minetest/src/content_mapblock.cpp

1308 lines
40 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "content_mapblock.h"
#include "util/numeric.h"
#include "util/directiontables.h"
#include "mapblock_mesh.h"
#include "settings.h"
#include "nodedef.h"
#include "client/tile.h"
#include "mesh.h"
#include <IMeshManipulator.h>
#include "client.h"
#include "log.h"
#include "noise.h"
// Distance of light extrapolation (for oversized nodes)
// After this distance, it gives up and considers light level constant
#define SMOOTH_LIGHTING_OVERSIZE 1.0
// Node edge count (for glasslike-framed)
#define FRAMED_EDGE_COUNT 12
// Node neighbor count, including edge-connected, but not vertex-connected
// (for glasslike-framed)
// Corresponding offsets are listed in g_27dirs
#define FRAMED_NEIGHBOR_COUNT 18
static const v3s16 light_dirs[8] = {
v3s16(-1, -1, -1),
v3s16(-1, -1, 1),
v3s16(-1, 1, -1),
v3s16(-1, 1, 1),
v3s16( 1, -1, -1),
v3s16( 1, -1, 1),
v3s16( 1, 1, -1),
v3s16( 1, 1, 1),
};
// Standard index set to make a quad on 4 vertices
static constexpr u16 quad_indices[] = {0, 1, 2, 2, 3, 0};
const std::string MapblockMeshGenerator::raillike_groupname = "connect_to_raillike";
MapblockMeshGenerator::MapblockMeshGenerator(MeshMakeData *input, MeshCollector *output)
{
data = input;
collector = output;
nodedef = data->m_client->ndef();
smgr = data->m_client->getSceneManager();
meshmanip = smgr->getMeshManipulator();
enable_mesh_cache = g_settings->getBool("enable_mesh_cache") &&
!data->m_smooth_lighting; // Mesh cache is not supported with smooth lighting
blockpos_nodes = data->m_blockpos * MAP_BLOCKSIZE;
}
void MapblockMeshGenerator::useTile(int index, bool disable_backface_culling)
{
getNodeTileN(n, p, index, data, tile);
if (!data->m_smooth_lighting)
color = encode_light(light, f->light_source);
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
tile.layers[layer].material_flags |= MATERIAL_FLAG_CRACK_OVERLAY;
if (disable_backface_culling)
tile.layers[layer].material_flags &= ~MATERIAL_FLAG_BACKFACE_CULLING;
}
}
void MapblockMeshGenerator::useDefaultTile(bool set_color)
{
getNodeTile(n, p, v3s16(0, 0, 0), data, tile);
if (set_color && !data->m_smooth_lighting)
color = encode_light(light, f->light_source);
}
void MapblockMeshGenerator::getTile(const v3s16& direction, TileSpec &tile)
{
getNodeTile(n, p, direction, data, tile);
}
void MapblockMeshGenerator::drawQuad(v3f *coords, const v3s16 &normal)
{
static const v2f tcoords[4] = {v2f(0, 0), v2f(1, 0), v2f(1, 1), v2f(0, 1)};
video::S3DVertex vertices[4];
bool shade_face = !f->light_source && (normal != v3s16(0, 0, 0));
v3f normal2(normal.X, normal.Y, normal.Z);
for (int j = 0; j < 4; j++) {
vertices[j].Pos = coords[j] + origin;
vertices[j].Normal = normal2;
if (data->m_smooth_lighting)
vertices[j].Color = blendLightColor(coords[j]);
else
vertices[j].Color = color;
if (shade_face)
applyFacesShading(vertices[j].Color, normal2);
vertices[j].TCoords = tcoords[j];
}
collector->append(tile, vertices, 4, quad_indices, 6);
}
// Create a cuboid.
// tiles - the tiles (materials) to use (for all 6 faces)
// tilecount - number of entries in tiles, 1<=tilecount<=6
// lights - vertex light levels. The order is the same as in light_dirs.
// NULL may be passed if smooth lighting is disabled.
// txc - texture coordinates - this is a list of texture coordinates
// for the opposite corners of each face - therefore, there
// should be (2+2)*6=24 values in the list. The order of
// the faces in the list is up-down-right-left-back-front
// (compatible with ContentFeatures).
void MapblockMeshGenerator::drawCuboid(const aabb3f &box,
TileSpec *tiles, int tilecount, const u16 *lights, const f32 *txc)
{
assert(tilecount >= 1 && tilecount <= 6); // pre-condition
v3f min = box.MinEdge;
v3f max = box.MaxEdge;
video::SColor colors[6];
if (!data->m_smooth_lighting) {
for (int face = 0; face != 6; ++face) {
colors[face] = encode_light(light, f->light_source);
}
if (!f->light_source) {
applyFacesShading(colors[0], v3f(0, 1, 0));
applyFacesShading(colors[1], v3f(0, -1, 0));
applyFacesShading(colors[2], v3f(1, 0, 0));
applyFacesShading(colors[3], v3f(-1, 0, 0));
applyFacesShading(colors[4], v3f(0, 0, 1));
applyFacesShading(colors[5], v3f(0, 0, -1));
}
}
video::S3DVertex vertices[24] = {
// top
video::S3DVertex(min.X, max.Y, max.Z, 0, 1, 0, colors[0], txc[0], txc[1]),
video::S3DVertex(max.X, max.Y, max.Z, 0, 1, 0, colors[0], txc[2], txc[1]),
video::S3DVertex(max.X, max.Y, min.Z, 0, 1, 0, colors[0], txc[2], txc[3]),
video::S3DVertex(min.X, max.Y, min.Z, 0, 1, 0, colors[0], txc[0], txc[3]),
// bottom
video::S3DVertex(min.X, min.Y, min.Z, 0, -1, 0, colors[1], txc[4], txc[5]),
video::S3DVertex(max.X, min.Y, min.Z, 0, -1, 0, colors[1], txc[6], txc[5]),
video::S3DVertex(max.X, min.Y, max.Z, 0, -1, 0, colors[1], txc[6], txc[7]),
video::S3DVertex(min.X, min.Y, max.Z, 0, -1, 0, colors[1], txc[4], txc[7]),
// right
video::S3DVertex(max.X, max.Y, min.Z, 1, 0, 0, colors[2], txc[ 8], txc[9]),
video::S3DVertex(max.X, max.Y, max.Z, 1, 0, 0, colors[2], txc[10], txc[9]),
video::S3DVertex(max.X, min.Y, max.Z, 1, 0, 0, colors[2], txc[10], txc[11]),
video::S3DVertex(max.X, min.Y, min.Z, 1, 0, 0, colors[2], txc[ 8], txc[11]),
// left
video::S3DVertex(min.X, max.Y, max.Z, -1, 0, 0, colors[3], txc[12], txc[13]),
video::S3DVertex(min.X, max.Y, min.Z, -1, 0, 0, colors[3], txc[14], txc[13]),
video::S3DVertex(min.X, min.Y, min.Z, -1, 0, 0, colors[3], txc[14], txc[15]),
video::S3DVertex(min.X, min.Y, max.Z, -1, 0, 0, colors[3], txc[12], txc[15]),
// back
video::S3DVertex(max.X, max.Y, max.Z, 0, 0, 1, colors[4], txc[16], txc[17]),
video::S3DVertex(min.X, max.Y, max.Z, 0, 0, 1, colors[4], txc[18], txc[17]),
video::S3DVertex(min.X, min.Y, max.Z, 0, 0, 1, colors[4], txc[18], txc[19]),
video::S3DVertex(max.X, min.Y, max.Z, 0, 0, 1, colors[4], txc[16], txc[19]),
// front
video::S3DVertex(min.X, max.Y, min.Z, 0, 0, -1, colors[5], txc[20], txc[21]),
video::S3DVertex(max.X, max.Y, min.Z, 0, 0, -1, colors[5], txc[22], txc[21]),
video::S3DVertex(max.X, min.Y, min.Z, 0, 0, -1, colors[5], txc[22], txc[23]),
video::S3DVertex(min.X, min.Y, min.Z, 0, 0, -1, colors[5], txc[20], txc[23]),
};
static const u8 light_indices[24] = {
3, 7, 6, 2,
0, 4, 5, 1,
6, 7, 5, 4,
3, 2, 0, 1,
7, 3, 1, 5,
2, 6, 4, 0
};
for (int face = 0; face < 6; face++) {
int tileindex = MYMIN(face, tilecount - 1);
const TileSpec &tile = tiles[tileindex];
for (int j = 0; j < 4; j++) {
video::S3DVertex &vertex = vertices[face * 4 + j];
v2f &tcoords = vertex.TCoords;
switch (tile.rotation) {
case 0:
break;
case 1: // R90
tcoords.rotateBy(90, irr::core::vector2df(0, 0));
break;
case 2: // R180
tcoords.rotateBy(180, irr::core::vector2df(0, 0));
break;
case 3: // R270
tcoords.rotateBy(270, irr::core::vector2df(0, 0));
break;
case 4: // FXR90
tcoords.X = 1.0 - tcoords.X;
tcoords.rotateBy(90, irr::core::vector2df(0, 0));
break;
case 5: // FXR270
tcoords.X = 1.0 - tcoords.X;
tcoords.rotateBy(270, irr::core::vector2df(0, 0));
break;
case 6: // FYR90
tcoords.Y = 1.0 - tcoords.Y;
tcoords.rotateBy(90, irr::core::vector2df(0, 0));
break;
case 7: // FYR270
tcoords.Y = 1.0 - tcoords.Y;
tcoords.rotateBy(270, irr::core::vector2df(0, 0));
break;
case 8: // FX
tcoords.X = 1.0 - tcoords.X;
break;
case 9: // FY
tcoords.Y = 1.0 - tcoords.Y;
break;
default:
break;
}
}
}
if (data->m_smooth_lighting) {
for (int j = 0; j < 24; ++j) {
vertices[j].Color = encode_light(lights[light_indices[j]],
f->light_source);
if (!f->light_source)
applyFacesShading(vertices[j].Color, vertices[j].Normal);
}
}
// Add to mesh collector
for (int k = 0; k < 6; ++k) {
int tileindex = MYMIN(k, tilecount - 1);
collector->append(tiles[tileindex], vertices + 4 * k, 4, quad_indices, 6);
}
}
// Gets the base lighting values for a node
void MapblockMeshGenerator::getSmoothLightFrame()
{
for (int k = 0; k < 8; ++k) {
u16 light = getSmoothLight(blockpos_nodes + p, light_dirs[k], data);
frame.lightsA[k] = light & 0xff;
frame.lightsB[k] = light >> 8;
}
}
// Calculates vertex light level
// vertex_pos - vertex position in the node (coordinates are clamped to [0.0, 1.0] or so)
u16 MapblockMeshGenerator::blendLight(const v3f &vertex_pos)
{
f32 x = core::clamp(vertex_pos.X / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
f32 y = core::clamp(vertex_pos.Y / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
f32 z = core::clamp(vertex_pos.Z / BS + 0.5, 0.0 - SMOOTH_LIGHTING_OVERSIZE, 1.0 + SMOOTH_LIGHTING_OVERSIZE);
f32 lightA = 0.0;
f32 lightB = 0.0;
for (int k = 0; k < 8; ++k) {
f32 dx = (k & 4) ? x : 1 - x;
f32 dy = (k & 2) ? y : 1 - y;
f32 dz = (k & 1) ? z : 1 - z;
lightA += dx * dy * dz * frame.lightsA[k];
lightB += dx * dy * dz * frame.lightsB[k];
}
return
core::clamp(core::round32(lightA), 0, 255) |
core::clamp(core::round32(lightB), 0, 255) << 8;
}
// Calculates vertex color to be used in mapblock mesh
// vertex_pos - vertex position in the node (coordinates are clamped to [0.0, 1.0] or so)
// tile_color - node's tile color
video::SColor MapblockMeshGenerator::blendLightColor(const v3f &vertex_pos)
{
u16 light = blendLight(vertex_pos);
return encode_light(light, f->light_source);
}
video::SColor MapblockMeshGenerator::blendLightColor(const v3f &vertex_pos,
const v3f &vertex_normal)
{
video::SColor color = blendLightColor(vertex_pos);
if (!f->light_source)
applyFacesShading(color, vertex_normal);
return color;
}
void MapblockMeshGenerator::generateCuboidTextureCoords(const aabb3f &box, f32 *coords)
{
f32 tx1 = (box.MinEdge.X / BS) + 0.5;
f32 ty1 = (box.MinEdge.Y / BS) + 0.5;
f32 tz1 = (box.MinEdge.Z / BS) + 0.5;
f32 tx2 = (box.MaxEdge.X / BS) + 0.5;
f32 ty2 = (box.MaxEdge.Y / BS) + 0.5;
f32 tz2 = (box.MaxEdge.Z / BS) + 0.5;
f32 txc[24] = {
tx1, 1 - tz2, tx2, 1 - tz1, // up
tx1, tz1, tx2, tz2, // down
tz1, 1 - ty2, tz2, 1 - ty1, // right
1 - tz2, 1 - ty2, 1 - tz1, 1 - ty1, // left
1 - tx2, 1 - ty2, 1 - tx1, 1 - ty1, // back
tx1, 1 - ty2, tx2, 1 - ty1, // front
};
for (int i = 0; i != 24; ++i)
coords[i] = txc[i];
}
void MapblockMeshGenerator::drawAutoLightedCuboid(aabb3f box, const f32 *txc,
TileSpec *tiles, int tile_count)
{
f32 texture_coord_buf[24];
f32 dx1 = box.MinEdge.X;
f32 dy1 = box.MinEdge.Y;
f32 dz1 = box.MinEdge.Z;
f32 dx2 = box.MaxEdge.X;
f32 dy2 = box.MaxEdge.Y;
f32 dz2 = box.MaxEdge.Z;
box.MinEdge += origin;
box.MaxEdge += origin;
if (!txc) {
generateCuboidTextureCoords(box, texture_coord_buf);
txc = texture_coord_buf;
}
if (!tiles) {
tiles = &tile;
tile_count = 1;
}
if (data->m_smooth_lighting) {
u16 lights[8];
for (int j = 0; j < 8; ++j) {
v3f d;
d.X = (j & 4) ? dx2 : dx1;
d.Y = (j & 2) ? dy2 : dy1;
d.Z = (j & 1) ? dz2 : dz1;
lights[j] = blendLight(d);
}
drawCuboid(box, tiles, tile_count, lights, txc);
} else {
drawCuboid(box, tiles, tile_count, NULL, txc);
}
}
/*!
* Returns the i-th special tile for a map node.
*/
static TileSpec getSpecialTile(const ContentFeatures &f,
const MapNode &n, u8 i)
{
TileSpec copy = f.special_tiles[i];
for (int layernum = 0; layernum < MAX_TILE_LAYERS; layernum++) {
TileLayer *layer = &copy.layers[layernum];
if (layer->texture_id == 0)
continue;
if (!layer->has_color)
n.getColor(f, &(layer->color));
}
return copy;
}
void MapblockMeshGenerator::prepareLiquidNodeDrawing()
{
tile_liquid_top = getSpecialTile(*f, n, 0);
tile_liquid = getSpecialTile(*f, n, 1);
MapNode ntop = data->m_vmanip.getNodeNoEx(blockpos_nodes + v3s16(p.X, p.Y + 1, p.Z));
c_flowing = nodedef->getId(f->liquid_alternative_flowing);
c_source = nodedef->getId(f->liquid_alternative_source);
top_is_same_liquid = (ntop.getContent() == c_flowing) || (ntop.getContent() == c_source);
if (data->m_smooth_lighting)
return; // don't need to pre-compute anything in this case
if (f->light_source != 0) {
// If this liquid emits light and doesn't contain light, draw
// it at what it emits, for an increased effect
light = decode_light(f->light_source);
light = light | (light << 8);
} else if (nodedef->get(ntop).param_type == CPT_LIGHT) {
// Otherwise, use the light of the node on top if possible
light = getInteriorLight(ntop, 0, nodedef);
}
color_liquid_top = encode_light(light, f->light_source);
color = encode_light(light, f->light_source);
}
void MapblockMeshGenerator::getLiquidNeighborhood()
{
u8 range = rangelim(nodedef->get(c_flowing).liquid_range, 1, 8);
for (int w = -1; w <= 1; w++)
for (int u = -1; u <= 1; u++) {
NeighborData &neighbor = liquid_neighbors[w + 1][u + 1];
v3s16 p2 = p + v3s16(u, 0, w);
MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
neighbor.content = n2.getContent();
neighbor.level = -0.5 * BS;
neighbor.is_same_liquid = false;
neighbor.top_is_same_liquid = false;
if (neighbor.content == CONTENT_IGNORE)
continue;
if (neighbor.content == c_source) {
neighbor.is_same_liquid = true;
neighbor.level = 0.5 * BS;
} else if (neighbor.content == c_flowing) {
neighbor.is_same_liquid = true;
u8 liquid_level = (n2.param2 & LIQUID_LEVEL_MASK);
if (liquid_level <= LIQUID_LEVEL_MAX + 1 - range)
liquid_level = 0;
else
liquid_level -= (LIQUID_LEVEL_MAX + 1 - range);
neighbor.level = (-0.5 + (liquid_level + 0.5) / range) * BS;
}
// Check node above neighbor.
// NOTE: This doesn't get executed if neighbor
// doesn't exist
p2.Y++;
n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
if (n2.getContent() == c_source || n2.getContent() == c_flowing)
neighbor.top_is_same_liquid = true;
}
}
void MapblockMeshGenerator::calculateCornerLevels()
{
for (int k = 0; k < 2; k++)
for (int i = 0; i < 2; i++)
corner_levels[k][i] = getCornerLevel(i, k);
}
f32 MapblockMeshGenerator::getCornerLevel(int i, int k)
{
float sum = 0;
int count = 0;
int air_count = 0;
for (int dk = 0; dk < 2; dk++)
for (int di = 0; di < 2; di++) {
NeighborData &neighbor_data = liquid_neighbors[k + dk][i + di];
content_t content = neighbor_data.content;
// If top is liquid, draw starting from top of node
if (neighbor_data.top_is_same_liquid)
return 0.5 * BS;
// Source always has the full height
if (content == c_source)
return 0.5 * BS;
// Flowing liquid has level information
if (content == c_flowing) {
sum += neighbor_data.level;
count++;
} else if (content == CONTENT_AIR) {
air_count++;
if (air_count >= 2)
return -0.5 * BS + 0.2;
}
}
if (count > 0)
return sum / count;
return 0;
}
void MapblockMeshGenerator::drawLiquidSides()
{
struct LiquidFaceDesc {
v3s16 dir; // XZ
v3s16 p[2]; // XZ only; 1 means +, 0 means -
};
struct UV {
int u, v;
};
static const LiquidFaceDesc base_faces[4] = {
{v3s16( 1, 0, 0), {v3s16(1, 0, 1), v3s16(1, 0, 0)}},
{v3s16(-1, 0, 0), {v3s16(0, 0, 0), v3s16(0, 0, 1)}},
{v3s16( 0, 0, 1), {v3s16(0, 0, 1), v3s16(1, 0, 1)}},
{v3s16( 0, 0, -1), {v3s16(1, 0, 0), v3s16(0, 0, 0)}},
};
static const UV base_vertices[4] = {
{0, 1},
{1, 1},
{1, 0},
{0, 0}
};
for (int i = 0; i < 4; i++) {
const LiquidFaceDesc &face = base_faces[i];
const NeighborData &neighbor = liquid_neighbors[face.dir.Z + 1][face.dir.X + 1];
// No face between nodes of the same liquid, unless there is node
// at the top to which it should be connected. Again, unless the face
// there would be inside the liquid
if (neighbor.is_same_liquid) {
if (!top_is_same_liquid)
continue;
if (neighbor.top_is_same_liquid)
continue;
}
const ContentFeatures &neighbor_features = nodedef->get(neighbor.content);
// Don't draw face if neighbor is blocking the view
if (neighbor_features.solidness == 2)
continue;
video::S3DVertex vertices[4];
for (int j = 0; j < 4; j++) {
const UV &vertex = base_vertices[j];
const v3s16 &base = face.p[vertex.u];
v3f pos;
pos.X = (base.X - 0.5) * BS;
pos.Z = (base.Z - 0.5) * BS;
if (vertex.v)
pos.Y = neighbor.is_same_liquid ? corner_levels[base.Z][base.X] : -0.5 * BS;
else
pos.Y = !top_is_same_liquid ? corner_levels[base.Z][base.X] : 0.5 * BS;
if (data->m_smooth_lighting)
color = blendLightColor(pos);
pos += origin;
vertices[j] = video::S3DVertex(pos.X, pos.Y, pos.Z, 0, 0, 0, color, vertex.u, vertex.v);
};
collector->append(tile_liquid, vertices, 4, quad_indices, 6);
}
}
void MapblockMeshGenerator::drawLiquidTop()
{
// To get backface culling right, the vertices need to go
// clockwise around the front of the face. And we happened to
// calculate corner levels in exact reverse order.
static const int corner_resolve[4][2] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
video::S3DVertex vertices[4] = {
video::S3DVertex(-BS / 2, 0, BS / 2, 0, 0, 0, color_liquid_top, 0, 1),
video::S3DVertex( BS / 2, 0, BS / 2, 0, 0, 0, color_liquid_top, 1, 1),
video::S3DVertex( BS / 2, 0, -BS / 2, 0, 0, 0, color_liquid_top, 1, 0),
video::S3DVertex(-BS / 2, 0, -BS / 2, 0, 0, 0, color_liquid_top, 0, 0),
};
for (int i = 0; i < 4; i++) {
int u = corner_resolve[i][0];
int w = corner_resolve[i][1];
vertices[i].Pos.Y += corner_levels[w][u];
if (data->m_smooth_lighting)
vertices[i].Color = blendLightColor(vertices[i].Pos);
vertices[i].Pos += origin;
}
// Default downwards-flowing texture animation goes from
// -Z towards +Z, thus the direction is +Z.
// Rotate texture to make animation go in flow direction
// Positive if liquid moves towards +Z
f32 dz = (corner_levels[0][0] + corner_levels[0][1]) -
(corner_levels[1][0] + corner_levels[1][1]);
// Positive if liquid moves towards +X
f32 dx = (corner_levels[0][0] + corner_levels[1][0]) -
(corner_levels[0][1] + corner_levels[1][1]);
f32 tcoord_angle = atan2(dz, dx) * core::RADTODEG;
v2f tcoord_center(0.5, 0.5);
v2f tcoord_translate(blockpos_nodes.Z + p.Z, blockpos_nodes.X + p.X);
tcoord_translate.rotateBy(tcoord_angle);
tcoord_translate.X -= floor(tcoord_translate.X);
tcoord_translate.Y -= floor(tcoord_translate.Y);
for (int i = 0; i < 4; i++) {
vertices[i].TCoords.rotateBy(tcoord_angle, tcoord_center);
vertices[i].TCoords += tcoord_translate;
}
std::swap(vertices[0].TCoords, vertices[2].TCoords);
collector->append(tile_liquid_top, vertices, 4, quad_indices, 6);
}
void MapblockMeshGenerator::drawLiquidNode()
{
prepareLiquidNodeDrawing();
getLiquidNeighborhood();
calculateCornerLevels();
drawLiquidSides();
if (!top_is_same_liquid)
drawLiquidTop();
}
void MapblockMeshGenerator::drawGlasslikeNode()
{
useDefaultTile();
for (int face = 0; face < 6; face++) {
// Check this neighbor
v3s16 dir = g_6dirs[face];
v3s16 neighbor_pos = blockpos_nodes + p + dir;
MapNode neighbor = data->m_vmanip.getNodeNoExNoEmerge(neighbor_pos);
// Don't make face if neighbor is of same type
if (neighbor.getContent() == n.getContent())
continue;
// Face at Z-
v3f vertices[4] = {
v3f(-BS / 2, BS / 2, -BS / 2),
v3f( BS / 2, BS / 2, -BS / 2),
v3f( BS / 2, -BS / 2, -BS / 2),
v3f(-BS / 2, -BS / 2, -BS / 2),
};
for (int i = 0; i < 4; i++) {
switch (face) {
case D6D_ZP: vertices[i].rotateXZBy(180); break;
case D6D_YP: vertices[i].rotateYZBy( 90); break;
case D6D_XP: vertices[i].rotateXZBy( 90); break;
case D6D_ZN: vertices[i].rotateXZBy( 0); break;
case D6D_YN: vertices[i].rotateYZBy(-90); break;
case D6D_XN: vertices[i].rotateXZBy(-90); break;
}
}
drawQuad(vertices, dir);
}
}
void MapblockMeshGenerator::drawGlasslikeFramedNode()
{
TileSpec tiles[6];
for (int face = 0; face < 6; face++)
getTile(g_6dirs[face], tiles[face]);
TileSpec glass_tiles[6];
if (tiles[1].layers[0].texture &&
tiles[2].layers[0].texture &&
tiles[3].layers[0].texture) {
glass_tiles[0] = tiles[4];
glass_tiles[1] = tiles[0];
glass_tiles[2] = tiles[4];
glass_tiles[3] = tiles[4];
glass_tiles[4] = tiles[3];
glass_tiles[5] = tiles[4];
} else {
for (int face = 0; face < 6; face++)
glass_tiles[face] = tiles[4];
}
u8 param2 = n.getParam2();
bool H_merge = !(param2 & 128);
bool V_merge = !(param2 & 64);
param2 &= 63;
static const float a = BS / 2;
static const float g = a - 0.003;
static const float b = .876 * ( BS / 2 );
static const aabb3f frame_edges[FRAMED_EDGE_COUNT] = {
aabb3f( b, b, -a, a, a, a), // y+
aabb3f(-a, b, -a, -b, a, a), // y+
aabb3f( b, -a, -a, a, -b, a), // y-
aabb3f(-a, -a, -a, -b, -b, a), // y-
aabb3f( b, -a, b, a, a, a), // x+
aabb3f( b, -a, -a, a, a, -b), // x+
aabb3f(-a, -a, b, -b, a, a), // x-
aabb3f(-a, -a, -a, -b, a, -b), // x-
aabb3f(-a, b, b, a, a, a), // z+
aabb3f(-a, -a, b, a, -b, a), // z+
aabb3f(-a, -a, -a, a, -b, -b), // z-
aabb3f(-a, b, -a, a, a, -b), // z-
};
static const aabb3f glass_faces[6] = {
aabb3f(-g, -g, g, g, g, g), // z+
aabb3f(-g, g, -g, g, g, g), // y+
aabb3f( g, -g, -g, g, g, g), // x+
aabb3f(-g, -g, -g, g, g, -g), // z-
aabb3f(-g, -g, -g, g, -g, g), // y-
aabb3f(-g, -g, -g, -g, g, g), // x-
};
// tables of neighbour (connect if same type and merge allowed),
// checked with g_26dirs
// 1 = connect, 0 = face visible
bool nb[FRAMED_NEIGHBOR_COUNT] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
// 1 = check
static const bool check_nb_vertical [FRAMED_NEIGHBOR_COUNT] = {0,1,0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};
static const bool check_nb_horizontal [FRAMED_NEIGHBOR_COUNT] = {1,0,1,1,0,1, 0,0,0,0, 1,1,1,1, 0,0,0,0};
static const bool check_nb_all [FRAMED_NEIGHBOR_COUNT] = {1,1,1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1};
const bool *check_nb = check_nb_all;
// neighbours checks for frames visibility
if (H_merge || V_merge) {
if (!H_merge)
check_nb = check_nb_vertical; // vertical-only merge
if (!V_merge)
check_nb = check_nb_horizontal; // horizontal-only merge
content_t current = n.getContent();
for (int i = 0; i < FRAMED_NEIGHBOR_COUNT; i++) {
if (!check_nb[i])
continue;
v3s16 n2p = blockpos_nodes + p + g_26dirs[i];
MapNode n2 = data->m_vmanip.getNodeNoEx(n2p);
content_t n2c = n2.getContent();
if (n2c == current || n2c == CONTENT_IGNORE)
nb[i] = 1;
}
}
// edge visibility
static const u8 nb_triplet[FRAMED_EDGE_COUNT][3] = {
{1, 2, 7}, {1, 5, 6}, {4, 2, 15}, {4, 5, 14},
{2, 0, 11}, {2, 3, 13}, {5, 0, 10}, {5, 3, 12},
{0, 1, 8}, {0, 4, 16}, {3, 4, 17}, {3, 1, 9},
};
tile = tiles[1];
for (int edge = 0; edge < FRAMED_EDGE_COUNT; edge++) {
bool edge_invisible;
if (nb[nb_triplet[edge][2]])
edge_invisible = nb[nb_triplet[edge][0]] & nb[nb_triplet[edge][1]];
else
edge_invisible = nb[nb_triplet[edge][0]] ^ nb[nb_triplet[edge][1]];
if (edge_invisible)
continue;
drawAutoLightedCuboid(frame_edges[edge]);
}
for (int face = 0; face < 6; face++) {
if (nb[face])
continue;
tile = glass_tiles[face];
drawAutoLightedCuboid(glass_faces[face]);
}
// Optionally render internal liquid level defined by param2
// Liquid is textured with 1 tile defined in nodedef 'special_tiles'
if (param2 > 0 && f->param_type_2 == CPT2_GLASSLIKE_LIQUID_LEVEL &&
f->special_tiles[0].layers[0].texture) {
// Internal liquid level has param2 range 0 .. 63,
// convert it to -0.5 .. 0.5
float vlev = (param2 / 63.0) * 2.0 - 1.0;
tile = getSpecialTile(*f, n, 0);
drawAutoLightedCuboid(aabb3f(-(nb[5] ? g : b),
-(nb[4] ? g : b),
-(nb[3] ? g : b),
(nb[2] ? g : b),
(nb[1] ? g : b) * vlev,
(nb[0] ? g : b)));
}
}
void MapblockMeshGenerator::drawAllfacesNode()
{
static const aabb3f box(-BS / 2, -BS / 2, -BS / 2, BS / 2, BS / 2, BS / 2);
useDefaultTile(false);
drawAutoLightedCuboid(box);
}
void MapblockMeshGenerator::drawTorchlikeNode()
{
u8 wall = n.getWallMounted(nodedef);
u8 tileindex = 0;
switch (wall) {
case DWM_YP: tileindex = 1; break; // ceiling
case DWM_YN: tileindex = 0; break; // floor
default: tileindex = 2; // side (or invalid—should we care?)
}
useTile(tileindex, true);
float size = BS / 2 * f->visual_scale;
v3f vertices[4] = {
v3f(-size, size, 0),
v3f( size, size, 0),
v3f( size, -size, 0),
v3f(-size, -size, 0),
};
for (int i = 0; i < 4; i++) {
switch (wall) {
case DWM_YP: vertices[i].rotateXZBy(-45); break;
case DWM_YN: vertices[i].rotateXZBy( 45); break;
case DWM_XP: vertices[i].rotateXZBy( 0); break;
case DWM_XN: vertices[i].rotateXZBy(180); break;
case DWM_ZP: vertices[i].rotateXZBy( 90); break;
case DWM_ZN: vertices[i].rotateXZBy(-90); break;
}
}
drawQuad(vertices);
}
void MapblockMeshGenerator::drawSignlikeNode()
{
u8 wall = n.getWallMounted(nodedef);
useTile(0, true);
static const float offset = BS / 16;
float size = BS / 2 * f->visual_scale;
// Wall at X+ of node
v3f vertices[4] = {
v3f(BS / 2 - offset, size, size),
v3f(BS / 2 - offset, size, -size),
v3f(BS / 2 - offset, -size, -size),
v3f(BS / 2 - offset, -size, size),
};
for (int i = 0; i < 4; i++) {
switch (wall) {
case DWM_YP: vertices[i].rotateXYBy( 90); break;
case DWM_YN: vertices[i].rotateXYBy(-90); break;
case DWM_XP: vertices[i].rotateXZBy( 0); break;
case DWM_XN: vertices[i].rotateXZBy(180); break;
case DWM_ZP: vertices[i].rotateXZBy( 90); break;
case DWM_ZN: vertices[i].rotateXZBy(-90); break;
}
}
drawQuad(vertices);
}
void MapblockMeshGenerator::drawPlantlikeQuad(float rotation, float quad_offset,
bool offset_top_only)
{
v3f vertices[4] = {
v3f(-scale, -BS / 2 + scale * 2, 0),
v3f( scale, -BS / 2 + scale * 2, 0),
v3f( scale, -BS / 2, 0),
v3f(-scale, -BS / 2, 0),
};
if (random_offset_Y) {
PseudoRandom yrng(face_num++ | p.X << 16 | p.Z << 8 | p.Y << 24);
offset.Y = BS * ((yrng.next() % 16 / 16.0) * 0.125);
}
int offset_count = offset_top_only ? 2 : 4;
for (int i = 0; i < offset_count; i++)
vertices[i].Z += quad_offset;
for (int i = 0; i < 4; i++) {
vertices[i].rotateXZBy(rotation + rotate_degree);
vertices[i] += offset;
}
drawQuad(vertices);
}
void MapblockMeshGenerator::drawPlantlikeNode()
{
useTile(0, false);
draw_style = PLANT_STYLE_CROSS;
scale = BS / 2 * f->visual_scale;
offset = v3f(0, 0, 0);
rotate_degree = 0;
random_offset_Y = false;
face_num = 0;
switch (f->param_type_2) {
case CPT2_MESHOPTIONS:
draw_style = PlantlikeStyle(n.param2 & MO_MASK_STYLE);
if (n.param2 & MO_BIT_SCALE_SQRT2)
scale *= 1.41421;
if (n.param2 & MO_BIT_RANDOM_OFFSET) {
PseudoRandom rng(p.X << 8 | p.Z | p.Y << 16);
offset.X = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
offset.Z = BS * ((rng.next() % 16 / 16.0) * 0.29 - 0.145);
}
if (n.param2 & MO_BIT_RANDOM_OFFSET_Y)
random_offset_Y = true;
break;
case CPT2_DEGROTATE:
rotate_degree = n.param2 * 2;
break;
default:
break;
}
switch (draw_style) {
case PLANT_STYLE_CROSS:
drawPlantlikeQuad(46);
drawPlantlikeQuad(-44);
break;
case PLANT_STYLE_CROSS2:
drawPlantlikeQuad(91);
drawPlantlikeQuad(1);
break;
case PLANT_STYLE_STAR:
drawPlantlikeQuad(121);
drawPlantlikeQuad(241);
drawPlantlikeQuad(1);
break;
case PLANT_STYLE_HASH:
drawPlantlikeQuad( 1, BS / 4);
drawPlantlikeQuad( 91, BS / 4);
drawPlantlikeQuad(181, BS / 4);
drawPlantlikeQuad(271, BS / 4);
break;
case PLANT_STYLE_HASH2:
drawPlantlikeQuad( 1, -BS / 2, true);
drawPlantlikeQuad( 91, -BS / 2, true);
drawPlantlikeQuad(181, -BS / 2, true);
drawPlantlikeQuad(271, -BS / 2, true);
break;
}
}
void MapblockMeshGenerator::drawFirelikeQuad(float rotation, float opening_angle,
float offset_h, float offset_v)
{
v3f vertices[4] = {
v3f(-scale, -BS / 2 + scale * 2, 0),
v3f( scale, -BS / 2 + scale * 2, 0),
v3f( scale, -BS / 2, 0),
v3f(-scale, -BS / 2, 0),
};
for (int i = 0; i < 4; i++) {
vertices[i].rotateYZBy(opening_angle);
vertices[i].Z += offset_h;
vertices[i].rotateXZBy(rotation);
vertices[i].Y += offset_v;
}
drawQuad(vertices);
}
void MapblockMeshGenerator::drawFirelikeNode()
{
useTile(0, false);
scale = BS / 2 * f->visual_scale;
// Check for adjacent nodes
bool neighbors = false;
bool neighbor[6] = {0, 0, 0, 0, 0, 0};
content_t current = n.getContent();
for (int i = 0; i < 6; i++) {
v3s16 n2p = blockpos_nodes + p + g_6dirs[i];
MapNode n2 = data->m_vmanip.getNodeNoEx(n2p);
content_t n2c = n2.getContent();
if (n2c != CONTENT_IGNORE && n2c != CONTENT_AIR && n2c != current) {
neighbor[i] = true;
neighbors = true;
}
}
bool drawBasicFire = neighbor[D6D_YN] || !neighbors;
bool drawBottomFire = neighbor[D6D_YP];
if (drawBasicFire || neighbor[D6D_ZP])
drawFirelikeQuad(0, -10, 0.4 * BS);
else if (drawBottomFire)
drawFirelikeQuad(0, 70, 0.47 * BS, 0.484 * BS);
if (drawBasicFire || neighbor[D6D_XN])
drawFirelikeQuad(90, -10, 0.4 * BS);
else if (drawBottomFire)
drawFirelikeQuad(90, 70, 0.47 * BS, 0.484 * BS);
if (drawBasicFire || neighbor[D6D_ZN])
drawFirelikeQuad(180, -10, 0.4 * BS);
else if (drawBottomFire)
drawFirelikeQuad(180, 70, 0.47 * BS, 0.484 * BS);
if (drawBasicFire || neighbor[D6D_XP])
drawFirelikeQuad(270, -10, 0.4 * BS);
else if (drawBottomFire)
drawFirelikeQuad(270, 70, 0.47 * BS, 0.484 * BS);
if (drawBasicFire) {
drawFirelikeQuad(45, 0, 0.0);
drawFirelikeQuad(-45, 0, 0.0);
}
}
void MapblockMeshGenerator::drawFencelikeNode()
{
useDefaultTile(false);
TileSpec tile_nocrack = tile;
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++)
tile_nocrack.layers[layer].material_flags &= ~MATERIAL_FLAG_CRACK;
// Put wood the right way around in the posts
TileSpec tile_rot = tile;
tile_rot.rotation = 1;
static const f32 post_rad = BS / 8;
static const f32 bar_rad = BS / 16;
static const f32 bar_len = BS / 2 - post_rad;
// The post - always present
static const aabb3f post(-post_rad, -BS / 2, -post_rad,
post_rad, BS / 2, post_rad);
static const f32 postuv[24] = {
0.375, 0.375, 0.625, 0.625,
0.375, 0.375, 0.625, 0.625,
0.000, 0.000, 0.250, 1.000,
0.250, 0.000, 0.500, 1.000,
0.500, 0.000, 0.750, 1.000,
0.750, 0.000, 1.000, 1.000,
};
tile = tile_rot;
drawAutoLightedCuboid(post, postuv);
tile = tile_nocrack;
// Now a section of fence, +X, if there's a post there
v3s16 p2 = p;
p2.X++;
MapNode n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
const ContentFeatures *f2 = &nodedef->get(n2);
if (f2->drawtype == NDT_FENCELIKE) {
static const aabb3f bar_x1(BS / 2 - bar_len, BS / 4 - bar_rad, -bar_rad,
BS / 2 + bar_len, BS / 4 + bar_rad, bar_rad);
static const aabb3f bar_x2(BS / 2 - bar_len, -BS / 4 - bar_rad, -bar_rad,
BS / 2 + bar_len, -BS / 4 + bar_rad, bar_rad);
static const f32 xrailuv[24] = {
0.000, 0.125, 1.000, 0.250,
0.000, 0.250, 1.000, 0.375,
0.375, 0.375, 0.500, 0.500,
0.625, 0.625, 0.750, 0.750,
0.000, 0.500, 1.000, 0.625,
0.000, 0.875, 1.000, 1.000,
};
drawAutoLightedCuboid(bar_x1, xrailuv);
drawAutoLightedCuboid(bar_x2, xrailuv);
}
// Now a section of fence, +Z, if there's a post there
p2 = p;
p2.Z++;
n2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p2);
f2 = &nodedef->get(n2);
if (f2->drawtype == NDT_FENCELIKE) {
static const aabb3f bar_z1(-bar_rad, BS / 4 - bar_rad, BS / 2 - bar_len,
bar_rad, BS / 4 + bar_rad, BS / 2 + bar_len);
static const aabb3f bar_z2(-bar_rad, -BS / 4 - bar_rad, BS / 2 - bar_len,
bar_rad, -BS / 4 + bar_rad, BS / 2 + bar_len);
static const f32 zrailuv[24] = {
0.1875, 0.0625, 0.3125, 0.3125, // cannot rotate; stretch
0.2500, 0.0625, 0.3750, 0.3125, // for wood texture instead
0.0000, 0.5625, 1.0000, 0.6875,
0.0000, 0.3750, 1.0000, 0.5000,
0.3750, 0.3750, 0.5000, 0.5000,
0.6250, 0.6250, 0.7500, 0.7500,
};
drawAutoLightedCuboid(bar_z1, zrailuv);
drawAutoLightedCuboid(bar_z2, zrailuv);
}
}
bool MapblockMeshGenerator::isSameRail(v3s16 dir)
{
MapNode node2 = data->m_vmanip.getNodeNoEx(blockpos_nodes + p + dir);
if (node2.getContent() == n.getContent())
return true;
const ContentFeatures &def2 = nodedef->get(node2);
return ((def2.drawtype == NDT_RAILLIKE) &&
(def2.getGroup(raillike_groupname) == raillike_group));
}
void MapblockMeshGenerator::drawRaillikeNode()
{
static const v3s16 direction[4] = {
v3s16( 0, 0, 1),
v3s16( 0, 0, -1),
v3s16(-1, 0, 0),
v3s16( 1, 0, 0),
};
static const int slope_angle[4] = {0, 180, 90, -90};
enum RailTile {
straight,
curved,
junction,
cross,
};
struct RailDesc {
int tile_index;
int angle;
};
static const RailDesc rail_kinds[16] = {
// +x -x -z +z
//-------------
{straight, 0}, // . . . .
{straight, 0}, // . . . +Z
{straight, 0}, // . . -Z .
{straight, 0}, // . . -Z +Z
{straight, 90}, // . -X . .
{ curved, 180}, // . -X . +Z
{ curved, 270}, // . -X -Z .
{junction, 180}, // . -X -Z +Z
{straight, 90}, // +X . . .
{ curved, 90}, // +X . . +Z
{ curved, 0}, // +X . -Z .
{junction, 0}, // +X . -Z +Z
{straight, 90}, // +X -X . .
{junction, 90}, // +X -X . +Z
{junction, 270}, // +X -X -Z .
{ cross, 0}, // +X -X -Z +Z
};
raillike_group = nodedef->get(n).getGroup(raillike_groupname);
int code = 0;
int angle;
int tile_index;
bool sloped = false;
for (int dir = 0; dir < 4; dir++) {
bool rail_above = isSameRail(direction[dir] + v3s16(0, 1, 0));
if (rail_above) {
sloped = true;
angle = slope_angle[dir];
}
if (rail_above ||
isSameRail(direction[dir]) ||
isSameRail(direction[dir] + v3s16(0, -1, 0)))
code |= 1 << dir;
}
if (sloped) {
tile_index = straight;
} else {
tile_index = rail_kinds[code].tile_index;
angle = rail_kinds[code].angle;
}
useTile(tile_index, true);
static const float offset = BS / 64;
static const float size = BS / 2;
float y2 = sloped ? size : -size;
v3f vertices[4] = {
v3f(-size, y2 + offset, size),
v3f( size, y2 + offset, size),
v3f( size, -size + offset, -size),
v3f(-size, -size + offset, -size),
};
if (angle)
for (int i = 0; i < 4; i++)
vertices[i].rotateXZBy(angle);
drawQuad(vertices);
}
void MapblockMeshGenerator::drawNodeboxNode()
{
static const v3s16 tile_dirs[6] = {
v3s16(0, 1, 0),
v3s16(0, -1, 0),
v3s16(1, 0, 0),
v3s16(-1, 0, 0),
v3s16(0, 0, 1),
v3s16(0, 0, -1)
};
// we have this order for some reason...
static const v3s16 connection_dirs[6] = {
v3s16( 0, 1, 0), // top
v3s16( 0, -1, 0), // bottom
v3s16( 0, 0, -1), // front
v3s16(-1, 0, 0), // left
v3s16( 0, 0, 1), // back
v3s16( 1, 0, 0), // right
};
TileSpec tiles[6];
for (int face = 0; face < 6; face++) {
// Handles facedir rotation for textures
getTile(tile_dirs[face], tiles[face]);
}
// locate possible neighboring nodes to connect to
int neighbors_set = 0;
if (f->node_box.type == NODEBOX_CONNECTED) {
for (int dir = 0; dir != 6; dir++) {
int flag = 1 << dir;
v3s16 p2 = blockpos_nodes + p + connection_dirs[dir];
MapNode n2 = data->m_vmanip.getNodeNoEx(p2);
if (nodedef->nodeboxConnects(n, n2, flag))
neighbors_set |= flag;
}
}
std::vector<aabb3f> boxes;
n.getNodeBoxes(nodedef, &boxes, neighbors_set);
for (std::vector<aabb3f>::iterator i = boxes.begin(); i != boxes.end(); ++i)
drawAutoLightedCuboid(*i, NULL, tiles, 6);
}
void MapblockMeshGenerator::drawMeshNode()
{
u8 facedir = 0;
scene::IMesh* mesh;
bool private_mesh; // as a grab/drop pair is not thread-safe
if (f->param_type_2 == CPT2_FACEDIR ||
f->param_type_2 == CPT2_COLORED_FACEDIR) {
facedir = n.getFaceDir(nodedef);
} else if (f->param_type_2 == CPT2_WALLMOUNTED ||
f->param_type_2 == CPT2_COLORED_WALLMOUNTED) {
// Convert wallmounted to 6dfacedir.
// When cache enabled, it is already converted.
facedir = n.getWallMounted(nodedef);
if (!enable_mesh_cache) {
static const u8 wm_to_6d[6] = {20, 0, 16 + 1, 12 + 3, 8, 4 + 2};
facedir = wm_to_6d[facedir];
}
}
if (!data->m_smooth_lighting && f->mesh_ptr[facedir]) {
// use cached meshes
private_mesh = false;
mesh = f->mesh_ptr[facedir];
} else if (f->mesh_ptr[0]) {
// no cache, clone and rotate mesh
private_mesh = true;
mesh = cloneMesh(f->mesh_ptr[0]);
rotateMeshBy6dFacedir(mesh, facedir);
recalculateBoundingBox(mesh);
meshmanip->recalculateNormals(mesh, true, false);
} else
return;
int mesh_buffer_count = mesh->getMeshBufferCount();
for (int j = 0; j < mesh_buffer_count; j++) {
useTile(j, false);
scene::IMeshBuffer *buf = mesh->getMeshBuffer(j);
video::S3DVertex *vertices = (video::S3DVertex *)buf->getVertices();
int vertex_count = buf->getVertexCount();
if (data->m_smooth_lighting) {
// Mesh is always private here. So the lighting is applied to each
// vertex right here.
for (int k = 0; k < vertex_count; k++) {
video::S3DVertex &vertex = vertices[k];
vertex.Color = blendLightColor(vertex.Pos, vertex.Normal);
vertex.Pos += origin;
}
collector->append(tile, vertices, vertex_count,
buf->getIndices(), buf->getIndexCount());
} else {
// Don't modify the mesh, it may not be private here.
// Instead, let the collector process colors, etc.
collector->append(tile, vertices, vertex_count,
buf->getIndices(), buf->getIndexCount(), origin,
color, f->light_source);
}
}
if (private_mesh)
mesh->drop();
}
// also called when the drawtype is known but should have been pre-converted
void MapblockMeshGenerator::errorUnknownDrawtype()
{
infostream << "Got drawtype " << f->drawtype << std::endl;
FATAL_ERROR("Unknown drawtype");
}
void MapblockMeshGenerator::drawNode()
{
if (data->m_smooth_lighting)
getSmoothLightFrame();
else
light = getInteriorLight(n, 1, nodedef);
switch (f->drawtype) {
case NDT_FLOWINGLIQUID: drawLiquidNode(); break;
case NDT_GLASSLIKE: drawGlasslikeNode(); break;
case NDT_GLASSLIKE_FRAMED: drawGlasslikeFramedNode(); break;
case NDT_ALLFACES: drawAllfacesNode(); break;
case NDT_TORCHLIKE: drawTorchlikeNode(); break;
case NDT_SIGNLIKE: drawSignlikeNode(); break;
case NDT_PLANTLIKE: drawPlantlikeNode(); break;
case NDT_FIRELIKE: drawFirelikeNode(); break;
case NDT_FENCELIKE: drawFencelikeNode(); break;
case NDT_RAILLIKE: drawRaillikeNode(); break;
case NDT_NODEBOX: drawNodeboxNode(); break;
case NDT_MESH: drawMeshNode(); break;
default: errorUnknownDrawtype(); break;
}
}
/*
TODO: Fix alpha blending for special nodes
Currently only the last element rendered is blended correct
*/
void MapblockMeshGenerator::generate()
{
for (p.Z = 0; p.Z < MAP_BLOCKSIZE; p.Z++)
for (p.Y = 0; p.Y < MAP_BLOCKSIZE; p.Y++)
for (p.X = 0; p.X < MAP_BLOCKSIZE; p.X++) {
n = data->m_vmanip.getNodeNoEx(blockpos_nodes + p);
f = &nodedef->get(n);
// Solid nodes are drawn by MapBlockMesh
if (f->solidness != 0)
continue;
if (f->drawtype == NDT_AIRLIKE)
continue;
origin = intToFloat(p, BS);
drawNode();
}
}