minetest/client/shaders/nodes_shader/opengl_vertex.glsl
2022-03-07 23:45:26 +01:00

229 lines
7.2 KiB
GLSL

uniform mat4 mWorld;
// Color of the light emitted by the sun.
uniform vec3 dayLight;
uniform vec3 eyePosition;
// The cameraOffset is the current center of the visible world.
uniform vec3 cameraOffset;
uniform float animationTimer;
varying vec3 vNormal;
varying vec3 vPosition;
// World position in the visible world (i.e. relative to the cameraOffset.)
// This can be used for many shader effects without loss of precision.
// If the absolute position is required it can be calculated with
// cameraOffset + worldPosition (for large coordinates the limits of float
// precision must be considered).
varying vec3 worldPosition;
varying lowp vec4 varColor;
// The centroid keyword ensures that after interpolation the texture coordinates
// lie within the same bounds when MSAA is en- and disabled.
// This fixes the stripes problem with nearest-neighbour textures and MSAA.
#ifdef GL_ES
varying mediump vec2 varTexCoord;
#else
centroid varying vec2 varTexCoord;
#endif
#ifdef ENABLE_DYNAMIC_SHADOWS
// shadow uniforms
uniform vec3 v_LightDirection;
uniform float f_textureresolution;
uniform mat4 m_ShadowViewProj;
uniform float f_shadowfar;
uniform float f_shadow_strength;
uniform float f_timeofday;
varying float cosLight;
varying float normalOffsetScale;
varying float adj_shadow_strength;
varying float f_normal_length;
#endif
varying vec3 eyeVec;
varying float nightRatio;
// Color of the light emitted by the light sources.
const vec3 artificialLight = vec3(1.04, 1.04, 1.04);
const float e = 2.718281828459;
const float BS = 10.0;
const float bias0 = 0.9;
const float bias1 = 1.0 - bias0;
#ifdef ENABLE_DYNAMIC_SHADOWS
// custom smoothstep implementation because it's not defined in glsl1.2
// https://docs.gl/sl4/smoothstep
float mtsmoothstep(in float edge0, in float edge1, in float x)
{
float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
#endif
float smoothCurve(float x)
{
return x * x * (3.0 - 2.0 * x);
}
float triangleWave(float x)
{
return abs(fract(x + 0.5) * 2.0 - 1.0);
}
float smoothTriangleWave(float x)
{
return smoothCurve(triangleWave(x)) * 2.0 - 1.0;
}
// OpenGL < 4.3 does not support continued preprocessor lines
#if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_TRANSPARENT || MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_OPAQUE || MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_BASIC) && ENABLE_WAVING_WATER
//
// Simple, fast noise function.
// See: https://gist.github.com/patriciogonzalezvivo/670c22f3966e662d2f83
//
vec4 perm(vec4 x)
{
return mod(((x * 34.0) + 1.0) * x, 289.0);
}
float snoise(vec3 p)
{
vec3 a = floor(p);
vec3 d = p - a;
d = d * d * (3.0 - 2.0 * d);
vec4 b = a.xxyy + vec4(0.0, 1.0, 0.0, 1.0);
vec4 k1 = perm(b.xyxy);
vec4 k2 = perm(k1.xyxy + b.zzww);
vec4 c = k2 + a.zzzz;
vec4 k3 = perm(c);
vec4 k4 = perm(c + 1.0);
vec4 o1 = fract(k3 * (1.0 / 41.0));
vec4 o2 = fract(k4 * (1.0 / 41.0));
vec4 o3 = o2 * d.z + o1 * (1.0 - d.z);
vec2 o4 = o3.yw * d.x + o3.xz * (1.0 - d.x);
return o4.y * d.y + o4.x * (1.0 - d.y);
}
#endif
void main(void)
{
varTexCoord = inTexCoord0.st;
float disp_x;
float disp_z;
// OpenGL < 4.3 does not support continued preprocessor lines
#if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES && ENABLE_WAVING_LEAVES) || (MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS && ENABLE_WAVING_PLANTS)
vec4 pos2 = mWorld * inVertexPosition;
float tOffset = (pos2.x + pos2.y) * 0.001 + pos2.z * 0.002;
disp_x = (smoothTriangleWave(animationTimer * 23.0 + tOffset) +
smoothTriangleWave(animationTimer * 11.0 + tOffset)) * 0.4;
disp_z = (smoothTriangleWave(animationTimer * 31.0 + tOffset) +
smoothTriangleWave(animationTimer * 29.0 + tOffset) +
smoothTriangleWave(animationTimer * 13.0 + tOffset)) * 0.5;
#endif
worldPosition = (mWorld * inVertexPosition).xyz;
// OpenGL < 4.3 does not support continued preprocessor lines
#if (MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_TRANSPARENT || MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_OPAQUE || MATERIAL_TYPE == TILE_MATERIAL_WAVING_LIQUID_BASIC) && ENABLE_WAVING_WATER
// Generate waves with Perlin-type noise.
// The constants are calibrated such that they roughly
// correspond to the old sine waves.
vec4 pos = inVertexPosition;
vec3 wavePos = worldPosition + cameraOffset;
// The waves are slightly compressed along the z-axis to get
// wave-fronts along the x-axis.
wavePos.x /= WATER_WAVE_LENGTH * 3.0;
wavePos.z /= WATER_WAVE_LENGTH * 2.0;
wavePos.z += animationTimer * WATER_WAVE_SPEED * 10.0;
pos.y += (snoise(wavePos) - 1.0) * WATER_WAVE_HEIGHT * 5.0;
gl_Position = mWorldViewProj * pos;
#elif MATERIAL_TYPE == TILE_MATERIAL_WAVING_LEAVES && ENABLE_WAVING_LEAVES
vec4 pos = inVertexPosition;
pos.x += disp_x;
pos.y += disp_z * 0.1;
pos.z += disp_z;
gl_Position = mWorldViewProj * pos;
#elif MATERIAL_TYPE == TILE_MATERIAL_WAVING_PLANTS && ENABLE_WAVING_PLANTS
vec4 pos = inVertexPosition;
if (varTexCoord.y < 0.05) {
pos.x += disp_x;
pos.z += disp_z;
}
gl_Position = mWorldViewProj * pos;
#else
gl_Position = mWorldViewProj * inVertexPosition;
#endif
vPosition = gl_Position.xyz;
eyeVec = -(mWorldView * inVertexPosition).xyz;
vNormal = inVertexNormal;
// Calculate color.
// Red, green and blue components are pre-multiplied with
// the brightness, so now we have to multiply these
// colors with the color of the incoming light.
// The pre-baked colors are halved to prevent overflow.
#ifdef GL_ES
vec4 color = inVertexColor.bgra;
#else
vec4 color = inVertexColor;
#endif
// The alpha gives the ratio of sunlight in the incoming light.
nightRatio = 1.0 - color.a;
color.rgb = color.rgb * (color.a * dayLight.rgb +
nightRatio * artificialLight.rgb) * 2.0;
color.a = 1.0;
// Emphase blue a bit in darker places
// See C++ implementation in mapblock_mesh.cpp final_color_blend()
float brightness = (color.r + color.g + color.b) / 3.0;
color.b += max(0.0, 0.021 - abs(0.2 * brightness - 0.021) +
0.07 * brightness);
varColor = clamp(color, 0.0, 1.0);
#ifdef ENABLE_DYNAMIC_SHADOWS
vec3 nNormal = normalize(vNormal);
cosLight = dot(nNormal, -v_LightDirection);
// Calculate normal offset scale based on the texel size adjusted for
// curvature of the SM texture. This code must be change together with
// getPerspectiveFactor or any light-space transformation.
vec3 eyeToVertex = worldPosition - eyePosition + cameraOffset;
// Distance from the vertex to the player
float distanceToPlayer = length(eyeToVertex - v_LightDirection * dot(eyeToVertex, v_LightDirection)) / f_shadowfar;
// perspective factor estimation according to the
float perspectiveFactor = distanceToPlayer * bias0 + bias1;
float texelSize = f_shadowfar * perspectiveFactor * perspectiveFactor /
(f_textureresolution * bias1 - perspectiveFactor * bias0);
float slopeScale = clamp(pow(1.0 - cosLight*cosLight, 0.5), 0.0, 1.0);
normalOffsetScale = texelSize * slopeScale;
if (f_timeofday < 0.2) {
adj_shadow_strength = f_shadow_strength * 0.5 *
(1.0 - mtsmoothstep(0.18, 0.2, f_timeofday));
} else if (f_timeofday >= 0.8) {
adj_shadow_strength = f_shadow_strength * 0.5 *
mtsmoothstep(0.8, 0.83, f_timeofday);
} else {
adj_shadow_strength = f_shadow_strength *
mtsmoothstep(0.20, 0.25, f_timeofday) *
(1.0 - mtsmoothstep(0.7, 0.8, f_timeofday));
}
f_normal_length = length(vNormal);
#endif
}