minetest/src/util/numeric.cpp
Loic Blot 7c8793cbea Performance Improvement: Use a cache which caches result for getFacePositions.
This greatly reduce the number of std::list generated by caching the result, which is always constant for each radius selected.
In the callgrind map, you will see original:
  * 3.3M calls to std::list for 9700 calls to getFacePositions
In the modified version, you will see:
  * 3.3K calls to std::list for 6900 call to getFacePositions
Callgrind map is here: #2321

it's a huge performance improvement to l_find_node_near
2015-02-16 11:27:44 +01:00

253 lines
6.9 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "numeric.h"
#include "mathconstants.h"
#include "log.h"
#include "../constants.h" // BS, MAP_BLOCKSIZE
#include <string.h>
#include <iostream>
std::map<u16, std::vector<v3s16> > FacePositionCache::m_cache;
// Calculate the borders of a "d-radius" cube
std::vector<v3s16> FacePositionCache::getFacePositions(u16 d)
{
if (m_cache.find(d) != m_cache.end())
return m_cache[d];
generateFacePosition(d);
return m_cache[d];
}
void FacePositionCache::generateFacePosition(u16 d)
{
m_cache[d] = std::vector<v3s16>();
if(d == 0) {
m_cache[d].push_back(v3s16(0,0,0));
return;
}
if(d == 1) {
/*
This is an optimized sequence of coordinates.
*/
m_cache[d].push_back(v3s16( 0, 1, 0)); // top
m_cache[d].push_back(v3s16( 0, 0, 1)); // back
m_cache[d].push_back(v3s16(-1, 0, 0)); // left
m_cache[d].push_back(v3s16( 1, 0, 0)); // right
m_cache[d].push_back(v3s16( 0, 0,-1)); // front
m_cache[d].push_back(v3s16( 0,-1, 0)); // bottom
// 6
m_cache[d].push_back(v3s16(-1, 0, 1)); // back left
m_cache[d].push_back(v3s16( 1, 0, 1)); // back right
m_cache[d].push_back(v3s16(-1, 0,-1)); // front left
m_cache[d].push_back(v3s16( 1, 0,-1)); // front right
m_cache[d].push_back(v3s16(-1,-1, 0)); // bottom left
m_cache[d].push_back(v3s16( 1,-1, 0)); // bottom right
m_cache[d].push_back(v3s16( 0,-1, 1)); // bottom back
m_cache[d].push_back(v3s16( 0,-1,-1)); // bottom front
m_cache[d].push_back(v3s16(-1, 1, 0)); // top left
m_cache[d].push_back(v3s16( 1, 1, 0)); // top right
m_cache[d].push_back(v3s16( 0, 1, 1)); // top back
m_cache[d].push_back(v3s16( 0, 1,-1)); // top front
// 18
m_cache[d].push_back(v3s16(-1, 1, 1)); // top back-left
m_cache[d].push_back(v3s16( 1, 1, 1)); // top back-right
m_cache[d].push_back(v3s16(-1, 1,-1)); // top front-left
m_cache[d].push_back(v3s16( 1, 1,-1)); // top front-right
m_cache[d].push_back(v3s16(-1,-1, 1)); // bottom back-left
m_cache[d].push_back(v3s16( 1,-1, 1)); // bottom back-right
m_cache[d].push_back(v3s16(-1,-1,-1)); // bottom front-left
m_cache[d].push_back(v3s16( 1,-1,-1)); // bottom front-right
// 26
return;
}
// Take blocks in all sides, starting from y=0 and going +-y
for(s16 y=0; y<=d-1; y++) {
// Left and right side, including borders
for(s16 z=-d; z<=d; z++) {
m_cache[d].push_back(v3s16(d,y,z));
m_cache[d].push_back(v3s16(-d,y,z));
if(y != 0) {
m_cache[d].push_back(v3s16(d,-y,z));
m_cache[d].push_back(v3s16(-d,-y,z));
}
}
// Back and front side, excluding borders
for(s16 x=-d+1; x<=d-1; x++) {
m_cache[d].push_back(v3s16(x,y,d));
m_cache[d].push_back(v3s16(x,y,-d));
if(y != 0) {
m_cache[d].push_back(v3s16(x,-y,d));
m_cache[d].push_back(v3s16(x,-y,-d));
}
}
}
// Take the bottom and top face with borders
// -d<x<d, y=+-d, -d<z<d
for(s16 x=-d; x<=d; x++)
for(s16 z=-d; z<=d; z++) {
m_cache[d].push_back(v3s16(x,-d,z));
m_cache[d].push_back(v3s16(x,d,z));
}
}
/*
myrand
*/
static unsigned long next = 1;
/* RAND_MAX assumed to be 32767 */
int myrand(void)
{
next = next * 1103515245 + 12345;
return((unsigned)(next/65536) % 32768);
}
void mysrand(unsigned seed)
{
next = seed;
}
int myrand_range(int min, int max)
{
if(max-min > MYRAND_MAX)
{
errorstream<<"WARNING: myrand_range: max-min > MYRAND_MAX"<<std::endl;
max = min + MYRAND_MAX;
}
if(min > max)
{
errorstream<<"WARNING: myrand_range: min > max"<<std::endl;
return max;
}
return (myrand()%(max-min+1))+min;
}
// 64-bit unaligned version of MurmurHash
u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed)
{
const u64 m = 0xc6a4a7935bd1e995ULL;
const int r = 47;
u64 h = seed ^ (len * m);
const u64 *data = (const u64 *)key;
const u64 *end = data + (len / 8);
while (data != end) {
u64 k;
memcpy(&k, data, sizeof(u64));
data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
const unsigned char *data2 = (const unsigned char *)data;
switch (len & 7) {
case 7: h ^= (u64)data2[6] << 48;
case 6: h ^= (u64)data2[5] << 40;
case 5: h ^= (u64)data2[4] << 32;
case 4: h ^= (u64)data2[3] << 24;
case 3: h ^= (u64)data2[2] << 16;
case 2: h ^= (u64)data2[1] << 8;
case 1: h ^= (u64)data2[0];
h *= m;
}
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
/*
blockpos: position of block in block coordinates
camera_pos: position of camera in nodes
camera_dir: an unit vector pointing to camera direction
range: viewing range
*/
bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
f32 camera_fov, f32 range, f32 *distance_ptr)
{
v3s16 blockpos_nodes = blockpos_b * MAP_BLOCKSIZE;
// Block center position
v3f blockpos(
((float)blockpos_nodes.X + MAP_BLOCKSIZE/2) * BS,
((float)blockpos_nodes.Y + MAP_BLOCKSIZE/2) * BS,
((float)blockpos_nodes.Z + MAP_BLOCKSIZE/2) * BS
);
// Block position relative to camera
v3f blockpos_relative = blockpos - camera_pos;
// Total distance
f32 d = blockpos_relative.getLength();
if(distance_ptr)
*distance_ptr = d;
// If block is far away, it's not in sight
if(d > range)
return false;
// Maximum radius of a block. The magic number is
// sqrt(3.0) / 2.0 in literal form.
f32 block_max_radius = 0.866025403784 * MAP_BLOCKSIZE * BS;
// If block is (nearly) touching the camera, don't
// bother validating further (that is, render it anyway)
if(d < block_max_radius)
return true;
// Adjust camera position, for purposes of computing the angle,
// such that a block that has any portion visible with the
// current camera position will have the center visible at the
// adjusted postion
f32 adjdist = block_max_radius / cos((M_PI - camera_fov) / 2);
// Block position relative to adjusted camera
v3f blockpos_adj = blockpos - (camera_pos - camera_dir * adjdist);
// Distance in camera direction (+=front, -=back)
f32 dforward = blockpos_adj.dotProduct(camera_dir);
// Cosine of the angle between the camera direction
// and the block direction (camera_dir is an unit vector)
f32 cosangle = dforward / blockpos_adj.getLength();
// If block is not in the field of view, skip it
if(cosangle < cos(camera_fov / 2))
return false;
return true;
}