minetest/src/connection.cpp

2968 lines
77 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iomanip>
#include <errno.h>
#include "connection.h"
#include "main.h"
#include "serialization.h"
#include "log.h"
#include "porting.h"
#include "util/serialize.h"
#include "util/numeric.h"
#include "util/string.h"
#include "settings.h"
#include "profiler.h"
#include "main.h" // for profiling
namespace con
{
/* this mutex is used to achieve log message consistency */
JMutex log_message_mutex;
#define LOG(a) \
{ \
JMutexAutoLock loglock(log_message_mutex); \
a; \
}
/******************************************************************************/
/* defines used for debugging and profiling */
/******************************************************************************/
#define PROFILE(a) a
//#define PROFILE(a)
//#define DEBUG_CONNECTION_KBPS
#undef DEBUG_CONNECTION_KBPS
static inline float CALC_DTIME(unsigned int lasttime, unsigned int curtime) {
float value = ( curtime - lasttime) / 1000.0;
return MYMAX(MYMIN(value,0.1),0.0);
}
/* maximum window size to use, 0xFFFF is theoretical maximum don't think about
* touching it, the less you're away from it the more likely data corruption
* will occur
*/
#define MAX_RELIABLE_WINDOW_SIZE 0x8000
/* starting value for window size */
#define MIN_RELIABLE_WINDOW_SIZE 0x40
#define MAX_UDP_PEERS 65535
#define PING_TIMEOUT 5.0
static u16 readPeerId(u8 *packetdata)
{
return readU16(&packetdata[4]);
}
static u8 readChannel(u8 *packetdata)
{
return readU8(&packetdata[6]);
}
BufferedPacket makePacket(Address &address, u8 *data, u32 datasize,
u32 protocol_id, u16 sender_peer_id, u8 channel)
{
u32 packet_size = datasize + BASE_HEADER_SIZE;
BufferedPacket p(packet_size);
p.address = address;
writeU32(&p.data[0], protocol_id);
writeU16(&p.data[4], sender_peer_id);
writeU8(&p.data[6], channel);
memcpy(&p.data[BASE_HEADER_SIZE], data, datasize);
return p;
}
BufferedPacket makePacket(Address &address, SharedBuffer<u8> &data,
u32 protocol_id, u16 sender_peer_id, u8 channel)
{
return makePacket(address, *data, data.getSize(),
protocol_id, sender_peer_id, channel);
}
SharedBuffer<u8> makeOriginalPacket(
SharedBuffer<u8> data)
{
u32 header_size = 1;
u32 packet_size = data.getSize() + header_size;
SharedBuffer<u8> b(packet_size);
writeU8(&b[0], TYPE_ORIGINAL);
memcpy(&b[header_size], *data, data.getSize());
return b;
}
std::list<SharedBuffer<u8> > makeSplitPacket(
SharedBuffer<u8> data,
u32 chunksize_max,
u16 seqnum)
{
// Chunk packets, containing the TYPE_SPLIT header
std::list<SharedBuffer<u8> > chunks;
u32 chunk_header_size = 7;
u32 maximum_data_size = chunksize_max - chunk_header_size;
u32 start = 0;
u32 end = 0;
u32 chunk_num = 0;
u16 chunk_count = 0;
do{
end = start + maximum_data_size - 1;
if(end > data.getSize() - 1)
end = data.getSize() - 1;
u32 payload_size = end - start + 1;
u32 packet_size = chunk_header_size + payload_size;
SharedBuffer<u8> chunk(packet_size);
writeU8(&chunk[0], TYPE_SPLIT);
writeU16(&chunk[1], seqnum);
// [3] u16 chunk_count is written at next stage
writeU16(&chunk[5], chunk_num);
memcpy(&chunk[chunk_header_size], &data[start], payload_size);
chunks.push_back(chunk);
chunk_count++;
start = end + 1;
chunk_num++;
}
while(end != data.getSize() - 1);
for(std::list<SharedBuffer<u8> >::iterator i = chunks.begin();
i != chunks.end(); ++i)
{
// Write chunk_count
writeU16(&((*i)[3]), chunk_count);
}
return chunks;
}
std::list<SharedBuffer<u8> > makeAutoSplitPacket(
SharedBuffer<u8> data,
u32 chunksize_max,
u16 &split_seqnum)
{
u32 original_header_size = 1;
std::list<SharedBuffer<u8> > list;
if(data.getSize() + original_header_size > chunksize_max)
{
list = makeSplitPacket(data, chunksize_max, split_seqnum);
split_seqnum++;
return list;
}
else
{
list.push_back(makeOriginalPacket(data));
}
return list;
}
SharedBuffer<u8> makeReliablePacket(
SharedBuffer<u8> data,
u16 seqnum)
{
/*dstream<<"BEGIN SharedBuffer<u8> makeReliablePacket()"<<std::endl;
dstream<<"data.getSize()="<<data.getSize()<<", data[0]="
<<((unsigned int)data[0]&0xff)<<std::endl;*/
u32 header_size = 3;
u32 packet_size = data.getSize() + header_size;
SharedBuffer<u8> b(packet_size);
writeU8(&b[0], TYPE_RELIABLE);
writeU16(&b[1], seqnum);
memcpy(&b[header_size], *data, data.getSize());
/*dstream<<"data.getSize()="<<data.getSize()<<", data[0]="
<<((unsigned int)data[0]&0xff)<<std::endl;*/
//dstream<<"END SharedBuffer<u8> makeReliablePacket()"<<std::endl;
return b;
}
/*
ReliablePacketBuffer
*/
ReliablePacketBuffer::ReliablePacketBuffer(): m_list_size(0),writeptr(0) {}
void ReliablePacketBuffer::print()
{
JMutexAutoLock listlock(m_list_mutex);
LOG(dout_con<<"Dump of ReliablePacketBuffer:" << std::endl);
unsigned int index = 0;
for(std::list<BufferedPacket>::iterator i = m_list.begin();
i != m_list.end();
++i)
{
u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
LOG(dout_con<<index<< ":" << s << std::endl);
index++;
}
}
bool ReliablePacketBuffer::empty()
{
JMutexAutoLock listlock(m_list_mutex);
return m_list.empty();
}
u32 ReliablePacketBuffer::size()
{
return m_list_size;
}
bool ReliablePacketBuffer::containsPacket(u16 seqnum)
{
return !(findPacket(seqnum) == m_list.end());
}
RPBSearchResult ReliablePacketBuffer::findPacket(u16 seqnum)
{
std::list<BufferedPacket>::iterator i = m_list.begin();
for(; i != m_list.end(); ++i)
{
u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
/*dout_con<<"findPacket(): finding seqnum="<<seqnum
<<", comparing to s="<<s<<std::endl;*/
if(s == seqnum)
break;
}
return i;
}
RPBSearchResult ReliablePacketBuffer::notFound()
{
return m_list.end();
}
bool ReliablePacketBuffer::getFirstSeqnum(u16& result)
{
JMutexAutoLock listlock(m_list_mutex);
if(m_list.empty())
return false;
BufferedPacket p = *m_list.begin();
result = readU16(&p.data[BASE_HEADER_SIZE+1]);
return true;
}
BufferedPacket ReliablePacketBuffer::popFirst()
{
JMutexAutoLock listlock(m_list_mutex);
if(m_list.empty())
throw NotFoundException("Buffer is empty");
BufferedPacket p = *m_list.begin();
m_list.erase(m_list.begin());
--m_list_size;
if (m_list_size == 0)
{ m_oldest_non_answered_ack = 0; }
else
{ m_oldest_non_answered_ack = readU16(&(*m_list.begin()).data[BASE_HEADER_SIZE+1]); }
return p;
}
BufferedPacket ReliablePacketBuffer::popSeqnum(u16 seqnum)
{
JMutexAutoLock listlock(m_list_mutex);
RPBSearchResult r = findPacket(seqnum);
if(r == notFound()){
LOG(dout_con<<"Sequence number: " << seqnum << " not found in reliable buffer"<<std::endl);
throw NotFoundException("seqnum not found in buffer");
}
BufferedPacket p = *r;
RPBSearchResult next = r;
next++;
if (next != notFound()) {
u16 s = readU16(&(next->data[BASE_HEADER_SIZE+1]));
m_oldest_non_answered_ack = s;
}
m_list.erase(r);
--m_list_size;
if (m_list_size == 0)
{ m_oldest_non_answered_ack = 0; }
else
{ m_oldest_non_answered_ack = readU16(&(*m_list.begin()).data[BASE_HEADER_SIZE+1]); }
return p;
}
void ReliablePacketBuffer::insert(BufferedPacket &p,u16 next_expected)
{
JMutexAutoLock listlock(m_list_mutex);
assert(p.data.getSize() >= BASE_HEADER_SIZE+3);
u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]);
assert(type == TYPE_RELIABLE);
u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);
assert(seqnum_in_window(seqnum,next_expected,MAX_RELIABLE_WINDOW_SIZE));
assert(seqnum != next_expected);
++m_list_size;
assert(m_list_size <= SEQNUM_MAX+1);
// Find the right place for the packet and insert it there
// If list is empty, just add it
if(m_list.empty())
{
m_list.push_back(p);
m_oldest_non_answered_ack = seqnum;
// Done.
return;
}
// Otherwise find the right place
std::list<BufferedPacket>::iterator i = m_list.begin();
// Find the first packet in the list which has a higher seqnum
u16 s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
/* case seqnum is smaller then next_expected seqnum */
/* this is true e.g. on wrap around */
if (seqnum < next_expected) {
while(((s < seqnum) || (s >= next_expected)) && (i != m_list.end())) {
i++;
if (i != m_list.end())
s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
}
}
/* non wrap around case (at least for incoming and next_expected */
else
{
while(((s < seqnum) && (s >= next_expected)) && (i != m_list.end())) {
i++;
if (i != m_list.end())
s = readU16(&(i->data[BASE_HEADER_SIZE+1]));
}
}
if (s == seqnum) {
if (
(readU16(&(i->data[BASE_HEADER_SIZE+1])) != seqnum) ||
(i->data.getSize() != p.data.getSize()) ||
(i->address != p.address)
)
{
/* if this happens your maximum transfer window may be to big */
fprintf(stderr, "Duplicated seqnum %d non matching packet detected:\n",seqnum);
fprintf(stderr, "Old: seqnum: %05d size: %04d, address: %s\n",
readU16(&(i->data[BASE_HEADER_SIZE+1])),i->data.getSize(), i->address.serializeString().c_str());
fprintf(stderr, "New: seqnum: %05d size: %04d, address: %s\n",
readU16(&(p.data[BASE_HEADER_SIZE+1])),p.data.getSize(), p.address.serializeString().c_str());
throw IncomingDataCorruption("duplicated packet isn't same as original one");
}
assert(readU16(&(i->data[BASE_HEADER_SIZE+1])) == seqnum);
assert(i->data.getSize() == p.data.getSize());
assert(i->address == p.address);
/* nothing to do this seems to be a resent packet */
/* for paranoia reason data should be compared */
--m_list_size;
}
/* insert or push back */
else if (i != m_list.end()) {
m_list.insert(i, p);
}
else {
m_list.push_back(p);
}
/* update last packet number */
m_oldest_non_answered_ack = readU16(&(*m_list.begin()).data[BASE_HEADER_SIZE+1]);
}
void ReliablePacketBuffer::incrementTimeouts(float dtime)
{
JMutexAutoLock listlock(m_list_mutex);
for(std::list<BufferedPacket>::iterator i = m_list.begin();
i != m_list.end(); ++i)
{
i->time += dtime;
i->totaltime += dtime;
}
}
std::list<BufferedPacket> ReliablePacketBuffer::getTimedOuts(float timeout,
unsigned int max_packets)
{
JMutexAutoLock listlock(m_list_mutex);
std::list<BufferedPacket> timed_outs;
for(std::list<BufferedPacket>::iterator i = m_list.begin();
i != m_list.end(); ++i)
{
if(i->time >= timeout) {
timed_outs.push_back(*i);
//this packet will be sent right afterwards reset timeout here
i->time = 0.0;
if (timed_outs.size() >= max_packets)
break;
}
}
return timed_outs;
}
/*
IncomingSplitBuffer
*/
IncomingSplitBuffer::~IncomingSplitBuffer()
{
JMutexAutoLock listlock(m_map_mutex);
for(std::map<u16, IncomingSplitPacket*>::iterator i = m_buf.begin();
i != m_buf.end(); ++i)
{
delete i->second;
}
}
/*
This will throw a GotSplitPacketException when a full
split packet is constructed.
*/
SharedBuffer<u8> IncomingSplitBuffer::insert(BufferedPacket &p, bool reliable)
{
JMutexAutoLock listlock(m_map_mutex);
u32 headersize = BASE_HEADER_SIZE + 7;
assert(p.data.getSize() >= headersize);
u8 type = readU8(&p.data[BASE_HEADER_SIZE+0]);
assert(type == TYPE_SPLIT);
u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);
u16 chunk_count = readU16(&p.data[BASE_HEADER_SIZE+3]);
u16 chunk_num = readU16(&p.data[BASE_HEADER_SIZE+5]);
// Add if doesn't exist
if(m_buf.find(seqnum) == m_buf.end())
{
IncomingSplitPacket *sp = new IncomingSplitPacket();
sp->chunk_count = chunk_count;
sp->reliable = reliable;
m_buf[seqnum] = sp;
}
IncomingSplitPacket *sp = m_buf[seqnum];
// TODO: These errors should be thrown or something? Dunno.
if(chunk_count != sp->chunk_count)
LOG(derr_con<<"Connection: WARNING: chunk_count="<<chunk_count
<<" != sp->chunk_count="<<sp->chunk_count
<<std::endl);
if(reliable != sp->reliable)
LOG(derr_con<<"Connection: WARNING: reliable="<<reliable
<<" != sp->reliable="<<sp->reliable
<<std::endl);
// If chunk already exists, ignore it.
// Sometimes two identical packets may arrive when there is network
// lag and the server re-sends stuff.
if(sp->chunks.find(chunk_num) != sp->chunks.end())
return SharedBuffer<u8>();
// Cut chunk data out of packet
u32 chunkdatasize = p.data.getSize() - headersize;
SharedBuffer<u8> chunkdata(chunkdatasize);
memcpy(*chunkdata, &(p.data[headersize]), chunkdatasize);
// Set chunk data in buffer
sp->chunks[chunk_num] = chunkdata;
// If not all chunks are received, return empty buffer
if(sp->allReceived() == false)
return SharedBuffer<u8>();
// Calculate total size
u32 totalsize = 0;
for(std::map<u16, SharedBuffer<u8> >::iterator i = sp->chunks.begin();
i != sp->chunks.end(); ++i)
{
totalsize += i->second.getSize();
}
SharedBuffer<u8> fulldata(totalsize);
// Copy chunks to data buffer
u32 start = 0;
for(u32 chunk_i=0; chunk_i<sp->chunk_count;
chunk_i++)
{
SharedBuffer<u8> buf = sp->chunks[chunk_i];
u16 chunkdatasize = buf.getSize();
memcpy(&fulldata[start], *buf, chunkdatasize);
start += chunkdatasize;;
}
// Remove sp from buffer
m_buf.erase(seqnum);
delete sp;
return fulldata;
}
void IncomingSplitBuffer::removeUnreliableTimedOuts(float dtime, float timeout)
{
std::list<u16> remove_queue;
{
JMutexAutoLock listlock(m_map_mutex);
for(std::map<u16, IncomingSplitPacket*>::iterator i = m_buf.begin();
i != m_buf.end(); ++i)
{
IncomingSplitPacket *p = i->second;
// Reliable ones are not removed by timeout
if(p->reliable == true)
continue;
p->time += dtime;
if(p->time >= timeout)
remove_queue.push_back(i->first);
}
}
for(std::list<u16>::iterator j = remove_queue.begin();
j != remove_queue.end(); ++j)
{
JMutexAutoLock listlock(m_map_mutex);
LOG(dout_con<<"NOTE: Removing timed out unreliable split packet"<<std::endl);
delete m_buf[*j];
m_buf.erase(*j);
}
}
/*
Channel
*/
Channel::Channel() :
window_size(MIN_RELIABLE_WINDOW_SIZE),
next_incoming_seqnum(SEQNUM_INITIAL),
next_outgoing_seqnum(SEQNUM_INITIAL),
next_outgoing_split_seqnum(SEQNUM_INITIAL),
current_packet_loss(0),
current_packet_too_late(0),
packet_loss_counter(0),
current_bytes_transfered(0),
current_bytes_lost(0),
max_kbps(0.0),
cur_kbps(0.0),
avg_kbps(0.0),
max_kbps_lost(0.0),
cur_kbps_lost(0.0),
avg_kbps_lost(0.0),
bpm_counter(0.0)
{
}
Channel::~Channel()
{
}
u16 Channel::readNextIncomingSeqNum()
{
JMutexAutoLock internal(m_internal_mutex);
return next_incoming_seqnum;
}
u16 Channel::incNextIncomingSeqNum()
{
JMutexAutoLock internal(m_internal_mutex);
u16 retval = next_incoming_seqnum;
next_incoming_seqnum++;
return retval;
}
u16 Channel::readNextSplitSeqNum()
{
JMutexAutoLock internal(m_internal_mutex);
return next_outgoing_split_seqnum;
}
void Channel::setNextSplitSeqNum(u16 seqnum)
{
JMutexAutoLock internal(m_internal_mutex);
next_outgoing_split_seqnum = seqnum;
}
u16 Channel::getOutgoingSequenceNumber(bool& successfull)
{
JMutexAutoLock internal(m_internal_mutex);
u16 retval = next_outgoing_seqnum;
u16 lowest_unacked_seqnumber;
/* shortcut if there ain't any packet in outgoing list */
if (outgoing_reliables_sent.empty())
{
next_outgoing_seqnum++;
return retval;
}
if (outgoing_reliables_sent.getFirstSeqnum(lowest_unacked_seqnumber))
{
if (lowest_unacked_seqnumber < next_outgoing_seqnum) {
// ugly cast but this one is required in order to tell compiler we
// know about difference of two unsigned may be negative in general
// but we already made sure it won't happen in this case
if (((u16)(next_outgoing_seqnum - lowest_unacked_seqnumber)) > window_size) {
successfull = false;
return 0;
}
}
else {
// ugly cast but this one is required in order to tell compiler we
// know about difference of two unsigned may be negative in general
// but we already made sure it won't happen in this case
if ((next_outgoing_seqnum + (u16)(SEQNUM_MAX - lowest_unacked_seqnumber)) >
window_size) {
successfull = false;
return 0;
}
}
}
next_outgoing_seqnum++;
return retval;
}
u16 Channel::readOutgoingSequenceNumber()
{
JMutexAutoLock internal(m_internal_mutex);
return next_outgoing_seqnum;
}
bool Channel::putBackSequenceNumber(u16 seqnum)
{
if (((seqnum + 1) % (SEQNUM_MAX+1)) == next_outgoing_seqnum) {
next_outgoing_seqnum = seqnum;
return true;
}
return false;
}
void Channel::UpdateBytesSent(unsigned int bytes, unsigned int packets)
{
JMutexAutoLock internal(m_internal_mutex);
current_bytes_transfered += bytes;
current_packet_successfull += packets;
}
void Channel::UpdateBytesLost(unsigned int bytes)
{
JMutexAutoLock internal(m_internal_mutex);
current_bytes_lost += bytes;
}
void Channel::UpdatePacketLossCounter(unsigned int count)
{
JMutexAutoLock internal(m_internal_mutex);
current_packet_loss += count;
}
void Channel::UpdatePacketTooLateCounter()
{
JMutexAutoLock internal(m_internal_mutex);
current_packet_too_late++;
}
void Channel::UpdateTimers(float dtime)
{
bpm_counter += dtime;
packet_loss_counter += dtime;
if (packet_loss_counter > 1.0)
{
packet_loss_counter -= 1.0;
unsigned int packet_loss = 11; /* use a neutral value for initialization */
unsigned int packets_successfull = 0;
unsigned int packet_too_late = 0;
bool reasonable_amount_of_data_transmitted = false;
{
JMutexAutoLock internal(m_internal_mutex);
packet_loss = current_packet_loss;
packet_too_late = current_packet_too_late;
packets_successfull = current_packet_successfull;
if (current_bytes_transfered > (window_size*512/2))
{
reasonable_amount_of_data_transmitted = true;
}
current_packet_loss = 0;
current_packet_too_late = 0;
current_packet_successfull = 0;
}
float successfull_to_lost_ratio = 0.0;
bool done = false;
if (packets_successfull > 0) {
successfull_to_lost_ratio = packet_loss/packets_successfull;
}
else if (packet_loss > 0)
{
window_size = MYMAX(
(window_size - 10),
MIN_RELIABLE_WINDOW_SIZE);
done = true;
}
if (!done)
{
if ((successfull_to_lost_ratio < 0.01) &&
(window_size < MAX_RELIABLE_WINDOW_SIZE))
{
/* don't even think about increasing if we didn't even
* use major parts of our window */
if (reasonable_amount_of_data_transmitted)
window_size = MYMIN(
(window_size + 100),
MAX_RELIABLE_WINDOW_SIZE);
}
else if ((successfull_to_lost_ratio < 0.05) &&
(window_size < MAX_RELIABLE_WINDOW_SIZE))
{
/* don't even think about increasing if we didn't even
* use major parts of our window */
if (reasonable_amount_of_data_transmitted)
window_size = MYMIN(
(window_size + 50),
MAX_RELIABLE_WINDOW_SIZE);
}
else if (successfull_to_lost_ratio > 0.15)
{
window_size = MYMAX(
(window_size - 100),
MIN_RELIABLE_WINDOW_SIZE);
}
else if (successfull_to_lost_ratio > 0.1)
{
window_size = MYMAX(
(window_size - 50),
MIN_RELIABLE_WINDOW_SIZE);
}
}
}
if (bpm_counter > 10.0)
{
{
JMutexAutoLock internal(m_internal_mutex);
cur_kbps = (current_bytes_transfered/bpm_counter)/1024;
current_bytes_transfered = 0;
cur_kbps_lost = (current_bytes_lost/bpm_counter)/1024;
current_bytes_lost = 0;
bpm_counter = 0;
}
if (cur_kbps > max_kbps)
{
max_kbps = cur_kbps;
}
if (cur_kbps_lost > max_kbps_lost)
{
max_kbps_lost = cur_kbps_lost;
}
avg_kbps = avg_kbps * 0.9 + cur_kbps * 0.1;
avg_kbps_lost = avg_kbps_lost * 0.9 + cur_kbps_lost * 0.1;
}
}
/*
Peer
*/
PeerHelper::PeerHelper() :
m_peer(0)
{
}
PeerHelper::PeerHelper(Peer* peer) :
m_peer(peer)
{
if (peer != NULL)
{
if (!peer->IncUseCount())
{
m_peer = 0;
}
}
}
PeerHelper::~PeerHelper()
{
if (m_peer != 0)
m_peer->DecUseCount();
m_peer = 0;
}
PeerHelper& PeerHelper::operator=(Peer* peer)
{
m_peer = peer;
if (peer != NULL)
{
if (!peer->IncUseCount())
{
m_peer = 0;
}
}
return *this;
}
Peer* PeerHelper::operator->() const
{
return m_peer;
}
Peer* PeerHelper::operator&() const
{
return m_peer;
}
bool PeerHelper::operator!() {
return ! m_peer;
}
bool PeerHelper::operator!=(void* ptr)
{
return ((void*) m_peer != ptr);
}
bool Peer::IncUseCount()
{
JMutexAutoLock lock(m_exclusive_access_mutex);
if (!m_pending_deletion)
{
this->m_usage++;
return true;
}
return false;
}
void Peer::DecUseCount()
{
{
JMutexAutoLock lock(m_exclusive_access_mutex);
assert(m_usage > 0);
m_usage--;
if (!((m_pending_deletion) && (m_usage == 0)))
return;
}
delete this;
}
void Peer::RTTStatistics(float rtt,
std::string profiler_id,
unsigned int num_samples) {
if (m_last_rtt > 0) {
/* set min max values */
if (rtt < m_rtt.min_rtt)
m_rtt.min_rtt = rtt;
if (rtt >= m_rtt.max_rtt)
m_rtt.max_rtt = rtt;
/* do average calculation */
if(m_rtt.avg_rtt < 0.0)
m_rtt.avg_rtt = rtt;
else
m_rtt.avg_rtt = m_rtt.avg_rtt * (num_samples/(num_samples-1)) +
rtt * (1/num_samples);
/* do jitter calculation */
//just use some neutral value at beginning
float jitter = m_rtt.jitter_min;
if (rtt > m_last_rtt)
jitter = rtt-m_last_rtt;
if (rtt <= m_last_rtt)
jitter = m_last_rtt - rtt;
if (jitter < m_rtt.jitter_min)
m_rtt.jitter_min = jitter;
if (jitter >= m_rtt.jitter_max)
m_rtt.jitter_max = jitter;
if(m_rtt.jitter_avg < 0.0)
m_rtt.jitter_avg = jitter;
else
m_rtt.jitter_avg = m_rtt.jitter_avg * (num_samples/(num_samples-1)) +
jitter * (1/num_samples);
if (profiler_id != "")
{
g_profiler->graphAdd(profiler_id + "_rtt", rtt);
g_profiler->graphAdd(profiler_id + "_jitter", jitter);
}
}
/* save values required for next loop */
m_last_rtt = rtt;
}
bool Peer::isTimedOut(float timeout)
{
JMutexAutoLock lock(m_exclusive_access_mutex);
u32 current_time = porting::getTimeMs();
float dtime = CALC_DTIME(m_last_timeout_check,current_time);
m_last_timeout_check = current_time;
m_timeout_counter += dtime;
return m_timeout_counter > timeout;
}
void Peer::Drop()
{
{
JMutexAutoLock usage_lock(m_exclusive_access_mutex);
m_pending_deletion = true;
if (m_usage != 0)
return;
}
PROFILE(std::stringstream peerIdentifier1);
PROFILE(peerIdentifier1 << "runTimeouts[" << m_connection->getDesc() << ";" << id << ";RELIABLE]");
PROFILE(g_profiler->remove(peerIdentifier1.str()));
PROFILE(std::stringstream peerIdentifier2);
PROFILE(peerIdentifier2 << "sendPackets[" << m_connection->getDesc() << ";" << id << ";RELIABLE]");
PROFILE(ScopeProfiler peerprofiler(g_profiler, peerIdentifier2.str(), SPT_AVG));
delete this;
}
UDPPeer::UDPPeer(u16 a_id, Address a_address, Connection* connection) :
Peer(a_address,a_id,connection),
resend_timeout(0.5),
m_legacy_peer(true)
{
}
UDPPeer::~UDPPeer()
{
}
bool UDPPeer::getAddress(MTProtocols type,Address& toset)
{
if ((type == UDP) || (type == MINETEST_RELIABLE_UDP) || (type == PRIMARY))
{
toset = address;
return true;
}
return false;
}
void UDPPeer::reportRTT(float rtt)
{
if (rtt < 0.0) {
return;
}
RTTStatistics(rtt,"rudp",MAX_RELIABLE_WINDOW_SIZE*10);
float timeout = getStat(AVG_RTT) * RESEND_TIMEOUT_FACTOR;
if(timeout < RESEND_TIMEOUT_MIN)
timeout = RESEND_TIMEOUT_MIN;
if(timeout > RESEND_TIMEOUT_MAX)
timeout = RESEND_TIMEOUT_MAX;
JMutexAutoLock usage_lock(m_exclusive_access_mutex);
resend_timeout = timeout;
}
bool UDPPeer::Ping(float dtime,SharedBuffer<u8>& data)
{
m_ping_timer += dtime;
if(m_ping_timer >= PING_TIMEOUT)
{
// Create and send PING packet
writeU8(&data[0], TYPE_CONTROL);
writeU8(&data[1], CONTROLTYPE_PING);
m_ping_timer = 0.0;
return true;
}
return false;
}
void UDPPeer::PutReliableSendCommand(ConnectionCommand &c,
unsigned int max_packet_size)
{
if ( channels[c.channelnum].queued_commands.empty() &&
/* don't queue more packets then window size */
(channels[c.channelnum].queued_reliables.size()
< (channels[c.channelnum].getWindowSize()/2)))
{
LOG(dout_con<<m_connection->getDesc()
<<" processing reliable command for peer id: " << c.peer_id
<<" data size: " << c.data.getSize() << std::endl);
if (!processReliableSendCommand(c,max_packet_size))
{
channels[c.channelnum].queued_commands.push_back(c);
}
}
else
{
LOG(dout_con<<m_connection->getDesc()
<<" Queueing reliable command for peer id: " << c.peer_id
<<" data size: " << c.data.getSize() <<std::endl);
channels[c.channelnum].queued_commands.push_back(c);
}
}
bool UDPPeer::processReliableSendCommand(
ConnectionCommand &c,
unsigned int max_packet_size)
{
u32 chunksize_max = max_packet_size
- BASE_HEADER_SIZE
- RELIABLE_HEADER_SIZE;
assert(c.data.getSize() < MAX_RELIABLE_WINDOW_SIZE*512);
std::list<SharedBuffer<u8> > originals;
u16 split_sequence_number = channels[c.channelnum].readNextSplitSeqNum();
if (c.raw)
{
originals.push_back(c.data);
}
else {
originals = makeAutoSplitPacket(c.data, chunksize_max,split_sequence_number);
channels[c.channelnum].setNextSplitSeqNum(split_sequence_number);
}
bool have_sequence_number = true;
bool have_initial_sequence_number = false;
Queue<BufferedPacket> toadd;
volatile u16 initial_sequence_number = 0;
for(std::list<SharedBuffer<u8> >::iterator i = originals.begin();
i != originals.end(); ++i)
{
u16 seqnum = channels[c.channelnum].getOutgoingSequenceNumber(have_sequence_number);
/* oops, we don't have enough sequence numbers to send this packet */
if (!have_sequence_number)
break;
if (!have_initial_sequence_number)
{
initial_sequence_number = seqnum;
have_initial_sequence_number = true;
}
SharedBuffer<u8> reliable = makeReliablePacket(*i, seqnum);
// Add base headers and make a packet
BufferedPacket p = con::makePacket(address, reliable,
m_connection->GetProtocolID(), m_connection->GetPeerID(),
c.channelnum);
toadd.push_back(p);
}
if (have_sequence_number) {
volatile u16 pcount = 0;
while(toadd.size() > 0) {
BufferedPacket p = toadd.pop_front();
// LOG(dout_con<<connection->getDesc()
// << " queuing reliable packet for peer_id: " << c.peer_id
// << " channel: " << (c.channelnum&0xFF)
// << " seqnum: " << readU16(&p.data[BASE_HEADER_SIZE+1])
// << std::endl)
channels[c.channelnum].queued_reliables.push_back(p);
pcount++;
}
assert(channels[c.channelnum].queued_reliables.size() < 0xFFFF);
return true;
}
else {
volatile u16 packets_available = toadd.size();
/* we didn't get a single sequence number no need to fill queue */
if (!have_initial_sequence_number)
{
return false;
}
while(toadd.size() > 0) {
/* remove packet */
toadd.pop_front();
bool successfully_put_back_sequence_number
= channels[c.channelnum].putBackSequenceNumber(
(initial_sequence_number+toadd.size() % (SEQNUM_MAX+1)));
assert(successfully_put_back_sequence_number);
}
LOG(dout_con<<m_connection->getDesc()
<< " Windowsize exceeded on reliable sending " << c.data.getSize() << " bytes"
<< std::endl << "\t\tinitial_sequence_number: " << initial_sequence_number
<< std::endl << "\t\tgot at most : " << packets_available << " packets"
<< std::endl << "\t\tpackets queued : " << channels[c.channelnum].outgoing_reliables_sent.size()
<< std::endl);
return false;
}
}
void UDPPeer::RunCommandQueues(
unsigned int max_packet_size,
unsigned int maxcommands,
unsigned int maxtransfer)
{
for (unsigned int i = 0; i < CHANNEL_COUNT; i++)
{
unsigned int commands_processed = 0;
if ((channels[i].queued_commands.size() > 0) &&
(channels[i].queued_reliables.size() < maxtransfer) &&
(commands_processed < maxcommands))
{
try {
ConnectionCommand c = channels[i].queued_commands.pop_front();
LOG(dout_con<<m_connection->getDesc()
<<" processing queued reliable command "<<std::endl);
if (!processReliableSendCommand(c,max_packet_size)) {
LOG(dout_con<<m_connection->getDesc()
<< " Failed to queue packets for peer_id: " << c.peer_id
<< ", delaying sending of " << c.data.getSize() << " bytes" << std::endl);
channels[i].queued_commands.push_front(c);
}
}
catch (ItemNotFoundException e) {
// intentionally empty
}
}
}
}
u16 UDPPeer::getNextSplitSequenceNumber(u8 channel)
{
assert(channel < CHANNEL_COUNT);
return channels[channel].readNextIncomingSeqNum();
}
void UDPPeer::setNextSplitSequenceNumber(u8 channel, u16 seqnum)
{
assert(channel < CHANNEL_COUNT);
channels[channel].setNextSplitSeqNum(seqnum);
}
SharedBuffer<u8> UDPPeer::addSpiltPacket(u8 channel,
BufferedPacket toadd,
bool reliable)
{
assert(channel < CHANNEL_COUNT);
return channels[channel].incoming_splits.insert(toadd,reliable);
}
/******************************************************************************/
/* Connection Threads */
/******************************************************************************/
ConnectionSendThread::ConnectionSendThread(Connection* parent,
unsigned int max_packet_size,
float timeout) :
m_connection(parent),
m_max_packet_size(max_packet_size),
m_timeout(timeout),
m_max_commands_per_iteration(1),
m_max_data_packets_per_iteration(g_settings->getU16("max_packets_per_iteration")),
m_max_packets_requeued(256)
{
}
void * ConnectionSendThread::Thread()
{
ThreadStarted();
log_register_thread("ConnectionSend");
LOG(dout_con<<m_connection->getDesc()
<<"ConnectionSend thread started"<<std::endl);
u32 curtime = porting::getTimeMs();
u32 lasttime = curtime;
PROFILE(std::stringstream ThreadIdentifier);
PROFILE(ThreadIdentifier << "ConnectionSend: [" << m_connection->getDesc() << "]");
/* if stop is requested don't stop immediately but try to send all */
/* packets first */
while(!StopRequested() || packetsQueued()) {
BEGIN_DEBUG_EXCEPTION_HANDLER
PROFILE(ScopeProfiler sp(g_profiler, ThreadIdentifier.str(), SPT_AVG));
m_iteration_packets_avaialble = m_max_data_packets_per_iteration;
/* wait for trigger or timeout */
m_send_sleep_semaphore.Wait(50);
/* remove all triggers */
while(m_send_sleep_semaphore.Wait(0)) {}
lasttime = curtime;
curtime = porting::getTimeMs();
float dtime = CALC_DTIME(lasttime,curtime);
/* first do all the reliable stuff */
runTimeouts(dtime);
/* translate commands to packets */
ConnectionCommand c = m_connection->m_command_queue.pop_frontNoEx(0);
while(c.type != CONNCMD_NONE)
{
if (c.reliable)
processReliableCommand(c);
else
processNonReliableCommand(c);
c = m_connection->m_command_queue.pop_frontNoEx(0);
}
/* send non reliable packets */
sendPackets(dtime);
END_DEBUG_EXCEPTION_HANDLER(derr_con);
}
PROFILE(g_profiler->remove(ThreadIdentifier.str()));
return NULL;
}
void ConnectionSendThread::Trigger()
{
m_send_sleep_semaphore.Post();
}
bool ConnectionSendThread::packetsQueued()
{
std::list<u16> peerIds = m_connection->getPeerIDs();
if ((this->m_outgoing_queue.size() > 0) && (peerIds.size() > 0))
return true;
for(std::list<u16>::iterator j = peerIds.begin();
j != peerIds.end(); ++j)
{
PeerHelper peer = m_connection->getPeerNoEx(*j);
if (!peer)
continue;
if (dynamic_cast<UDPPeer*>(&peer) == 0)
continue;
for(u16 i=0; i<CHANNEL_COUNT; i++)
{
Channel *channel = &(dynamic_cast<UDPPeer*>(&peer))->channels[i];
if (channel->queued_commands.size() > 0)
{
return true;
}
}
}
return false;
}
void ConnectionSendThread::runTimeouts(float dtime)
{
std::list<u16> timeouted_peers;
std::list<u16> peerIds = m_connection->getPeerIDs();
for(std::list<u16>::iterator j = peerIds.begin();
j != peerIds.end(); ++j)
{
PeerHelper peer = m_connection->getPeerNoEx(*j);
if (!peer)
continue;
if(dynamic_cast<UDPPeer*>(&peer) == 0)
continue;
PROFILE(std::stringstream peerIdentifier);
PROFILE(peerIdentifier << "runTimeouts[" << m_connection->getDesc() << ";" << *j << ";RELIABLE]");
PROFILE(ScopeProfiler peerprofiler(g_profiler, peerIdentifier.str(), SPT_AVG));
SharedBuffer<u8> data(2); // data for sending ping, required here because of goto
/*
Check peer timeout
*/
if(peer->isTimedOut(m_timeout))
{
LOG(derr_con<<m_connection->getDesc()
<<"RunTimeouts(): Peer "<<peer->id
<<" has timed out."
<<" (source=peer->timeout_counter)"
<<std::endl);
// Add peer to the list
timeouted_peers.push_back(peer->id);
// Don't bother going through the buffers of this one
continue;
}
float resend_timeout = dynamic_cast<UDPPeer*>(&peer)->getResendTimeout();
for(u16 i=0; i<CHANNEL_COUNT; i++)
{
std::list<BufferedPacket> timed_outs;
Channel *channel = &(dynamic_cast<UDPPeer*>(&peer))->channels[i];
if (dynamic_cast<UDPPeer*>(&peer)->getLegacyPeer())
channel->setWindowSize(g_settings->getU16("workaround_window_size"));
// Remove timed out incomplete unreliable split packets
channel->incoming_splits.removeUnreliableTimedOuts(dtime, m_timeout);
// Increment reliable packet times
channel->outgoing_reliables_sent.incrementTimeouts(dtime);
unsigned int numpeers = m_connection->m_peers.size();
if (numpeers == 0)
return;
// Re-send timed out outgoing reliables
timed_outs = channel->
outgoing_reliables_sent.getTimedOuts(resend_timeout,
(m_max_data_packets_per_iteration/numpeers));
channel->UpdatePacketLossCounter(timed_outs.size());
m_iteration_packets_avaialble -= timed_outs.size();
for(std::list<BufferedPacket>::iterator j = timed_outs.begin();
j != timed_outs.end(); ++j)
{
u16 peer_id = readPeerId(*(j->data));
u8 channelnum = readChannel(*(j->data));
u16 seqnum = readU16(&(j->data[BASE_HEADER_SIZE+1]));
channel->UpdateBytesLost(j->data.getSize());
LOG(derr_con<<m_connection->getDesc()
<<"RE-SENDING timed-out RELIABLE to "
<< j->address.serializeString()
<< "(t/o="<<resend_timeout<<"): "
<<"from_peer_id="<<peer_id
<<", channel="<<((int)channelnum&0xff)
<<", seqnum="<<seqnum
<<std::endl);
rawSend(*j);
// do not handle rtt here as we can't decide if this packet was
// lost or really takes more time to transmit
}
if (!dynamic_cast<UDPPeer*>(&peer)->getLegacyPeer())
channel->UpdateTimers(dtime);
}
/* send ping if necessary */
if (dynamic_cast<UDPPeer*>(&peer)->Ping(dtime,data)) {
LOG(dout_con<<m_connection->getDesc()
<<"Sending ping for peer_id: "
<< dynamic_cast<UDPPeer*>(&peer)->id <<std::endl);
/* this may fail if there ain't a sequence number left */
if (!rawSendAsPacket(dynamic_cast<UDPPeer*>(&peer)->id, 0, data, true))
{
//retrigger with reduced ping interval
dynamic_cast<UDPPeer*>(&peer)->Ping(4.0,data);
}
}
dynamic_cast<UDPPeer*>(&peer)->RunCommandQueues(m_max_packet_size,
m_max_commands_per_iteration,
m_max_packets_requeued);
}
// Remove timed out peers
for(std::list<u16>::iterator i = timeouted_peers.begin();
i != timeouted_peers.end(); ++i)
{
LOG(derr_con<<m_connection->getDesc()
<<"RunTimeouts(): Removing peer "<<(*i)<<std::endl);
m_connection->deletePeer(*i, true);
}
}
void ConnectionSendThread::rawSend(const BufferedPacket &packet)
{
try{
m_connection->m_udpSocket.Send(packet.address, *packet.data, packet.data.getSize());
LOG(dout_con <<m_connection->getDesc()
<< " rawSend: " << packet.data.getSize() << " bytes sent" << std::endl);
} catch(SendFailedException &e){
LOG(derr_con<<m_connection->getDesc()
<<"Connection::rawSend(): SendFailedException: "
<<packet.address.serializeString()<<std::endl);
}
}
void ConnectionSendThread::sendAsPacketReliable(BufferedPacket& p, Channel* channel)
{
try{
p.absolute_send_time = porting::getTimeMs();
// Buffer the packet
channel->outgoing_reliables_sent.insert(p,
(channel->readOutgoingSequenceNumber() - MAX_RELIABLE_WINDOW_SIZE) % (MAX_RELIABLE_WINDOW_SIZE+1));
}
catch(AlreadyExistsException &e)
{
LOG(derr_con<<m_connection->getDesc()
<<"WARNING: Going to send a reliable packet"
<<" in outgoing buffer" <<std::endl);
//assert(0);
}
// Send the packet
rawSend(p);
}
bool ConnectionSendThread::rawSendAsPacket(u16 peer_id, u8 channelnum,
SharedBuffer<u8> data, bool reliable)
{
PeerHelper peer = m_connection->getPeerNoEx(peer_id);
if(!peer) {
LOG(dout_con<<m_connection->getDesc()
<<" INFO: dropped packet for non existent peer_id: " << peer_id << std::endl);
assert(reliable && "trying to send raw packet reliable but no peer found!");
return false;
}
Channel *channel = &(dynamic_cast<UDPPeer*>(&peer)->channels[channelnum]);
if(reliable)
{
bool have_sequence_number_for_raw_packet = true;
u16 seqnum = channel->getOutgoingSequenceNumber(have_sequence_number_for_raw_packet);
if (!have_sequence_number_for_raw_packet)
return false;
SharedBuffer<u8> reliable = makeReliablePacket(data, seqnum);
Address peer_address;
peer->getAddress(MINETEST_RELIABLE_UDP,peer_address);
// Add base headers and make a packet
BufferedPacket p = con::makePacket(peer_address, reliable,
m_connection->GetProtocolID(), m_connection->GetPeerID(),
channelnum);
// first check if our send window is already maxed out
if (channel->outgoing_reliables_sent.size()
< channel->getWindowSize()) {
LOG(dout_con<<m_connection->getDesc()
<<" INFO: sending a reliable packet to peer_id " << peer_id
<<" channel: " << channelnum
<<" seqnum: " << seqnum << std::endl);
sendAsPacketReliable(p,channel);
return true;
}
else {
LOG(dout_con<<m_connection->getDesc()
<<" INFO: queueing reliable packet for peer_id: " << peer_id
<<" channel: " << channelnum
<<" seqnum: " << seqnum << std::endl);
channel->queued_reliables.push_back(p);
return false;
}
}
else
{
Address peer_address;
if (peer->getAddress(UDP,peer_address))
{
// Add base headers and make a packet
BufferedPacket p = con::makePacket(peer_address, data,
m_connection->GetProtocolID(), m_connection->GetPeerID(),
channelnum);
// Send the packet
rawSend(p);
return true;
}
else {
LOG(dout_con<<m_connection->getDesc()
<<" INFO: dropped unreliable packet for peer_id: " << peer_id
<<" because of (yet) missing udp address" << std::endl);
return false;
}
}
//never reached
return false;
}
void ConnectionSendThread::processReliableCommand(ConnectionCommand &c)
{
assert(c.reliable);
switch(c.type){
case CONNCMD_NONE:
LOG(dout_con<<m_connection->getDesc()<<"UDP processing reliable CONNCMD_NONE"<<std::endl);
return;
case CONNCMD_SEND:
LOG(dout_con<<m_connection->getDesc()<<"UDP processing reliable CONNCMD_SEND"<<std::endl);
sendReliable(c);
return;
case CONNCMD_SEND_TO_ALL:
LOG(dout_con<<m_connection->getDesc()<<"UDP processing CONNCMD_SEND_TO_ALL"<<std::endl);
sendToAllReliable(c);
return;
case CONCMD_CREATE_PEER:
LOG(dout_con<<m_connection->getDesc()<<"UDP processing reliable CONCMD_CREATE_PEER"<<std::endl);
if (!rawSendAsPacket(c.peer_id,c.channelnum,c.data,c.reliable))
{
/* put to queue if we couldn't send it immediately */
sendReliable(c);
}
return;
case CONCMD_DISABLE_LEGACY:
LOG(dout_con<<m_connection->getDesc()<<"UDP processing reliable CONCMD_DISABLE_LEGACY"<<std::endl);
if (!rawSendAsPacket(c.peer_id,c.channelnum,c.data,c.reliable))
{
/* put to queue if we couldn't send it immediately */
sendReliable(c);
}
return;
case CONNCMD_SERVE:
case CONNCMD_CONNECT:
case CONNCMD_DISCONNECT:
case CONNCMD_DELETE_PEER:
case CONCMD_ACK:
assert("Got command that shouldn't be reliable as reliable command" == 0);
default:
LOG(dout_con<<m_connection->getDesc()<<" Invalid reliable command type: " << c.type <<std::endl);
}
}
void ConnectionSendThread::processNonReliableCommand(ConnectionCommand &c)
{
assert(!c.reliable);
switch(c.type){
case CONNCMD_NONE:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_NONE"<<std::endl);
return;
case CONNCMD_SERVE:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_SERVE port="
<<c.port<<std::endl);
serve(c.port);
return;
case CONNCMD_CONNECT:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_CONNECT"<<std::endl);
connect(c.address);
return;
case CONNCMD_DISCONNECT:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_DISCONNECT"<<std::endl);
disconnect();
return;
case CONNCMD_DISCONNECT_PEER:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_DISCONNECT_PEER"<<std::endl);
disconnect_peer(c.peer_id);
return;
case CONNCMD_SEND:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_SEND"<<std::endl);
send(c.peer_id, c.channelnum, c.data);
return;
case CONNCMD_SEND_TO_ALL:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_SEND_TO_ALL"<<std::endl);
sendToAll(c.channelnum, c.data);
return;
case CONNCMD_DELETE_PEER:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONNCMD_DELETE_PEER"<<std::endl);
m_connection->deletePeer(c.peer_id, false);
return;
case CONCMD_ACK:
LOG(dout_con<<m_connection->getDesc()<<" UDP processing CONCMD_ACK"<<std::endl);
sendAsPacket(c.peer_id,c.channelnum,c.data,true);
return;
case CONCMD_CREATE_PEER:
assert("Got command that should be reliable as unreliable command" == 0);
default:
LOG(dout_con<<m_connection->getDesc()<<" Invalid command type: " << c.type <<std::endl);
}
}
void ConnectionSendThread::serve(u16 port)
{
LOG(dout_con<<m_connection->getDesc()<<"UDP serving at port "<<port<<std::endl);
try{
m_connection->m_udpSocket.Bind(port);
m_connection->SetPeerID(PEER_ID_SERVER);
}
catch(SocketException &e){
// Create event
ConnectionEvent ce;
ce.bindFailed();
m_connection->putEvent(ce);
}
}
void ConnectionSendThread::connect(Address address)
{
LOG(dout_con<<m_connection->getDesc()<<" connecting to "<<address.serializeString()
<<":"<<address.getPort()<<std::endl);
UDPPeer *peer = m_connection->createServerPeer(address);
// Create event
ConnectionEvent e;
e.peerAdded(peer->id, peer->address);
m_connection->putEvent(e);
m_connection->m_udpSocket.Bind(0);
// Send a dummy packet to server with peer_id = PEER_ID_INEXISTENT
m_connection->SetPeerID(PEER_ID_INEXISTENT);
SharedBuffer<u8> data(0);
m_connection->Send(PEER_ID_SERVER, 0, data, true);
}
void ConnectionSendThread::disconnect()
{
LOG(dout_con<<m_connection->getDesc()<<" disconnecting"<<std::endl);
// Create and send DISCO packet
SharedBuffer<u8> data(2);
writeU8(&data[0], TYPE_CONTROL);
writeU8(&data[1], CONTROLTYPE_DISCO);
// Send to all
std::list<u16> peerids = m_connection->getPeerIDs();
for (std::list<u16>::iterator i = peerids.begin();
i != peerids.end();
i++)
{
sendAsPacket(*i, 0,data,false);
}
}
void ConnectionSendThread::disconnect_peer(u16 peer_id)
{
LOG(dout_con<<m_connection->getDesc()<<" disconnecting peer"<<std::endl);
// Create and send DISCO packet
SharedBuffer<u8> data(2);
writeU8(&data[0], TYPE_CONTROL);
writeU8(&data[1], CONTROLTYPE_DISCO);
sendAsPacket(peer_id, 0,data,false);
}
void ConnectionSendThread::send(u16 peer_id, u8 channelnum,
SharedBuffer<u8> data)
{
assert(channelnum < CHANNEL_COUNT);
PeerHelper peer = m_connection->getPeerNoEx(peer_id);
if(!peer) {
LOG(dout_con<<m_connection->getDesc()<<" peer: peer_id="<<peer_id
<< ">>>NOT<<< found on sending packet"
<< ", channel " << (channelnum % 0xFF)
<< ", size: " << data.getSize() <<std::endl);
return;
}
LOG(dout_con<<m_connection->getDesc()<<" sending to peer_id="<<peer_id
<< ", channel " << (channelnum % 0xFF)
<< ", size: " << data.getSize() <<std::endl);
u16 split_sequence_number = peer->getNextSplitSequenceNumber(channelnum);
u32 chunksize_max = m_max_packet_size - BASE_HEADER_SIZE;
std::list<SharedBuffer<u8> > originals;
originals = makeAutoSplitPacket(data, chunksize_max,split_sequence_number);
peer->setNextSplitSequenceNumber(channelnum,split_sequence_number);
for(std::list<SharedBuffer<u8> >::iterator i = originals.begin();
i != originals.end(); ++i)
{
SharedBuffer<u8> original = *i;
sendAsPacket(peer_id, channelnum, original);
}
}
void ConnectionSendThread::sendReliable(ConnectionCommand &c)
{
PeerHelper peer = m_connection->getPeerNoEx(c.peer_id);
if (!peer)
return;
peer->PutReliableSendCommand(c,m_max_packet_size);
}
void ConnectionSendThread::sendToAll(u8 channelnum, SharedBuffer<u8> data)
{
std::list<u16> peerids = m_connection->getPeerIDs();
for (std::list<u16>::iterator i = peerids.begin();
i != peerids.end();
i++)
{
send(*i, channelnum, data);
}
}
void ConnectionSendThread::sendToAllReliable(ConnectionCommand &c)
{
std::list<u16> peerids = m_connection->getPeerIDs();
for (std::list<u16>::iterator i = peerids.begin();
i != peerids.end();
i++)
{
PeerHelper peer = m_connection->getPeerNoEx(*i);
if (!peer)
continue;
peer->PutReliableSendCommand(c,m_max_packet_size);
}
}
void ConnectionSendThread::sendPackets(float dtime)
{
std::list<u16> peerIds = m_connection->getPeerIDs();
for(std::list<u16>::iterator
j = peerIds.begin();
j != peerIds.end(); ++j)
{
PeerHelper peer = m_connection->getPeerNoEx(*j);
//peer may have been removed
if (!peer) {
LOG(dout_con<<m_connection->getDesc()<< " Peer not found: peer_id=" << *j << std::endl);
continue;
}
peer->m_increment_packets_remaining = m_iteration_packets_avaialble/m_connection->m_peers.size();
if (dynamic_cast<UDPPeer*>(&peer) == 0)
{
continue;
}
PROFILE(std::stringstream peerIdentifier);
PROFILE(peerIdentifier << "sendPackets[" << m_connection->getDesc() << ";" << *j << ";RELIABLE]");
PROFILE(ScopeProfiler peerprofiler(g_profiler, peerIdentifier.str(), SPT_AVG));
LOG(dout_con<<m_connection->getDesc()
<< " Handle per peer queues: peer_id=" << *j
<< " packet quota: " << peer->m_increment_packets_remaining << std::endl);
// first send queued reliable packets for all peers (if possible)
for (unsigned int i=0; i < CHANNEL_COUNT; i++)
{
u16 next_to_ack = 0;
dynamic_cast<UDPPeer*>(&peer)->channels[i].outgoing_reliables_sent.getFirstSeqnum(next_to_ack);
u16 next_to_receive = 0;
dynamic_cast<UDPPeer*>(&peer)->channels[i].incoming_reliables.getFirstSeqnum(next_to_receive);
LOG(dout_con<<m_connection->getDesc()<< "\t channel: "
<< i << ", peer quota:"
<< peer->m_increment_packets_remaining
<< std::endl
<< "\t\t\treliables on wire: "
<< dynamic_cast<UDPPeer*>(&peer)->channels[i].outgoing_reliables_sent.size()
<< ", waiting for ack for " << next_to_ack
<< std::endl
<< "\t\t\tincoming_reliables: "
<< dynamic_cast<UDPPeer*>(&peer)->channels[i].incoming_reliables.size()
<< ", next reliable packet: "
<< dynamic_cast<UDPPeer*>(&peer)->channels[i].readNextIncomingSeqNum()
<< ", next queued: " << next_to_receive
<< std::endl
<< "\t\t\treliables queued : "
<< dynamic_cast<UDPPeer*>(&peer)->channels[i].queued_reliables.size()
<< std::endl
<< "\t\t\tqueued commands : "
<< dynamic_cast<UDPPeer*>(&peer)->channels[i].queued_commands.size()
<< std::endl);
while ((dynamic_cast<UDPPeer*>(&peer)->channels[i].queued_reliables.size() > 0) &&
(dynamic_cast<UDPPeer*>(&peer)->channels[i].outgoing_reliables_sent.size()
< dynamic_cast<UDPPeer*>(&peer)->channels[i].getWindowSize())&&
(peer->m_increment_packets_remaining > 0))
{
BufferedPacket p = dynamic_cast<UDPPeer*>(&peer)->channels[i].queued_reliables.pop_front();
Channel* channel = &(dynamic_cast<UDPPeer*>(&peer)->channels[i]);
LOG(dout_con<<m_connection->getDesc()
<<" INFO: sending a queued reliable packet "
<<" channel: " << i
<<", seqnum: " << readU16(&p.data[BASE_HEADER_SIZE+1])
<< std::endl);
sendAsPacketReliable(p,channel);
peer->m_increment_packets_remaining--;
}
}
}
if (m_outgoing_queue.size())
{
LOG(dout_con<<m_connection->getDesc()
<< " Handle non reliable queue ("
<< m_outgoing_queue.size() << " pkts)" << std::endl);
}
/* send non reliable packets*/
for(unsigned int i=0;i < m_outgoing_queue.size();i++) {
OutgoingPacket packet = m_outgoing_queue.pop_front();
assert(!packet.reliable &&
"reliable packets are not allowed in outgoing queue!");
PeerHelper peer = m_connection->getPeerNoEx(packet.peer_id);
if(!peer) {
LOG(dout_con<<m_connection->getDesc()
<<" Outgoing queue: peer_id="<<packet.peer_id
<< ">>>NOT<<< found on sending packet"
<< ", channel " << (packet.channelnum % 0xFF)
<< ", size: " << packet.data.getSize() <<std::endl);
continue;
}
/* send acks immediately */
else if (packet.ack)
{
rawSendAsPacket(packet.peer_id, packet.channelnum,
packet.data, packet.reliable);
peer->m_increment_packets_remaining =
MYMIN(0,peer->m_increment_packets_remaining--);
}
else if (
( peer->m_increment_packets_remaining > 0) ||
(StopRequested())){
rawSendAsPacket(packet.peer_id, packet.channelnum,
packet.data, packet.reliable);
peer->m_increment_packets_remaining--;
}
else {
m_outgoing_queue.push_back(packet);
}
}
}
void ConnectionSendThread::sendAsPacket(u16 peer_id, u8 channelnum,
SharedBuffer<u8> data, bool ack)
{
OutgoingPacket packet(peer_id, channelnum, data, false, ack);
m_outgoing_queue.push_back(packet);
}
ConnectionReceiveThread::ConnectionReceiveThread(Connection* parent,
unsigned int max_packet_size) :
m_connection(parent),
m_max_packet_size(max_packet_size)
{
}
void * ConnectionReceiveThread::Thread()
{
ThreadStarted();
log_register_thread("ConnectionReceive");
LOG(dout_con<<m_connection->getDesc()
<<"ConnectionReceive thread started"<<std::endl);
PROFILE(std::stringstream ThreadIdentifier);
PROFILE(ThreadIdentifier << "ConnectionReceive: [" << m_connection->getDesc() << "]");
#ifdef DEBUG_CONNECTION_KBPS
u32 curtime = porting::getTimeMs();
u32 lasttime = curtime;
float debug_print_timer = 0.0;
#endif
while(!StopRequested()) {
BEGIN_DEBUG_EXCEPTION_HANDLER
PROFILE(ScopeProfiler sp(g_profiler, ThreadIdentifier.str(), SPT_AVG));
#ifdef DEBUG_CONNECTION_KBPS
lasttime = curtime;
curtime = porting::getTimeMs();
float dtime = CALC_DTIME(lasttime,curtime);
#endif
/* receive packets */
receive();
#ifdef DEBUG_CONNECTION_KBPS
debug_print_timer += dtime;
if (debug_print_timer > 20.0) {
debug_print_timer -= 20.0;
std::list<u16> peerids = m_connection->getPeerIDs();
for (std::list<u16>::iterator i = peerids.begin();
i != peerids.end();
i++)
{
PeerHelper peer = m_connection->getPeerNoEx(*i);
if (!peer)
continue;
float peer_current = 0.0;
float peer_loss = 0.0;
float avg_rate = 0.0;
float avg_loss = 0.0;
for(u16 j=0; j<CHANNEL_COUNT; j++)
{
peer_current +=peer->channels[j].getCurrentDownloadRateKB();
peer_loss += peer->channels[j].getCurrentLossRateKB();
avg_rate += peer->channels[j].getAvgDownloadRateKB();
avg_loss += peer->channels[j].getAvgLossRateKB();
}
std::stringstream output;
output << std::fixed << std::setprecision(1);
output << "OUT to Peer " << *i << " RATES (good / loss) " << std::endl;
output << "\tcurrent (sum): " << peer_current << "kb/s "<< peer_loss << "kb/s" << std::endl;
output << "\taverage (sum): " << avg_rate << "kb/s "<< avg_loss << "kb/s" << std::endl;
output << std::setfill(' ');
for(u16 j=0; j<CHANNEL_COUNT; j++)
{
output << "\tcha " << j << ":"
<< " CUR: " << std::setw(6) << peer->channels[j].getCurrentDownloadRateKB() <<"kb/s"
<< " AVG: " << std::setw(6) << peer->channels[j].getAvgDownloadRateKB() <<"kb/s"
<< " MAX: " << std::setw(6) << peer->channels[j].getMaxDownloadRateKB() <<"kb/s"
<< " /"
<< " CUR: " << std::setw(6) << peer->channels[j].getCurrentLossRateKB() <<"kb/s"
<< " AVG: " << std::setw(6) << peer->channels[j].getAvgLossRateKB() <<"kb/s"
<< " MAX: " << std::setw(6) << peer->channels[j].getMaxLossRateKB() <<"kb/s"
<< " / WS: " << peer->channels[j].getWindowSize()
<< std::endl;
}
fprintf(stderr,"%s\n",output.str().c_str());
}
}
#endif
END_DEBUG_EXCEPTION_HANDLER(derr_con);
}
PROFILE(g_profiler->remove(ThreadIdentifier.str()));
return NULL;
}
// Receive packets from the network and buffers and create ConnectionEvents
void ConnectionReceiveThread::receive()
{
/* now reorder reliables */
u32 datasize = m_max_packet_size * 2; // Double it just to be safe
// TODO: We can not know how many layers of header there are.
// For now, just assume there are no other than the base headers.
u32 packet_maxsize = datasize + BASE_HEADER_SIZE;
SharedBuffer<u8> packetdata(packet_maxsize);
bool packet_queued = true;
unsigned int loop_count = 0;
/* first of all read packets from socket */
/* check for incoming data available */
while( (loop_count < 10) &&
(m_connection->m_udpSocket.WaitData(50)))
{
loop_count++;
try{
if (packet_queued)
{
bool no_data_left = false;
u16 peer_id;
SharedBuffer<u8> resultdata;
while(!no_data_left)
{
try {
no_data_left = !getFromBuffers(peer_id, resultdata);
if (!no_data_left) {
ConnectionEvent e;
e.dataReceived(peer_id, resultdata);
m_connection->putEvent(e);
}
}
catch(ProcessedSilentlyException e) {
/* try reading again */
}
}
packet_queued = false;
}
Address sender;
s32 received_size = m_connection->m_udpSocket.Receive(sender, *packetdata, packet_maxsize);
if ((received_size < 0) ||
(received_size < BASE_HEADER_SIZE) ||
(readU32(&packetdata[0]) != m_connection->GetProtocolID()))
{
LOG(derr_con<<m_connection->getDesc()
<<"Receive(): Invalid incoming packet, "
<<"size: " << received_size
<<", protocol: " << readU32(&packetdata[0]) <<std::endl);
}
u16 peer_id = readPeerId(*packetdata);
u8 channelnum = readChannel(*packetdata);
if(channelnum > CHANNEL_COUNT-1){
LOG(derr_con<<m_connection->getDesc()
<<"Receive(): Invalid channel "<<channelnum<<std::endl);
throw InvalidIncomingDataException("Channel doesn't exist");
}
/* preserve original peer_id for later usage */
u16 packet_peer_id = peer_id;
/* Try to identify peer by sender address (may happen on join) */
if(peer_id == PEER_ID_INEXISTENT)
{
peer_id = m_connection->lookupPeer(sender);
}
/* The peer was not found in our lists. Add it. */
if(peer_id == PEER_ID_INEXISTENT)
{
peer_id = m_connection->createPeer(sender,MINETEST_RELIABLE_UDP,0);
}
PeerHelper peer = m_connection->getPeerNoEx(peer_id);
if (!peer) {
LOG(dout_con<<m_connection->getDesc()
<<" got packet from unknown peer_id: "
<<peer_id<<" Ignoring."<<std::endl);
continue;
}
// Validate peer address
Address peer_address;
if (peer->getAddress(UDP,peer_address)) {
if (peer_address != sender) {
LOG(derr_con<<m_connection->getDesc()
<<m_connection->getDesc()
<<" Peer "<<peer_id<<" sending from different address."
" Ignoring."<<std::endl);
continue;
}
}
else {
bool invalid_address = true;
if (invalid_address) {
LOG(derr_con<<m_connection->getDesc()
<<m_connection->getDesc()
<<" Peer "<<peer_id<<" unknown."
" Ignoring."<<std::endl);
continue;
}
}
/* mark peer as seen with id */
if (!(packet_peer_id == PEER_ID_INEXISTENT))
peer->setSentWithID();
peer->ResetTimeout();
Channel *channel = 0;
if (dynamic_cast<UDPPeer*>(&peer) != 0)
{
channel = &(dynamic_cast<UDPPeer*>(&peer)->channels[channelnum]);
}
// Throw the received packet to channel->processPacket()
// Make a new SharedBuffer from the data without the base headers
SharedBuffer<u8> strippeddata(received_size - BASE_HEADER_SIZE);
memcpy(*strippeddata, &packetdata[BASE_HEADER_SIZE],
strippeddata.getSize());
try{
// Process it (the result is some data with no headers made by us)
SharedBuffer<u8> resultdata = processPacket
(channel, strippeddata, peer_id, channelnum, false);
LOG(dout_con<<m_connection->getDesc()
<<" ProcessPacket from peer_id: " << peer_id
<< ",channel: " << channelnum << ", returned "
<< resultdata.getSize() << " bytes" <<std::endl);
ConnectionEvent e;
e.dataReceived(peer_id, resultdata);
m_connection->putEvent(e);
}catch(ProcessedSilentlyException &e){
}catch(ProcessedQueued &e){
packet_queued = true;
}
}catch(InvalidIncomingDataException &e){
}
catch(ProcessedSilentlyException &e){
}
}
}
bool ConnectionReceiveThread::getFromBuffers(u16 &peer_id, SharedBuffer<u8> &dst)
{
std::list<u16> peerids = m_connection->getPeerIDs();
for(std::list<u16>::iterator j = peerids.begin();
j != peerids.end(); ++j)
{
PeerHelper peer = m_connection->getPeerNoEx(*j);
if (!peer)
continue;
if(dynamic_cast<UDPPeer*>(&peer) == 0)
continue;
for(u16 i=0; i<CHANNEL_COUNT; i++)
{
Channel *channel = &(dynamic_cast<UDPPeer*>(&peer))->channels[i];
SharedBuffer<u8> resultdata;
bool got = checkIncomingBuffers(channel, peer_id, resultdata);
if(got){
dst = resultdata;
return true;
}
}
}
return false;
}
bool ConnectionReceiveThread::checkIncomingBuffers(Channel *channel, u16 &peer_id,
SharedBuffer<u8> &dst)
{
u16 firstseqnum = 0;
if (channel->incoming_reliables.getFirstSeqnum(firstseqnum))
{
if(firstseqnum == channel->readNextIncomingSeqNum())
{
BufferedPacket p = channel->incoming_reliables.popFirst();
peer_id = readPeerId(*p.data);
u8 channelnum = readChannel(*p.data);
u16 seqnum = readU16(&p.data[BASE_HEADER_SIZE+1]);
LOG(dout_con<<m_connection->getDesc()
<<"UNBUFFERING TYPE_RELIABLE"
<<" seqnum="<<seqnum
<<" peer_id="<<peer_id
<<" channel="<<((int)channelnum&0xff)
<<std::endl);
channel->incNextIncomingSeqNum();
u32 headers_size = BASE_HEADER_SIZE + RELIABLE_HEADER_SIZE;
// Get out the inside packet and re-process it
SharedBuffer<u8> payload(p.data.getSize() - headers_size);
memcpy(*payload, &p.data[headers_size], payload.getSize());
dst = processPacket(channel, payload, peer_id, channelnum, true);
return true;
}
}
return false;
}
SharedBuffer<u8> ConnectionReceiveThread::processPacket(Channel *channel,
SharedBuffer<u8> packetdata, u16 peer_id,
u8 channelnum, bool reliable)
{
PeerHelper peer = m_connection->getPeer(peer_id);
if(packetdata.getSize() < 1)
throw InvalidIncomingDataException("packetdata.getSize() < 1");
u8 type = readU8(&packetdata[0]);
if(type == TYPE_CONTROL)
{
if(packetdata.getSize() < 2)
throw InvalidIncomingDataException("packetdata.getSize() < 2");
u8 controltype = readU8(&packetdata[1]);
if( (controltype == CONTROLTYPE_ACK)
&& (peer_id <= MAX_UDP_PEERS))
{
assert(channel != 0);
if(packetdata.getSize() < 4)
throw InvalidIncomingDataException
("packetdata.getSize() < 4 (ACK header size)");
u16 seqnum = readU16(&packetdata[2]);
LOG(dout_con<<m_connection->getDesc()
<<" [ CONTROLTYPE_ACK: channelnum="
<<((int)channelnum&0xff)<<", peer_id="<<peer_id
<<", seqnum="<<seqnum<< " ]"<<std::endl);
try{
BufferedPacket p =
channel->outgoing_reliables_sent.popSeqnum(seqnum);
// Get round trip time
unsigned int current_time = porting::getTimeMs();
if (current_time > p.absolute_send_time)
{
float rtt = (current_time - p.absolute_send_time) / 1000.0;
// Let peer calculate stuff according to it
// (avg_rtt and resend_timeout)
dynamic_cast<UDPPeer*>(&peer)->reportRTT(rtt);
}
else if (p.totaltime > 0)
{
float rtt = p.totaltime;
// Let peer calculate stuff according to it
// (avg_rtt and resend_timeout)
dynamic_cast<UDPPeer*>(&peer)->reportRTT(rtt);
}
//put bytes for max bandwidth calculation
channel->UpdateBytesSent(p.data.getSize(),1);
}
catch(NotFoundException &e){
LOG(derr_con<<m_connection->getDesc()
<<"WARNING: ACKed packet not "
"in outgoing queue"
<<std::endl);
channel->UpdatePacketTooLateCounter();
}
throw ProcessedSilentlyException("Got an ACK");
}
else if((controltype == CONTROLTYPE_SET_PEER_ID)
&& (peer_id <= MAX_UDP_PEERS))
{
// Got a packet to set our peer id
if(packetdata.getSize() < 4)
throw InvalidIncomingDataException
("packetdata.getSize() < 4 (SET_PEER_ID header size)");
u16 peer_id_new = readU16(&packetdata[2]);
LOG(dout_con<<m_connection->getDesc()
<<"Got new peer id: "<<peer_id_new<<"... "<<std::endl);
if(m_connection->GetPeerID() != PEER_ID_INEXISTENT)
{
LOG(derr_con<<m_connection->getDesc()
<<"WARNING: Not changing"
" existing peer id."<<std::endl);
}
else
{
LOG(dout_con<<m_connection->getDesc()<<"changing own peer id"<<std::endl);
m_connection->SetPeerID(peer_id_new);
}
ConnectionCommand cmd;
SharedBuffer<u8> reply(2);
writeU8(&reply[0], TYPE_CONTROL);
writeU8(&reply[1], CONTROLTYPE_ENABLE_BIG_SEND_WINDOW);
cmd.disableLegacy(PEER_ID_SERVER,reply);
m_connection->putCommand(cmd);
throw ProcessedSilentlyException("Got a SET_PEER_ID");
}
else if((controltype == CONTROLTYPE_PING)
&& (peer_id <= MAX_UDP_PEERS))
{
// Just ignore it, the incoming data already reset
// the timeout counter
LOG(dout_con<<m_connection->getDesc()<<"PING"<<std::endl);
throw ProcessedSilentlyException("Got a PING");
}
else if(controltype == CONTROLTYPE_DISCO)
{
// Just ignore it, the incoming data already reset
// the timeout counter
LOG(dout_con<<m_connection->getDesc()
<<"DISCO: Removing peer "<<(peer_id)<<std::endl);
if(m_connection->deletePeer(peer_id, false) == false)
{
derr_con<<m_connection->getDesc()
<<"DISCO: Peer not found"<<std::endl;
}
throw ProcessedSilentlyException("Got a DISCO");
}
else if((controltype == CONTROLTYPE_ENABLE_BIG_SEND_WINDOW)
&& (peer_id <= MAX_UDP_PEERS))
{
dynamic_cast<UDPPeer*>(&peer)->setNonLegacyPeer();
throw ProcessedSilentlyException("Got non legacy control");
}
else{
LOG(derr_con<<m_connection->getDesc()
<<"INVALID TYPE_CONTROL: invalid controltype="
<<((int)controltype&0xff)<<std::endl);
throw InvalidIncomingDataException("Invalid control type");
}
}
else if(type == TYPE_ORIGINAL)
{
if(packetdata.getSize() < ORIGINAL_HEADER_SIZE)
throw InvalidIncomingDataException
("packetdata.getSize() < ORIGINAL_HEADER_SIZE");
LOG(dout_con<<m_connection->getDesc()
<<"RETURNING TYPE_ORIGINAL to user"
<<std::endl);
// Get the inside packet out and return it
SharedBuffer<u8> payload(packetdata.getSize() - ORIGINAL_HEADER_SIZE);
memcpy(*payload, &packetdata[ORIGINAL_HEADER_SIZE], payload.getSize());
return payload;
}
else if(type == TYPE_SPLIT)
{
Address peer_address;
if (peer->getAddress(UDP,peer_address)) {
// We have to create a packet again for buffering
// This isn't actually too bad an idea.
BufferedPacket packet = makePacket(
peer_address,
packetdata,
m_connection->GetProtocolID(),
peer_id,
channelnum);
// Buffer the packet
SharedBuffer<u8> data =
peer->addSpiltPacket(channelnum,packet,reliable);
if(data.getSize() != 0)
{
LOG(dout_con<<m_connection->getDesc()
<<"RETURNING TYPE_SPLIT: Constructed full data, "
<<"size="<<data.getSize()<<std::endl);
return data;
}
LOG(dout_con<<m_connection->getDesc()<<"BUFFERED TYPE_SPLIT"<<std::endl);
throw ProcessedSilentlyException("Buffered a split packet chunk");
}
else {
//TODO throw some error
}
}
else if((peer_id <= MAX_UDP_PEERS) && (type == TYPE_RELIABLE))
{
assert(channel != 0);
// Recursive reliable packets not allowed
if(reliable)
throw InvalidIncomingDataException("Found nested reliable packets");
if(packetdata.getSize() < RELIABLE_HEADER_SIZE)
throw InvalidIncomingDataException
("packetdata.getSize() < RELIABLE_HEADER_SIZE");
u16 seqnum = readU16(&packetdata[1]);
bool is_future_packet = false;
bool is_old_packet = false;
/* packet is within our receive window send ack */
if (seqnum_in_window(seqnum, channel->readNextIncomingSeqNum(),MAX_RELIABLE_WINDOW_SIZE))
{
m_connection->sendAck(peer_id,channelnum,seqnum);
}
else {
is_future_packet = seqnum_higher(seqnum, channel->readNextIncomingSeqNum());
is_old_packet = seqnum_higher(channel->readNextIncomingSeqNum(), seqnum);
/* packet is not within receive window, don't send ack. *
* if this was a valid packet it's gonna be retransmitted */
if (is_future_packet)
{
throw ProcessedSilentlyException("Received packet newer then expected, not sending ack");
}
/* seems like our ack was lost, send another one for a old packet */
if (is_old_packet)
{
LOG(dout_con<<m_connection->getDesc()
<< "RE-SENDING ACK: peer_id: " << peer_id
<< ", channel: " << (channelnum&0xFF)
<< ", seqnum: " << seqnum << std::endl;)
m_connection->sendAck(peer_id,channelnum,seqnum);
// we already have this packet so this one was on wire at least
// the current timeout
dynamic_cast<UDPPeer*>(&peer)->reportRTT(dynamic_cast<UDPPeer*>(&peer)->getResendTimeout());
throw ProcessedSilentlyException("Retransmitting ack for old packet");
}
}
if (seqnum != channel->readNextIncomingSeqNum())
{
Address peer_address;
// this is a reliable packet so we have a udp address for sure
peer->getAddress(MINETEST_RELIABLE_UDP,peer_address);
// This one comes later, buffer it.
// Actually we have to make a packet to buffer one.
// Well, we have all the ingredients, so just do it.
BufferedPacket packet = con::makePacket(
peer_address,
packetdata,
m_connection->GetProtocolID(),
peer_id,
channelnum);
try{
channel->incoming_reliables.insert(packet,channel->readNextIncomingSeqNum());
LOG(dout_con<<m_connection->getDesc()
<< "BUFFERING, TYPE_RELIABLE peer_id: " << peer_id
<< ", channel: " << (channelnum&0xFF)
<< ", seqnum: " << seqnum << std::endl;)
throw ProcessedQueued("Buffered future reliable packet");
}
catch(AlreadyExistsException &e)
{
}
catch(IncomingDataCorruption &e)
{
ConnectionCommand discon;
discon.disconnect_peer(peer_id);
m_connection->putCommand(discon);
LOG(derr_con<<m_connection->getDesc()
<< "INVALID, TYPE_RELIABLE peer_id: " << peer_id
<< ", channel: " << (channelnum&0xFF)
<< ", seqnum: " << seqnum
<< "DROPPING CLIENT!" << std::endl;)
}
}
/* we got a packet to process right now */
LOG(dout_con<<m_connection->getDesc()
<< "RECURSIVE, TYPE_RELIABLE peer_id: " << peer_id
<< ", channel: " << (channelnum&0xFF)
<< ", seqnum: " << seqnum << std::endl;)
/* check for resend case */
u16 queued_seqnum = 0;
if (channel->incoming_reliables.getFirstSeqnum(queued_seqnum))
{
if (queued_seqnum == seqnum)
{
BufferedPacket queued_packet = channel->incoming_reliables.popFirst();
/** TODO find a way to verify the new against the old packet */
}
}
channel->incNextIncomingSeqNum();
// Get out the inside packet and re-process it
SharedBuffer<u8> payload(packetdata.getSize() - RELIABLE_HEADER_SIZE);
memcpy(*payload, &packetdata[RELIABLE_HEADER_SIZE], payload.getSize());
return processPacket(channel, payload, peer_id, channelnum, true);
}
else
{
derr_con<<m_connection->getDesc()
<<"Got invalid type="<<((int)type&0xff)<<std::endl;
throw InvalidIncomingDataException("Invalid packet type");
}
// We should never get here.
// If you get here, add an exception or a return to some of the
// above conditionals.
assert(0);
throw BaseException("Error in Channel::ProcessPacket()");
}
/*
Connection
*/
Connection::Connection(u32 protocol_id, u32 max_packet_size, float timeout,
bool ipv6):
m_udpSocket(ipv6),
m_command_queue(),
m_event_queue(),
m_peer_id(0),
m_protocol_id(protocol_id),
m_sendThread(this, max_packet_size, timeout),
m_receiveThread(this, max_packet_size),
m_info_mutex(),
m_bc_peerhandler(0),
m_bc_receive_timeout(0),
m_shutting_down(false)
{
m_udpSocket.setTimeoutMs(5);
m_sendThread.Start();
m_receiveThread.Start();
}
Connection::Connection(u32 protocol_id, u32 max_packet_size, float timeout,
bool ipv6, PeerHandler *peerhandler):
m_udpSocket(ipv6),
m_command_queue(),
m_event_queue(),
m_peer_id(0),
m_protocol_id(protocol_id),
m_sendThread(this, max_packet_size, timeout),
m_receiveThread(this, max_packet_size),
m_info_mutex(),
m_bc_peerhandler(peerhandler),
m_bc_receive_timeout(0),
m_shutting_down(false)
{
m_udpSocket.setTimeoutMs(5);
m_sendThread.Start();
m_receiveThread.Start();
}
Connection::~Connection()
{
m_shutting_down = true;
// request threads to stop
m_sendThread.Stop();
m_receiveThread.Stop();
//TODO for some unkonwn reason send/receive threads do not exit as they're
// supposed to be but wait on peer timeout. To speed up shutdown we reduce
// timeout to half a second.
m_sendThread.setPeerTimeout(0.5);
// wait for threads to finish
m_sendThread.Wait();
m_receiveThread.Wait();
// Delete peers
for(std::map<u16, Peer*>::iterator
j = m_peers.begin();
j != m_peers.end(); ++j)
{
delete j->second;
}
}
/* Internal stuff */
void Connection::putEvent(ConnectionEvent &e)
{
assert(e.type != CONNEVENT_NONE);
m_event_queue.push_back(e);
}
PeerHelper Connection::getPeer(u16 peer_id)
{
JMutexAutoLock peerlock(m_peers_mutex);
std::map<u16, Peer*>::iterator node = m_peers.find(peer_id);
if(node == m_peers.end()){
throw PeerNotFoundException("GetPeer: Peer not found (possible timeout)");
}
// Error checking
assert(node->second->id == peer_id);
return PeerHelper(node->second);
}
PeerHelper Connection::getPeerNoEx(u16 peer_id)
{
JMutexAutoLock peerlock(m_peers_mutex);
std::map<u16, Peer*>::iterator node = m_peers.find(peer_id);
if(node == m_peers.end()){
return PeerHelper(NULL);
}
// Error checking
assert(node->second->id == peer_id);
return PeerHelper(node->second);
}
/* find peer_id for address */
u16 Connection::lookupPeer(Address& sender)
{
JMutexAutoLock peerlock(m_peers_mutex);
std::map<u16, Peer*>::iterator j;
j = m_peers.begin();
for(; j != m_peers.end(); ++j)
{
Peer *peer = j->second;
if(peer->isActive())
continue;
Address tocheck;
if ((peer->getAddress(MINETEST_RELIABLE_UDP,tocheck)) && (tocheck == sender))
return peer->id;
if ((peer->getAddress(UDP,tocheck)) && (tocheck == sender))
return peer->id;
}
return PEER_ID_INEXISTENT;
}
std::list<Peer*> Connection::getPeers()
{
std::list<Peer*> list;
for(std::map<u16, Peer*>::iterator j = m_peers.begin();
j != m_peers.end(); ++j)
{
Peer *peer = j->second;
list.push_back(peer);
}
return list;
}
bool Connection::deletePeer(u16 peer_id, bool timeout)
{
Peer *peer = 0;
/* lock list as short as possible */
{
JMutexAutoLock peerlock(m_peers_mutex);
if(m_peers.find(peer_id) == m_peers.end())
return false;
peer = m_peers[peer_id];
m_peers.erase(peer_id);
}
Address peer_address;
//any peer has a primary address this never fails!
peer->getAddress(PRIMARY,peer_address);
// Create event
ConnectionEvent e;
e.peerRemoved(peer_id, timeout, peer_address);
putEvent(e);
peer->Drop();
return true;
}
/* Interface */
ConnectionEvent Connection::getEvent()
{
if(m_event_queue.empty()){
ConnectionEvent e;
e.type = CONNEVENT_NONE;
return e;
}
return m_event_queue.pop_frontNoEx();
}
ConnectionEvent Connection::waitEvent(u32 timeout_ms)
{
try{
return m_event_queue.pop_front(timeout_ms);
} catch(ItemNotFoundException &ex){
ConnectionEvent e;
e.type = CONNEVENT_NONE;
return e;
}
}
void Connection::putCommand(ConnectionCommand &c)
{
if (!m_shutting_down)
{
m_command_queue.push_back(c);
m_sendThread.Trigger();
}
}
void Connection::Serve(unsigned short port)
{
ConnectionCommand c;
c.serve(port);
putCommand(c);
}
void Connection::Connect(Address address)
{
ConnectionCommand c;
c.connect(address);
putCommand(c);
}
bool Connection::Connected()
{
JMutexAutoLock peerlock(m_peers_mutex);
if(m_peers.size() != 1)
return false;
std::map<u16, Peer*>::iterator node = m_peers.find(PEER_ID_SERVER);
if(node == m_peers.end())
return false;
if(m_peer_id == PEER_ID_INEXISTENT)
return false;
return true;
}
void Connection::Disconnect()
{
ConnectionCommand c;
c.disconnect();
putCommand(c);
}
u32 Connection::Receive(u16 &peer_id, SharedBuffer<u8> &data)
{
for(;;){
ConnectionEvent e = waitEvent(m_bc_receive_timeout);
if(e.type != CONNEVENT_NONE)
LOG(dout_con<<getDesc()<<": Receive: got event: "
<<e.describe()<<std::endl);
switch(e.type){
case CONNEVENT_NONE:
throw NoIncomingDataException("No incoming data");
case CONNEVENT_DATA_RECEIVED:
peer_id = e.peer_id;
data = SharedBuffer<u8>(e.data);
return e.data.getSize();
case CONNEVENT_PEER_ADDED: {
UDPPeer tmp(e.peer_id, e.address, this);
if(m_bc_peerhandler)
m_bc_peerhandler->peerAdded(&tmp);
continue; }
case CONNEVENT_PEER_REMOVED: {
UDPPeer tmp(e.peer_id, e.address, this);
if(m_bc_peerhandler)
m_bc_peerhandler->deletingPeer(&tmp, e.timeout);
continue; }
case CONNEVENT_BIND_FAILED:
throw ConnectionBindFailed("Failed to bind socket "
"(port already in use?)");
}
}
throw NoIncomingDataException("No incoming data");
}
void Connection::SendToAll(u8 channelnum, SharedBuffer<u8> data, bool reliable)
{
assert(channelnum < CHANNEL_COUNT);
ConnectionCommand c;
c.sendToAll(channelnum, data, reliable);
putCommand(c);
}
void Connection::Send(u16 peer_id, u8 channelnum,
SharedBuffer<u8> data, bool reliable)
{
assert(channelnum < CHANNEL_COUNT);
ConnectionCommand c;
c.send(peer_id, channelnum, data, reliable);
putCommand(c);
}
void Connection::RunTimeouts(float dtime)
{
// No-op
}
Address Connection::GetPeerAddress(u16 peer_id)
{
PeerHelper peer = getPeerNoEx(peer_id);
if (!peer)
throw PeerNotFoundException("No address for peer found!");
Address peer_address;
peer->getAddress(PRIMARY,peer_address);
return peer_address;
}
float Connection::GetPeerAvgRTT(u16 peer_id)
{
PeerHelper peer = getPeerNoEx(peer_id);
if (!peer) return -1;
return peer->getStat(AVG_RTT);
}
u16 Connection::createPeer(Address& sender, MTProtocols protocol, int fd)
{
// Somebody wants to make a new connection
// Get a unique peer id (2 or higher)
u16 peer_id_new = 2;
u16 overflow = MAX_UDP_PEERS;
/*
Find an unused peer id
*/
bool out_of_ids = false;
for(;;)
{
// Check if exists
if(m_peers.find(peer_id_new) == m_peers.end())
break;
// Check for overflow
if(peer_id_new == overflow){
out_of_ids = true;
break;
}
peer_id_new++;
}
if(out_of_ids){
errorstream<<getDesc()<<" ran out of peer ids"<<std::endl;
return PEER_ID_INEXISTENT;
}
LOG(dout_con<<getDesc()
<<"createPeer(): giving peer_id="<<peer_id_new<<std::endl);
// Create a peer
Peer *peer = 0;
peer = new UDPPeer(peer_id_new, sender, this);
m_peers_mutex.Lock();
m_peers[peer->id] = peer;
m_peers_mutex.Unlock();
// Create peer addition event
ConnectionEvent e;
e.peerAdded(peer_id_new, sender);
putEvent(e);
ConnectionCommand cmd;
SharedBuffer<u8> reply(4);
writeU8(&reply[0], TYPE_CONTROL);
writeU8(&reply[1], CONTROLTYPE_SET_PEER_ID);
writeU16(&reply[2], peer_id_new);
cmd.createPeer(peer_id_new,reply);
this->putCommand(cmd);
// We're now talking to a valid peer_id
return peer_id_new;
}
void Connection::DeletePeer(u16 peer_id)
{
ConnectionCommand c;
c.deletePeer(peer_id);
putCommand(c);
}
void Connection::PrintInfo(std::ostream &out)
{
m_info_mutex.Lock();
out<<getDesc()<<": ";
m_info_mutex.Unlock();
}
void Connection::PrintInfo()
{
PrintInfo(dout_con);
}
const std::string Connection::getDesc()
{
return std::string("con(")+itos(m_udpSocket.GetHandle())+"/"+itos(m_peer_id)+")";
}
void Connection::sendAck(u16 peer_id, u8 channelnum, u16 seqnum) {
assert(channelnum < CHANNEL_COUNT);
LOG(dout_con<<getDesc()
<<" Queuing ACK command to peer_id: " << peer_id <<
" channel: " << (channelnum & 0xFF) <<
" seqnum: " << seqnum << std::endl);
ConnectionCommand c;
SharedBuffer<u8> ack(4);
writeU8(&ack[0], TYPE_CONTROL);
writeU8(&ack[1], CONTROLTYPE_ACK);
writeU16(&ack[2], seqnum);
c.ack(peer_id, channelnum, ack);
putCommand(c);
m_sendThread.Trigger();
}
UDPPeer* Connection::createServerPeer(Address& address)
{
if (getPeerNoEx(PEER_ID_SERVER) != 0)
{
throw ConnectionException("Already connected to a server");
}
UDPPeer *peer = new UDPPeer(PEER_ID_SERVER, address, this);
{
JMutexAutoLock lock(m_peers_mutex);
m_peers[peer->id] = peer;
}
return peer;
}
std::list<u16> Connection::getPeerIDs()
{
std::list<u16> retval;
JMutexAutoLock lock(m_peers_mutex);
for(std::map<u16, Peer*>::iterator j = m_peers.begin();
j != m_peers.end(); ++j)
{
retval.push_back(j->first);
}
return retval;
}
} // namespace