = deSerializeString(is);
liquid_viscosity = readU8(is);
liquid_renewable = readU8(is);
light_source = readU8(is);
damage_per_second = readU32(is);
node_box.deSerialize(is);
selection_box.deSerialize(is);
legacy_facedir_simple = readU8(is);
legacy_wallmounted = readU8(is);
deSerializeSimpleSoundSpec(sound_footstep, is, version);
deSerializeSimpleSoundSpec(sound_dig, is, version);
deSerializeSimpleSoundSpec(sound_dug, is, version);
rightclickable = readU8(is);
drowning = readU8(is);
leveled = readU8(is);
liquid_range = readU8(is);
} else if (version == 7 || version == 8){
name = deSerializeString(is);
groups.clear();
u32 groups_size = readU16(is);
for (u32 i = 0; i < groups_size; i++) {
std::string name = deSerializeString(is);
int value = readS16(is);
groups[name] = value;
}
drawtype = (enum NodeDrawType) readU8(is);
visual_scale = readF1000(is);
if (readU8(is) != 6)
throw SerializationError("unsupported tile count");
for (u32 i = 0; i < 6; i++)
tiledef[i].deSerialize(is, version, drawtype);
if (readU8(is) != CF_SPECIAL_COUNT)
throw SerializationError("unsupported CF_SPECIAL_COUNT");
for (u32 i = 0; i < CF_SPECIAL_COUNT; i++)
tiledef_special[i].deSerialize(is, version, drawtype);
alpha = readU8(is);
post_effect_color.setAlpha(readU8(is));
post_effect_color.setRed(readU8(is));
post_effect_color.setGreen(readU8(is));
post_effect_color.setBlue(readU8(is));
param_type = (enum ContentParamType) readU8(is);
param_type_2 = (enum ContentParamType2) readU8(is);
is_ground_content = readU8(is);
light_propagates = readU8(is);
sunlight_propagates = readU8(is);
walkable = readU8(is);
pointable = readU8(is);
diggable = readU8(is);
climbable = readU8(is);
buildable_to = readU8(is);
deSerializeString(is); // legacy: used to be metadata_name
liquid_type = (enum LiquidType) readU8(is);
liquid_alternative_flowing = deSerializeString(is);
liquid_alternative_source = deSerializeString(is);
liquid_viscosity = readU8(is);
liquid_renewable = readU8(is);
light_source = readU8(is);
light_source = MYMIN(light_source, LIGHT_MAX);
damage_per_second = readU32(is);
node_box.deSerialize(is);
selection_box.deSerialize(is);
legacy_facedir_simple = readU8(is);
legacy_wallmounted = readU8(is);
deSerializeSimpleSoundSpec(sound_footstep, is, version);
deSerializeSimpleSoundSpec(sound_dig, is, version);
deSerializeSimpleSoundSpec(sound_dug, is, version);
rightclickable = readU8(is);
drowning = readU8(is);
leveled = readU8(is);
liquid_range = readU8(is);
waving = readU8(is);
try {
mesh = deSerializeString(is);
collision_box.deSerialize(is);
floodable = readU8(is);
u16 connects_to_size = readU16(is);
connects_to_ids.clear();
for (u16 i = 0; i < connects_to_size; i++)
connects_to_ids.insert(readU16(is));
connect_sides = readU8(is);
} catch (SerializationError &e) {};
}else{
throw SerializationError("unsupported ContentFeatures version");
}
}
inline void CNodeDefManager::setNodeRegistrationStatus(bool completed)
{
m_node_registration_complete = completed;
}
void CNodeDefManager::pendNodeResolve(NodeResolver *nr)
{
nr->m_ndef = this;
if (m_node_registration_complete)
nr->nodeResolveInternal();
else
m_pending_resolve_callbacks.push_back(nr);
}
bool CNodeDefManager::cancelNodeResolveCallback(NodeResolver *nr)
{
size_t len = m_pending_resolve_callbacks.size();
for (size_t i = 0; i != len; i++) {
if (nr != m_pending_resolve_callbacks[i])
continue;
len--;
m_pending_resolve_callbacks[i] = m_pending_resolve_callbacks[len];
m_pending_resolve_callbacks.resize(len);
return true;
}
return false;
}
void CNodeDefManager::runNodeResolveCallbacks()
{
for (size_t i = 0; i != m_pending_resolve_callbacks.size(); i++) {
NodeResolver *nr = m_pending_resolve_callbacks[i];
nr->nodeResolveInternal();
}
m_pending_resolve_callbacks.clear();
}
void CNodeDefManager::resetNodeResolveState()
{
m_node_registration_complete = false;
m_pending_resolve_callbacks.clear();
}
void CNodeDefManager::mapNodeboxConnections()
{
for (u32 i = 0; i < m_content_features.size(); i++) {
ContentFeatures *f = &m_content_features[i];
if ((f->drawtype != NDT_NODEBOX) || (f->node_box.type != NODEBOX_CONNECTED))
continue;
for (std::vector<std::string>::iterator it = f->connects_to.begin();
it != f->connects_to.end(); ++it) {
getIds(*it, f->connects_to_ids);
}
}
}
bool CNodeDefManager::nodeboxConnects(MapNode from, MapNode to, u8 connect_face)
{
const ContentFeatures &f1 = get(from);
if ((f1.drawtype != NDT_NODEBOX) || (f1.node_box.type != NODEBOX_CONNECTED))
return false;
// lookup target in connected set
if (f1.connects_to_ids.find(to.param0) == f1.connects_to_ids.end())
return false;
const ContentFeatures &f2 = get(to);
if ((f2.drawtype == NDT_NODEBOX) && (f2.node_box.type == NODEBOX_CONNECTED))
// ignores actually looking if back connection exists
return (f2.connects_to_ids.find(from.param0) != f2.connects_to_ids.end());
// does to node declare usable faces?
if (f2.connect_sides > 0) {
if ((f2.param_type_2 == CPT2_FACEDIR ||
f2.param_type_2 == CPT2_COLORED_FACEDIR)
&& (connect_face >= 4)) {
static const u8 rot[33 * 4] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 32, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, // 4 - back
8, 4, 32, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, // 8 - right
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 8, 4, 32, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, // 16 - front
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 32, 16, 8, 4 // 32 - left
};
return (f2.connect_sides
& rot[(connect_face * 4) + (to.param2 & 0x1F)]);
}
return (f2.connect_sides & connect_face);
}
// the target is just a regular node, so connect no matter back connection
return true;
}
////
//// NodeResolver
////
NodeResolver::NodeResolver()
{
m_nodenames.reserve(16);
m_nnlistsizes.reserve(4);
}
NodeResolver::~NodeResolver()
{
if (!m_resolve_done && m_ndef)
m_ndef->cancelNodeResolveCallback(this);
}
void NodeResolver::nodeResolveInternal()
{
m_nodenames_idx = 0;
m_nnlistsizes_idx = 0;
resolveNodeNames();
m_resolve_done = true;
m_nodenames.clear();
m_nnlistsizes.clear();
}
bool NodeResolver::getIdFromNrBacklog(content_t *result_out,
const std::string &node_alt, content_t c_fallback)
{
if (m_nodenames_idx == m_nodenames.size()) {
*result_out = c_fallback;
errorstream << "NodeResolver: no more nodes in list" << std::endl;
return false;
}
content_t c;
std::string name = m_nodenames[m_nodenames_idx++];
bool success = m_ndef->getId(name, c);
if (!success && node_alt != "") {
name = node_alt;
success = m_ndef->getId(name, c);
}
if (!success) {
errorstream << "NodeResolver: failed to resolve node name '" << name
<< "'." << std::endl;
c = c_fallback;
}
*result_out = c;
return success;
}
bool NodeResolver::getIdsFromNrBacklog(std::vector<content_t> *result_out,
bool all_required, content_t c_fallback)
{
bool success = true;
if (m_nnlistsizes_idx == m_nnlistsizes.size()) {
errorstream << "NodeResolver: no more node lists" << std::endl;
return false;
}
size_t length = m_nnlistsizes[m_nnlistsizes_idx++];
while (length--) {
if (m_nodenames_idx == m_nodenames.size()) {
errorstream << "NodeResolver: no more nodes in list" << std::endl;
return false;
}
content_t c;
std::string &name = m_nodenames[m_nodenames_idx++];
if (name.substr(0,6) != "group:") {
if (m_ndef->getId(name, c)) {
result_out->push_back(c);
} else if (all_required) {
errorstream << "NodeResolver: failed to resolve node name '"
<< name << "'." << std::endl;
result_out->push_back(c_fallback);
success = false;
}
} else {
std::set<content_t> cids;
std::set<content_t>::iterator it;
m_ndef->getIds(name, cids);
for (it = cids.begin(); it != cids.end(); ++it)
result_out->push_back(*it);
}
}
return success;
}