forked from Mirrorlandia_minetest/minetest
1389 lines
43 KiB
C++
1389 lines
43 KiB
C++
/*
|
|
Minetest
|
|
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "clientmap.h"
|
|
#include "client.h"
|
|
#include "mapblock_mesh.h"
|
|
#include <IMaterialRenderer.h>
|
|
#include <matrix4.h>
|
|
#include "mapsector.h"
|
|
#include "mapblock.h"
|
|
#include "nodedef.h"
|
|
#include "profiler.h"
|
|
#include "settings.h"
|
|
#include "camera.h" // CameraModes
|
|
#include "util/basic_macros.h"
|
|
#include "client/renderingengine.h"
|
|
|
|
#include <queue>
|
|
|
|
// struct MeshBufListList
|
|
void MeshBufListList::clear()
|
|
{
|
|
for (auto &list : lists)
|
|
list.clear();
|
|
}
|
|
|
|
void MeshBufListList::add(scene::IMeshBuffer *buf, v3s16 position, u8 layer)
|
|
{
|
|
// Append to the correct layer
|
|
std::vector<MeshBufList> &list = lists[layer];
|
|
const video::SMaterial &m = buf->getMaterial();
|
|
for (MeshBufList &l : list) {
|
|
// comparing a full material is quite expensive so we don't do it if
|
|
// not even first texture is equal
|
|
if (l.m.TextureLayers[0].Texture != m.TextureLayers[0].Texture)
|
|
continue;
|
|
|
|
if (l.m == m) {
|
|
l.bufs.emplace_back(position, buf);
|
|
return;
|
|
}
|
|
}
|
|
MeshBufList l;
|
|
l.m = m;
|
|
l.bufs.emplace_back(position, buf);
|
|
list.emplace_back(l);
|
|
}
|
|
|
|
static void on_settings_changed(const std::string &name, void *data)
|
|
{
|
|
static_cast<ClientMap*>(data)->onSettingChanged(name);
|
|
}
|
|
// ClientMap
|
|
|
|
ClientMap::ClientMap(
|
|
Client *client,
|
|
RenderingEngine *rendering_engine,
|
|
MapDrawControl &control,
|
|
s32 id
|
|
):
|
|
Map(client),
|
|
scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(),
|
|
rendering_engine->get_scene_manager(), id),
|
|
m_client(client),
|
|
m_rendering_engine(rendering_engine),
|
|
m_control(control),
|
|
m_drawlist(MapBlockComparer(v3s16(0,0,0)))
|
|
{
|
|
|
|
/*
|
|
* @Liso: Sadly C++ doesn't have introspection, so the only way we have to know
|
|
* the class is whith a name ;) Name property cames from ISceneNode base class.
|
|
*/
|
|
Name = "ClientMap";
|
|
m_box = aabb3f(-BS*1000000,-BS*1000000,-BS*1000000,
|
|
BS*1000000,BS*1000000,BS*1000000);
|
|
|
|
/* TODO: Add a callback function so these can be updated when a setting
|
|
* changes. At this point in time it doesn't matter (e.g. /set
|
|
* is documented to change server settings only)
|
|
*
|
|
* TODO: Local caching of settings is not optimal and should at some stage
|
|
* be updated to use a global settings object for getting thse values
|
|
* (as opposed to the this local caching). This can be addressed in
|
|
* a later release.
|
|
*/
|
|
m_cache_trilinear_filter = g_settings->getBool("trilinear_filter");
|
|
m_cache_bilinear_filter = g_settings->getBool("bilinear_filter");
|
|
m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
|
|
m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
|
|
m_loops_occlusion_culler = g_settings->get("occlusion_culler") == "loops";
|
|
g_settings->registerChangedCallback("occlusion_culler", on_settings_changed, this);
|
|
m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
|
|
g_settings->registerChangedCallback("enable_raytraced_culling", on_settings_changed, this);
|
|
}
|
|
|
|
void ClientMap::onSettingChanged(const std::string &name)
|
|
{
|
|
if (name == "occlusion_culler")
|
|
m_loops_occlusion_culler = g_settings->get("occlusion_culler") == "loops";
|
|
if (name == "enable_raytraced_culling")
|
|
m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
|
|
}
|
|
|
|
ClientMap::~ClientMap()
|
|
{
|
|
g_settings->deregisterChangedCallback("occlusion_culler", on_settings_changed, this);
|
|
g_settings->deregisterChangedCallback("enable_raytraced_culling", on_settings_changed, this);
|
|
}
|
|
|
|
void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset)
|
|
{
|
|
v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset;
|
|
v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE);
|
|
|
|
m_camera_position = pos;
|
|
m_camera_direction = dir;
|
|
m_camera_fov = fov;
|
|
m_camera_offset = offset;
|
|
|
|
v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset;
|
|
v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE);
|
|
|
|
// reorder the blocks when camera crosses block boundary
|
|
if (previous_block != current_block)
|
|
m_needs_update_drawlist = true;
|
|
|
|
// reorder transparent meshes when camera crosses node boundary
|
|
if (previous_node != current_node)
|
|
m_needs_update_transparent_meshes = true;
|
|
}
|
|
|
|
MapSector * ClientMap::emergeSector(v2s16 p2d)
|
|
{
|
|
// Check that it doesn't exist already
|
|
MapSector *sector = getSectorNoGenerate(p2d);
|
|
|
|
// Create it if it does not exist yet
|
|
if (!sector) {
|
|
sector = new MapSector(this, p2d, m_gamedef);
|
|
m_sectors[p2d] = sector;
|
|
}
|
|
|
|
return sector;
|
|
}
|
|
|
|
void ClientMap::OnRegisterSceneNode()
|
|
{
|
|
if(IsVisible)
|
|
{
|
|
SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
|
|
SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
|
|
}
|
|
|
|
ISceneNode::OnRegisterSceneNode();
|
|
// It's not needed to register this node to the shadow renderer
|
|
// we have other way to find it
|
|
}
|
|
|
|
void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes,
|
|
v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range)
|
|
{
|
|
if (range <= 0.0f)
|
|
range = m_control.wanted_range;
|
|
|
|
v3s16 box_nodes_d = range * v3s16(1, 1, 1);
|
|
// Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d'
|
|
// can exceed the range of v3s16 when a large view range is used near the
|
|
// world edges.
|
|
v3s32 p_nodes_min(
|
|
cam_pos_nodes.X - box_nodes_d.X,
|
|
cam_pos_nodes.Y - box_nodes_d.Y,
|
|
cam_pos_nodes.Z - box_nodes_d.Z);
|
|
v3s32 p_nodes_max(
|
|
cam_pos_nodes.X + box_nodes_d.X,
|
|
cam_pos_nodes.Y + box_nodes_d.Y,
|
|
cam_pos_nodes.Z + box_nodes_d.Z);
|
|
// Take a fair amount as we will be dropping more out later
|
|
// Umm... these additions are a bit strange but they are needed.
|
|
*p_blocks_min = v3s16(
|
|
p_nodes_min.X / MAP_BLOCKSIZE - 3,
|
|
p_nodes_min.Y / MAP_BLOCKSIZE - 3,
|
|
p_nodes_min.Z / MAP_BLOCKSIZE - 3);
|
|
*p_blocks_max = v3s16(
|
|
p_nodes_max.X / MAP_BLOCKSIZE + 1,
|
|
p_nodes_max.Y / MAP_BLOCKSIZE + 1,
|
|
p_nodes_max.Z / MAP_BLOCKSIZE + 1);
|
|
}
|
|
|
|
class MapBlockFlags
|
|
{
|
|
public:
|
|
static constexpr u16 CHUNK_EDGE = 8;
|
|
static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1;
|
|
static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk
|
|
|
|
MapBlockFlags(v3s16 min_pos, v3s16 max_pos)
|
|
: min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1)
|
|
{
|
|
chunks.resize(volume.X * volume.Y * volume.Z);
|
|
}
|
|
|
|
class Chunk
|
|
{
|
|
public:
|
|
inline u8 &getBits(v3s16 pos)
|
|
{
|
|
std::size_t address = getAddress(pos);
|
|
return bits[address];
|
|
}
|
|
|
|
private:
|
|
inline std::size_t getAddress(v3s16 pos) {
|
|
std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE);
|
|
return address;
|
|
}
|
|
|
|
std::array<u8, CHUNK_VOLUME> bits;
|
|
};
|
|
|
|
Chunk &getChunk(v3s16 pos)
|
|
{
|
|
v3s16 delta = (pos - min_pos) / CHUNK_EDGE;
|
|
std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y;
|
|
Chunk *chunk = chunks[address].get();
|
|
if (!chunk) {
|
|
chunk = new Chunk();
|
|
chunks[address].reset(chunk);
|
|
}
|
|
return *chunk;
|
|
}
|
|
private:
|
|
std::vector<std::unique_ptr<Chunk>> chunks;
|
|
v3s16 min_pos;
|
|
v3s16 volume;
|
|
};
|
|
|
|
void ClientMap::updateDrawList()
|
|
{
|
|
ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
|
|
|
|
m_needs_update_drawlist = false;
|
|
|
|
for (auto &i : m_drawlist) {
|
|
MapBlock *block = i.second;
|
|
block->refDrop();
|
|
}
|
|
m_drawlist.clear();
|
|
|
|
for (auto &block : m_keeplist) {
|
|
block->refDrop();
|
|
}
|
|
m_keeplist.clear();
|
|
|
|
const v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
|
|
|
|
v3s16 p_blocks_min;
|
|
v3s16 p_blocks_max;
|
|
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
|
|
|
|
// Number of blocks occlusion culled
|
|
u32 blocks_occlusion_culled = 0;
|
|
// Number of blocks frustum culled
|
|
u32 blocks_frustum_culled = 0;
|
|
|
|
MeshGrid mesh_grid = m_client->getMeshGrid();
|
|
|
|
// No occlusion culling when free_move is on and camera is inside ground
|
|
// No occlusion culling for chunk sizes of 4 and above
|
|
// because the current occlusion culling test is highly inefficient at these sizes
|
|
bool occlusion_culling_enabled = mesh_grid.cell_size < 4;
|
|
if (m_control.allow_noclip) {
|
|
MapNode n = getNode(cam_pos_nodes);
|
|
if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
|
|
occlusion_culling_enabled = false;
|
|
}
|
|
|
|
const v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
|
|
m_drawlist = std::map<v3s16, MapBlock*, MapBlockComparer>(MapBlockComparer(camera_block));
|
|
|
|
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
|
|
|
|
// Uncomment to debug occluded blocks in the wireframe mode
|
|
// TODO: Include this as a flag for an extended debugging setting
|
|
// if (occlusion_culling_enabled && m_control.show_wireframe)
|
|
// occlusion_culling_enabled = porting::getTimeS() & 1;
|
|
|
|
// Set of mesh holding blocks
|
|
std::set<v3s16> shortlist;
|
|
|
|
/*
|
|
When range_all is enabled, enumerate all blocks visible in the
|
|
frustum and display them.
|
|
*/
|
|
if (m_control.range_all || m_loops_occlusion_culler) {
|
|
// Number of blocks currently loaded by the client
|
|
u32 blocks_loaded = 0;
|
|
// Number of blocks with mesh in rendering range
|
|
u32 blocks_in_range_with_mesh = 0;
|
|
|
|
MapBlockVect sectorblocks;
|
|
|
|
for (auto §or_it : m_sectors) {
|
|
MapSector *sector = sector_it.second;
|
|
v2s16 sp = sector->getPos();
|
|
|
|
blocks_loaded += sector->size();
|
|
if (!m_control.range_all) {
|
|
if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
|
|
sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
|
|
continue;
|
|
}
|
|
|
|
sectorblocks.clear();
|
|
sector->getBlocks(sectorblocks);
|
|
|
|
// Loop through blocks in sector
|
|
for (MapBlock *block : sectorblocks) {
|
|
MapBlockMesh *mesh = block->mesh;
|
|
|
|
// Calculate the coordinates for range and frustum culling
|
|
v3f mesh_sphere_center;
|
|
f32 mesh_sphere_radius;
|
|
|
|
v3s16 block_pos_nodes = block->getPos() * MAP_BLOCKSIZE;
|
|
|
|
if (mesh) {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
|
|
+ mesh->getBoundingSphereCenter();
|
|
mesh_sphere_radius = mesh->getBoundingRadius();
|
|
} else {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
|
|
+ v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
|
|
mesh_sphere_radius = 0.0f;
|
|
}
|
|
|
|
// First, perform a simple distance check.
|
|
if (!m_control.range_all &&
|
|
mesh_sphere_center.getDistanceFrom(m_camera_position) >
|
|
m_control.wanted_range * BS + mesh_sphere_radius)
|
|
continue; // Out of range, skip.
|
|
|
|
// Keep the block alive as long as it is in range.
|
|
block->resetUsageTimer();
|
|
blocks_in_range_with_mesh++;
|
|
|
|
// Frustum culling
|
|
// Only do coarse culling here, to account for fast camera movement.
|
|
// This is needed because this function is not called every frame.
|
|
float frustum_cull_extra_radius = 300.0f;
|
|
if (is_frustum_culled(mesh_sphere_center,
|
|
mesh_sphere_radius + frustum_cull_extra_radius)) {
|
|
blocks_frustum_culled++;
|
|
continue;
|
|
}
|
|
|
|
// Raytraced occlusion culling - send rays from the camera to the block's corners
|
|
if (!m_control.range_all && occlusion_culling_enabled && m_enable_raytraced_culling &&
|
|
mesh &&
|
|
isMeshOccluded(block, mesh_grid.cell_size, cam_pos_nodes)) {
|
|
blocks_occlusion_culled++;
|
|
continue;
|
|
}
|
|
|
|
if (mesh_grid.cell_size > 1) {
|
|
// Block meshes are stored in the corner block of a chunk
|
|
// (where all coordinate are divisible by the chunk size)
|
|
// Add them to the de-dup set.
|
|
shortlist.emplace(mesh_grid.getMeshPos(block->getPos()));
|
|
// All other blocks we can grab and add to the keeplist right away.
|
|
m_keeplist.push_back(block);
|
|
block->refGrab();
|
|
} else if (mesh) {
|
|
// without mesh chunking we can add the block to the drawlist
|
|
block->refGrab();
|
|
m_drawlist.emplace(block->getPos(), block);
|
|
}
|
|
}
|
|
}
|
|
|
|
g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
|
|
g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
|
|
} else {
|
|
// Blocks visited by the algorithm
|
|
u32 blocks_visited = 0;
|
|
// Block sides that were not traversed
|
|
u32 sides_skipped = 0;
|
|
|
|
std::queue<v3s16> blocks_to_consider;
|
|
|
|
v3s16 camera_mesh = mesh_grid.getMeshPos(camera_block);
|
|
v3s16 camera_cell = mesh_grid.getCellPos(camera_block);
|
|
|
|
// Bits per block:
|
|
// [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
|
|
MapBlockFlags meshes_seen(mesh_grid.getCellPos(p_blocks_min), mesh_grid.getCellPos(p_blocks_max) + 1);
|
|
|
|
// Start breadth-first search with the block the camera is in
|
|
blocks_to_consider.push(camera_mesh);
|
|
meshes_seen.getChunk(camera_cell).getBits(camera_cell) = 0x07; // mark all sides as visible
|
|
|
|
// Recursively walk the space and pick mapblocks for drawing
|
|
while (!blocks_to_consider.empty()) {
|
|
|
|
v3s16 block_coord = blocks_to_consider.front();
|
|
blocks_to_consider.pop();
|
|
|
|
v3s16 cell_coord = mesh_grid.getCellPos(block_coord);
|
|
auto &flags = meshes_seen.getChunk(cell_coord).getBits(cell_coord);
|
|
|
|
// Only visit each block once (it may have been queued up to three times)
|
|
if ((flags & 0x80) == 0x80)
|
|
continue;
|
|
flags |= 0x80;
|
|
|
|
blocks_visited++;
|
|
|
|
// Get the sector, block and mesh
|
|
MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
|
|
|
|
MapBlock *block = sector ? sector->getBlockNoCreateNoEx(block_coord.Y) : nullptr;
|
|
|
|
MapBlockMesh *mesh = block ? block->mesh : nullptr;
|
|
|
|
// Calculate the coordinates for range and frustum culling
|
|
v3f mesh_sphere_center;
|
|
f32 mesh_sphere_radius;
|
|
|
|
v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
|
|
|
|
if (mesh) {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
|
|
+ mesh->getBoundingSphereCenter();
|
|
mesh_sphere_radius = mesh->getBoundingRadius();
|
|
} else {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((mesh_grid.cell_size * MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
|
|
mesh_sphere_radius = 0.87f * mesh_grid.cell_size * MAP_BLOCKSIZE * BS;
|
|
}
|
|
|
|
// First, perform a simple distance check.
|
|
if (!m_control.range_all &&
|
|
mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
|
|
m_control.wanted_range * BS + mesh_sphere_radius)
|
|
continue; // Out of range, skip.
|
|
|
|
// Frustum culling
|
|
// Only do coarse culling here, to account for fast camera movement.
|
|
// This is needed because this function is not called every frame.
|
|
float frustum_cull_extra_radius = 300.0f;
|
|
if (is_frustum_culled(mesh_sphere_center,
|
|
mesh_sphere_radius + frustum_cull_extra_radius)) {
|
|
blocks_frustum_culled++;
|
|
continue;
|
|
}
|
|
|
|
// Calculate the vector from the camera block to the current block
|
|
// We use it to determine through which sides of the current block we can continue the search
|
|
v3s16 look = block_coord - camera_mesh;
|
|
|
|
// Occluded near sides will further occlude the far sides
|
|
u8 visible_outer_sides = flags & 0x07;
|
|
|
|
// Raytraced occlusion culling - send rays from the camera to the block's corners
|
|
if (occlusion_culling_enabled && m_enable_raytraced_culling &&
|
|
block && mesh &&
|
|
visible_outer_sides != 0x07 && isMeshOccluded(block, mesh_grid.cell_size, cam_pos_nodes)) {
|
|
blocks_occlusion_culled++;
|
|
continue;
|
|
}
|
|
|
|
if (mesh_grid.cell_size > 1) {
|
|
// Block meshes are stored in the corner block of a chunk
|
|
// (where all coordinate are divisible by the chunk size)
|
|
// Add them to the de-dup set.
|
|
shortlist.emplace(block_coord.X, block_coord.Y, block_coord.Z);
|
|
// All other blocks we can grab and add to the keeplist right away.
|
|
if (block) {
|
|
m_keeplist.push_back(block);
|
|
block->refGrab();
|
|
}
|
|
} else if (mesh) {
|
|
// without mesh chunking we can add the block to the drawlist
|
|
block->refGrab();
|
|
m_drawlist.emplace(block_coord, block);
|
|
}
|
|
|
|
// Decide which sides to traverse next or to block away
|
|
|
|
// First, find the near sides that would occlude the far sides
|
|
// * A near side can itself be occluded by a nearby block (the test above ^^)
|
|
// * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
|
|
|
|
// mesh solid sides are +Z-Z+Y-Y+X-X
|
|
// if we are inside the block's coordinates on an axis,
|
|
// treat these sides as opaque, as they should not allow to reach the far sides
|
|
u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
|
|
(look.Y == 0 ? 12 : 0) |
|
|
(look.Z == 0 ? 48 : 0);
|
|
|
|
// get the mask for the sides that are relevant based on the direction
|
|
u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
|
|
(look.Y > 0 ? 4 : 8) |
|
|
(look.Z > 0 ? 16 : 32);
|
|
|
|
// This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
|
|
// Get he block's transparent sides
|
|
u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
|
|
|
|
// compress block transparent sides to ZYX mask of see-through axes
|
|
u8 near_transparency = (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
|
|
|
|
// when we are inside the camera block, do not block any sides
|
|
if (block_inner_sides == 0x3F)
|
|
block_inner_sides = 0;
|
|
|
|
near_transparency &= ~block_inner_sides & 0x3F;
|
|
|
|
near_transparency |= (near_transparency >> 1);
|
|
near_transparency = (near_transparency & 1) |
|
|
((near_transparency >> 1) & 2) |
|
|
((near_transparency >> 2) & 4);
|
|
|
|
// combine with known visible sides that matter
|
|
near_transparency &= visible_outer_sides;
|
|
|
|
// The rule for any far side to be visible:
|
|
// * Any of the adjacent near sides is transparent (different axes)
|
|
// * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
|
|
|
|
// Calculate vector from camera to mapblock center. Because we only need relation between
|
|
// coordinates we scale by 2 to avoid precision loss.
|
|
v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + mesh_grid.cell_size * MAP_BLOCKSIZE - 1;
|
|
|
|
// dominant axis flag
|
|
u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
|
|
((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
|
|
((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
|
|
|
|
// Queue next blocks for processing:
|
|
// - Examine "far" sides of the current blocks, i.e. never move towards the camera
|
|
// - Only traverse the sides that are not occluded
|
|
// - Only traverse the sides that are not opaque
|
|
// When queueing, mark the relevant side on the next block as 'visible'
|
|
for (s16 axis = 0; axis < 3; axis++) {
|
|
|
|
// Select a bit from transparent_sides for the side
|
|
u8 far_side_mask = 1 << (2 * axis);
|
|
|
|
// axis flag
|
|
u8 my_side = 1 << axis;
|
|
u8 adjacent_sides = my_side ^ 0x07;
|
|
|
|
auto traverse_far_side = [&](s8 next_pos_offset) {
|
|
// far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
|
|
bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
|
|
side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
|
|
|
|
v3s16 next_pos = block_coord;
|
|
next_pos[axis] += next_pos_offset;
|
|
|
|
v3s16 next_cell = mesh_grid.getCellPos(next_pos);
|
|
|
|
// If a side is a see-through, mark the next block's side as visible, and queue
|
|
if (side_visible) {
|
|
auto &next_flags = meshes_seen.getChunk(next_cell).getBits(next_cell);
|
|
next_flags |= my_side;
|
|
blocks_to_consider.push(next_pos);
|
|
}
|
|
else {
|
|
sides_skipped++;
|
|
}
|
|
};
|
|
|
|
|
|
// Test the '-' direction of the axis
|
|
if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
|
|
traverse_far_side(-mesh_grid.cell_size);
|
|
|
|
// Test the '+' direction of the axis
|
|
far_side_mask <<= 1;
|
|
|
|
if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
|
|
traverse_far_side(+mesh_grid.cell_size);
|
|
}
|
|
}
|
|
g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
|
|
g_profiler->avg("MapBlocks examined [#]", blocks_visited);
|
|
}
|
|
g_profiler->avg("MapBlocks shortlist [#]", shortlist.size());
|
|
|
|
assert(m_drawlist.empty() || shortlist.empty());
|
|
for (auto pos : shortlist) {
|
|
MapBlock *block = getBlockNoCreateNoEx(pos);
|
|
if (block) {
|
|
block->refGrab();
|
|
m_drawlist.emplace(pos, block);
|
|
}
|
|
}
|
|
|
|
g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
|
|
g_profiler->avg("MapBlocks frustum culled [#]", blocks_frustum_culled);
|
|
g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
|
|
}
|
|
|
|
void ClientMap::touchMapBlocks()
|
|
{
|
|
if (m_control.range_all || m_loops_occlusion_culler)
|
|
return;
|
|
|
|
ScopeProfiler sp(g_profiler, "CM::touchMapBlocks()", SPT_AVG);
|
|
|
|
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
|
|
|
|
v3s16 p_blocks_min;
|
|
v3s16 p_blocks_max;
|
|
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
|
|
|
|
// Number of blocks currently loaded by the client
|
|
u32 blocks_loaded = 0;
|
|
// Number of blocks with mesh in rendering range
|
|
u32 blocks_in_range_with_mesh = 0;
|
|
|
|
for (const auto §or_it : m_sectors) {
|
|
MapSector *sector = sector_it.second;
|
|
v2s16 sp = sector->getPos();
|
|
|
|
blocks_loaded += sector->size();
|
|
if (!m_control.range_all) {
|
|
if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
|
|
sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
|
|
continue;
|
|
}
|
|
|
|
MapBlockVect sectorblocks;
|
|
sector->getBlocks(sectorblocks);
|
|
|
|
/*
|
|
Loop through blocks in sector
|
|
*/
|
|
|
|
for (MapBlock *block : sectorblocks) {
|
|
MapBlockMesh *mesh = block->mesh;
|
|
|
|
// Calculate the coordinates for range and frustum culling
|
|
v3f mesh_sphere_center;
|
|
f32 mesh_sphere_radius;
|
|
|
|
v3s16 block_pos_nodes = block->getPos() * MAP_BLOCKSIZE;
|
|
|
|
if (mesh) {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
|
|
+ mesh->getBoundingSphereCenter();
|
|
mesh_sphere_radius = mesh->getBoundingRadius();
|
|
} else {
|
|
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
|
|
+ v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
|
|
mesh_sphere_radius = 0.0f;
|
|
}
|
|
|
|
// First, perform a simple distance check.
|
|
if (!m_control.range_all &&
|
|
mesh_sphere_center.getDistanceFrom(m_camera_position) >
|
|
m_control.wanted_range * BS + mesh_sphere_radius)
|
|
continue; // Out of range, skip.
|
|
|
|
// Keep the block alive as long as it is in range.
|
|
block->resetUsageTimer();
|
|
blocks_in_range_with_mesh++;
|
|
}
|
|
}
|
|
|
|
g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
|
|
g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
|
|
}
|
|
|
|
void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass)
|
|
{
|
|
bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT;
|
|
|
|
std::string prefix;
|
|
if (pass == scene::ESNRP_SOLID)
|
|
prefix = "renderMap(SOLID): ";
|
|
else
|
|
prefix = "renderMap(TRANSPARENT): ";
|
|
|
|
/*
|
|
This is called two times per frame, reset on the non-transparent one
|
|
*/
|
|
if (pass == scene::ESNRP_SOLID)
|
|
m_last_drawn_sectors.clear();
|
|
|
|
/*
|
|
Get animation parameters
|
|
*/
|
|
const float animation_time = m_client->getAnimationTime();
|
|
const int crack = m_client->getCrackLevel();
|
|
const u32 daynight_ratio = m_client->getEnv().getDayNightRatio();
|
|
|
|
const v3f camera_position = m_camera_position;
|
|
|
|
/*
|
|
Get all blocks and draw all visible ones
|
|
*/
|
|
|
|
u32 vertex_count = 0;
|
|
u32 drawcall_count = 0;
|
|
|
|
// For limiting number of mesh animations per frame
|
|
u32 mesh_animate_count = 0;
|
|
//u32 mesh_animate_count_far = 0;
|
|
|
|
/*
|
|
Update transparent meshes
|
|
*/
|
|
if (is_transparent_pass)
|
|
updateTransparentMeshBuffers();
|
|
|
|
/*
|
|
Draw the selected MapBlocks
|
|
*/
|
|
|
|
MeshBufListList grouped_buffers;
|
|
std::vector<DrawDescriptor> draw_order;
|
|
video::SMaterial previous_material;
|
|
|
|
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
|
|
|
|
const MeshGrid mesh_grid = m_client->getMeshGrid();
|
|
for (auto &i : m_drawlist) {
|
|
v3s16 block_pos = i.first;
|
|
MapBlock *block = i.second;
|
|
MapBlockMesh *block_mesh = block->mesh;
|
|
|
|
// If the mesh of the block happened to get deleted, ignore it
|
|
if (!block_mesh)
|
|
continue;
|
|
|
|
// Do exact frustum culling
|
|
// (The one in updateDrawList is only coarse.)
|
|
v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
|
|
+ block_mesh->getBoundingSphereCenter();
|
|
f32 mesh_sphere_radius = block_mesh->getBoundingRadius();
|
|
if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius))
|
|
continue;
|
|
|
|
v3f block_pos_r = intToFloat(block->getPosRelative() + MAP_BLOCKSIZE / 2, BS);
|
|
|
|
float d = camera_position.getDistanceFrom(block_pos_r);
|
|
d = MYMAX(0,d - BLOCK_MAX_RADIUS);
|
|
|
|
// Mesh animation
|
|
if (pass == scene::ESNRP_SOLID) {
|
|
// Pretty random but this should work somewhat nicely
|
|
bool faraway = d >= BS * 50;
|
|
if (block_mesh->isAnimationForced() || !faraway ||
|
|
mesh_animate_count < (m_control.range_all ? 200 : 50)) {
|
|
|
|
bool animated = block_mesh->animate(faraway, animation_time,
|
|
crack, daynight_ratio);
|
|
if (animated)
|
|
mesh_animate_count++;
|
|
} else {
|
|
block_mesh->decreaseAnimationForceTimer();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Get the meshbuffers of the block
|
|
*/
|
|
if (is_transparent_pass) {
|
|
// In transparent pass, the mesh will give us
|
|
// the partial buffers in the correct order
|
|
for (auto &buffer : block_mesh->getTransparentBuffers())
|
|
draw_order.emplace_back(block_pos, &buffer);
|
|
}
|
|
else {
|
|
// otherwise, group buffers across meshes
|
|
// using MeshBufListList
|
|
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
|
|
scene::IMesh *mesh = block_mesh->getMesh(layer);
|
|
assert(mesh);
|
|
|
|
u32 c = mesh->getMeshBufferCount();
|
|
for (u32 i = 0; i < c; i++) {
|
|
scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
|
|
|
|
video::SMaterial& material = buf->getMaterial();
|
|
video::IMaterialRenderer* rnd =
|
|
driver->getMaterialRenderer(material.MaterialType);
|
|
bool transparent = (rnd && rnd->isTransparent());
|
|
if (!transparent) {
|
|
if (buf->getVertexCount() == 0)
|
|
errorstream << "Block [" << analyze_block(block)
|
|
<< "] contains an empty meshbuf" << std::endl;
|
|
|
|
grouped_buffers.add(buf, block_pos, layer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Capture draw order for all solid meshes
|
|
for (auto &lists : grouped_buffers.lists) {
|
|
for (MeshBufList &list : lists) {
|
|
// iterate in reverse to draw closest blocks first
|
|
for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it) {
|
|
draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
|
|
}
|
|
}
|
|
}
|
|
|
|
TimeTaker draw("Drawing mesh buffers");
|
|
|
|
core::matrix4 m; // Model matrix
|
|
v3f offset = intToFloat(m_camera_offset, BS);
|
|
u32 material_swaps = 0;
|
|
|
|
// Render all mesh buffers in order
|
|
drawcall_count += draw_order.size();
|
|
|
|
for (auto &descriptor : draw_order) {
|
|
scene::IMeshBuffer *buf = descriptor.getBuffer();
|
|
|
|
if (!descriptor.m_reuse_material) {
|
|
auto &material = buf->getMaterial();
|
|
|
|
// Apply filter settings
|
|
material.forEachTexture([this] (auto &tex) {
|
|
tex.setFiltersMinetest(m_cache_bilinear_filter, m_cache_trilinear_filter,
|
|
m_cache_anistropic_filter);
|
|
});
|
|
material.Wireframe = m_control.show_wireframe;
|
|
|
|
// pass the shadow map texture to the buffer texture
|
|
ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer();
|
|
if (shadow && shadow->is_active()) {
|
|
auto &layer = material.TextureLayers[ShadowRenderer::TEXTURE_LAYER_SHADOW];
|
|
layer.Texture = shadow->get_texture();
|
|
layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
|
|
layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
|
|
// Do not enable filter on shadow texture to avoid visual artifacts
|
|
// with colored shadows.
|
|
// Filtering is done in shader code anyway
|
|
layer.MinFilter = video::ETMINF_NEAREST_MIPMAP_NEAREST;
|
|
layer.MagFilter = video::ETMAGF_NEAREST;
|
|
layer.AnisotropicFilter = 0;
|
|
}
|
|
driver->setMaterial(material);
|
|
++material_swaps;
|
|
material.TextureLayers[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr;
|
|
}
|
|
|
|
v3f block_wpos = intToFloat(mesh_grid.getMeshPos(descriptor.m_pos) * MAP_BLOCKSIZE, BS);
|
|
m.setTranslation(block_wpos - offset);
|
|
|
|
driver->setTransform(video::ETS_WORLD, m);
|
|
descriptor.draw(driver);
|
|
vertex_count += buf->getIndexCount();
|
|
}
|
|
|
|
g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
|
|
|
|
// Log only on solid pass because values are the same
|
|
if (pass == scene::ESNRP_SOLID) {
|
|
g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count);
|
|
}
|
|
|
|
if (pass == scene::ESNRP_TRANSPARENT) {
|
|
g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size());
|
|
}
|
|
|
|
g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
|
|
g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
|
|
g_profiler->avg(prefix + "material swaps [#]", material_swaps);
|
|
}
|
|
|
|
static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step,
|
|
float step_multiplier, float start_distance, float end_distance,
|
|
const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d,
|
|
int *result, bool *sunlight_seen)
|
|
{
|
|
int brightness_sum = 0;
|
|
int brightness_count = 0;
|
|
float distance = start_distance;
|
|
dir.normalize();
|
|
v3f pf = p0;
|
|
pf += dir * distance;
|
|
int noncount = 0;
|
|
bool nonlight_seen = false;
|
|
bool allow_allowing_non_sunlight_propagates = false;
|
|
bool allow_non_sunlight_propagates = false;
|
|
// Check content nearly at camera position
|
|
{
|
|
v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS);
|
|
MapNode n = map->getNode(p);
|
|
if(ndef->getLightingFlags(n).has_light &&
|
|
!ndef->getLightingFlags(n).sunlight_propagates)
|
|
allow_allowing_non_sunlight_propagates = true;
|
|
}
|
|
// If would start at CONTENT_IGNORE, start closer
|
|
{
|
|
v3s16 p = floatToInt(pf, BS);
|
|
MapNode n = map->getNode(p);
|
|
if(n.getContent() == CONTENT_IGNORE){
|
|
float newd = 2*BS;
|
|
pf = p0 + dir * 2*newd;
|
|
distance = newd;
|
|
sunlight_min_d = 0;
|
|
}
|
|
}
|
|
for (int i=0; distance < end_distance; i++) {
|
|
pf += dir * step;
|
|
distance += step;
|
|
step *= step_multiplier;
|
|
|
|
v3s16 p = floatToInt(pf, BS);
|
|
MapNode n = map->getNode(p);
|
|
ContentLightingFlags f = ndef->getLightingFlags(n);
|
|
if (allow_allowing_non_sunlight_propagates && i == 0 &&
|
|
f.has_light && !f.sunlight_propagates) {
|
|
allow_non_sunlight_propagates = true;
|
|
}
|
|
|
|
if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){
|
|
nonlight_seen = true;
|
|
noncount++;
|
|
if(noncount >= 4)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen)
|
|
if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN)
|
|
*sunlight_seen = true;
|
|
noncount = 0;
|
|
brightness_sum += decode_light(n.getLightBlend(daylight_factor, f));
|
|
brightness_count++;
|
|
}
|
|
*result = 0;
|
|
if(brightness_count == 0)
|
|
return false;
|
|
*result = brightness_sum / brightness_count;
|
|
/*std::cerr<<"Sampled "<<brightness_count<<" points; result="
|
|
<<(*result)<<std::endl;*/
|
|
return true;
|
|
}
|
|
|
|
int ClientMap::getBackgroundBrightness(float max_d, u32 daylight_factor,
|
|
int oldvalue, bool *sunlight_seen_result)
|
|
{
|
|
ScopeProfiler sp(g_profiler, "CM::getBackgroundBrightness", SPT_AVG);
|
|
static v3f z_directions[50] = {
|
|
v3f(-100, 0, 0)
|
|
};
|
|
static f32 z_offsets[50] = {
|
|
-1000,
|
|
};
|
|
|
|
if (z_directions[0].X < -99) {
|
|
for (u32 i = 0; i < ARRLEN(z_directions); i++) {
|
|
// Assumes FOV of 72 and 16/9 aspect ratio
|
|
z_directions[i] = v3f(
|
|
0.02 * myrand_range(-100, 100),
|
|
1.0,
|
|
0.01 * myrand_range(-100, 100)
|
|
).normalize();
|
|
z_offsets[i] = 0.01 * myrand_range(0,100);
|
|
}
|
|
}
|
|
|
|
int sunlight_seen_count = 0;
|
|
float sunlight_min_d = max_d*0.8;
|
|
if(sunlight_min_d > 35*BS)
|
|
sunlight_min_d = 35*BS;
|
|
std::vector<int> values;
|
|
values.reserve(ARRLEN(z_directions));
|
|
for (u32 i = 0; i < ARRLEN(z_directions); i++) {
|
|
v3f z_dir = z_directions[i];
|
|
core::CMatrix4<f32> a;
|
|
a.buildRotateFromTo(v3f(0,1,0), z_dir);
|
|
v3f dir = m_camera_direction;
|
|
a.rotateVect(dir);
|
|
int br = 0;
|
|
float step = BS*1.5;
|
|
if(max_d > 35*BS)
|
|
step = max_d / 35 * 1.5;
|
|
float off = step * z_offsets[i];
|
|
bool sunlight_seen_now = false;
|
|
bool ok = getVisibleBrightness(this, m_camera_position, dir,
|
|
step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor,
|
|
sunlight_min_d,
|
|
&br, &sunlight_seen_now);
|
|
if(sunlight_seen_now)
|
|
sunlight_seen_count++;
|
|
if(!ok)
|
|
continue;
|
|
values.push_back(br);
|
|
// Don't try too much if being in the sun is clear
|
|
if(sunlight_seen_count >= 20)
|
|
break;
|
|
}
|
|
int brightness_sum = 0;
|
|
int brightness_count = 0;
|
|
std::sort(values.begin(), values.end());
|
|
u32 num_values_to_use = values.size();
|
|
if(num_values_to_use >= 10)
|
|
num_values_to_use -= num_values_to_use/2;
|
|
else if(num_values_to_use >= 7)
|
|
num_values_to_use -= num_values_to_use/3;
|
|
u32 first_value_i = (values.size() - num_values_to_use) / 2;
|
|
|
|
for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) {
|
|
brightness_sum += values[i];
|
|
brightness_count++;
|
|
}
|
|
|
|
int ret = 0;
|
|
if(brightness_count == 0){
|
|
MapNode n = getNode(floatToInt(m_camera_position, BS));
|
|
ContentLightingFlags f = m_nodedef->getLightingFlags(n);
|
|
if(f.has_light){
|
|
ret = decode_light(n.getLightBlend(daylight_factor, f));
|
|
} else {
|
|
ret = oldvalue;
|
|
}
|
|
} else {
|
|
ret = brightness_sum / brightness_count;
|
|
}
|
|
|
|
*sunlight_seen_result = (sunlight_seen_count > 0);
|
|
return ret;
|
|
}
|
|
|
|
void ClientMap::renderPostFx(CameraMode cam_mode)
|
|
{
|
|
// Sadly ISceneManager has no "post effects" render pass, in that case we
|
|
// could just register for that and handle it in renderMap().
|
|
|
|
MapNode n = getNode(floatToInt(m_camera_position, BS));
|
|
|
|
const ContentFeatures& features = m_nodedef->get(n);
|
|
video::SColor post_effect_color = features.post_effect_color;
|
|
|
|
// If the camera is in a solid node, make everything black.
|
|
// (first person mode only)
|
|
if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST &&
|
|
!m_control.allow_noclip) {
|
|
post_effect_color = video::SColor(255, 0, 0, 0);
|
|
}
|
|
|
|
if (post_effect_color.getAlpha() != 0) {
|
|
// Draw a full-screen rectangle
|
|
video::IVideoDriver* driver = SceneManager->getVideoDriver();
|
|
v2u32 ss = driver->getScreenSize();
|
|
core::rect<s32> rect(0,0, ss.X, ss.Y);
|
|
driver->draw2DRectangle(post_effect_color, rect);
|
|
}
|
|
}
|
|
|
|
void ClientMap::PrintInfo(std::ostream &out)
|
|
{
|
|
out<<"ClientMap: ";
|
|
}
|
|
|
|
void ClientMap::renderMapShadows(video::IVideoDriver *driver,
|
|
const video::SMaterial &material, s32 pass, int frame, int total_frames)
|
|
{
|
|
bool is_transparent_pass = pass != scene::ESNRP_SOLID;
|
|
std::string prefix;
|
|
if (is_transparent_pass)
|
|
prefix = "renderMap(SHADOW TRANS): ";
|
|
else
|
|
prefix = "renderMap(SHADOW SOLID): ";
|
|
|
|
u32 drawcall_count = 0;
|
|
u32 vertex_count = 0;
|
|
|
|
MeshBufListList grouped_buffers;
|
|
std::vector<DrawDescriptor> draw_order;
|
|
|
|
|
|
std::size_t count = 0;
|
|
std::size_t meshes_per_frame = m_drawlist_shadow.size() / total_frames + 1;
|
|
std::size_t low_bound = is_transparent_pass ? 0 : meshes_per_frame * frame;
|
|
std::size_t high_bound = is_transparent_pass ? m_drawlist_shadow.size() : meshes_per_frame * (frame + 1);
|
|
|
|
// transparent pass should be rendered in one go
|
|
if (is_transparent_pass && frame != total_frames - 1) {
|
|
return;
|
|
}
|
|
|
|
const MeshGrid mesh_grid = m_client->getMeshGrid();
|
|
for (const auto &i : m_drawlist_shadow) {
|
|
// only process specific part of the list & break early
|
|
++count;
|
|
if (count <= low_bound)
|
|
continue;
|
|
if (count > high_bound)
|
|
break;
|
|
|
|
v3s16 block_pos = i.first;
|
|
MapBlock *block = i.second;
|
|
|
|
// If the mesh of the block happened to get deleted, ignore it
|
|
if (!block->mesh)
|
|
continue;
|
|
|
|
/*
|
|
Get the meshbuffers of the block
|
|
*/
|
|
if (is_transparent_pass) {
|
|
// In transparent pass, the mesh will give us
|
|
// the partial buffers in the correct order
|
|
for (auto &buffer : block->mesh->getTransparentBuffers())
|
|
draw_order.emplace_back(block_pos, &buffer);
|
|
}
|
|
else {
|
|
// otherwise, group buffers across meshes
|
|
// using MeshBufListList
|
|
MapBlockMesh *mapBlockMesh = block->mesh;
|
|
assert(mapBlockMesh);
|
|
|
|
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
|
|
scene::IMesh *mesh = mapBlockMesh->getMesh(layer);
|
|
assert(mesh);
|
|
|
|
u32 c = mesh->getMeshBufferCount();
|
|
for (u32 i = 0; i < c; i++) {
|
|
scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
|
|
|
|
video::SMaterial &mat = buf->getMaterial();
|
|
auto rnd = driver->getMaterialRenderer(mat.MaterialType);
|
|
bool transparent = rnd && rnd->isTransparent();
|
|
if (!transparent)
|
|
grouped_buffers.add(buf, block_pos, layer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 buffer_count = 0;
|
|
for (auto &lists : grouped_buffers.lists)
|
|
for (MeshBufList &list : lists)
|
|
buffer_count += list.bufs.size();
|
|
|
|
draw_order.reserve(draw_order.size() + buffer_count);
|
|
|
|
// Capture draw order for all solid meshes
|
|
for (auto &lists : grouped_buffers.lists) {
|
|
for (MeshBufList &list : lists) {
|
|
// iterate in reverse to draw closest blocks first
|
|
for (auto it = list.bufs.rbegin(); it != list.bufs.rend(); ++it)
|
|
draw_order.emplace_back(it->first, it->second, it != list.bufs.rbegin());
|
|
}
|
|
}
|
|
|
|
TimeTaker draw("Drawing shadow mesh buffers");
|
|
|
|
core::matrix4 m; // Model matrix
|
|
v3f offset = intToFloat(m_camera_offset, BS);
|
|
u32 material_swaps = 0;
|
|
|
|
// Render all mesh buffers in order
|
|
drawcall_count += draw_order.size();
|
|
|
|
for (auto &descriptor : draw_order) {
|
|
scene::IMeshBuffer *buf = descriptor.getBuffer();
|
|
|
|
if (!descriptor.m_reuse_material) {
|
|
// override some material properties
|
|
video::SMaterial local_material = buf->getMaterial();
|
|
local_material.MaterialType = material.MaterialType;
|
|
local_material.BackfaceCulling = material.BackfaceCulling;
|
|
local_material.FrontfaceCulling = material.FrontfaceCulling;
|
|
local_material.BlendOperation = material.BlendOperation;
|
|
local_material.Lighting = false;
|
|
driver->setMaterial(local_material);
|
|
++material_swaps;
|
|
}
|
|
|
|
v3f block_wpos = intToFloat(mesh_grid.getMeshPos(descriptor.m_pos) * MAP_BLOCKSIZE, BS);
|
|
m.setTranslation(block_wpos - offset);
|
|
|
|
driver->setTransform(video::ETS_WORLD, m);
|
|
descriptor.draw(driver);
|
|
vertex_count += buf->getIndexCount();
|
|
}
|
|
|
|
// restore the driver material state
|
|
video::SMaterial clean;
|
|
clean.BlendOperation = video::EBO_ADD;
|
|
driver->setMaterial(clean); // reset material to defaults
|
|
driver->draw3DLine(v3f(), v3f(), video::SColor(0));
|
|
|
|
g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
|
|
g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
|
|
g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
|
|
g_profiler->avg(prefix + "material swaps [#]", material_swaps);
|
|
}
|
|
|
|
/*
|
|
Custom update draw list for the pov of shadow light.
|
|
*/
|
|
void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length)
|
|
{
|
|
ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG);
|
|
|
|
v3s16 cam_pos_nodes = floatToInt(shadow_light_pos, BS);
|
|
v3s16 p_blocks_min;
|
|
v3s16 p_blocks_max;
|
|
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max, radius + length);
|
|
|
|
for (auto &i : m_drawlist_shadow) {
|
|
MapBlock *block = i.second;
|
|
block->refDrop();
|
|
}
|
|
m_drawlist_shadow.clear();
|
|
|
|
// Number of blocks currently loaded by the client
|
|
u32 blocks_loaded = 0;
|
|
// Number of blocks with mesh in rendering range
|
|
u32 blocks_in_range_with_mesh = 0;
|
|
|
|
for (auto §or_it : m_sectors) {
|
|
MapSector *sector = sector_it.second;
|
|
if (!sector)
|
|
continue;
|
|
blocks_loaded += sector->size();
|
|
|
|
MapBlockVect sectorblocks;
|
|
sector->getBlocks(sectorblocks);
|
|
|
|
/*
|
|
Loop through blocks in sector
|
|
*/
|
|
for (MapBlock *block : sectorblocks) {
|
|
MapBlockMesh *mesh = block->mesh;
|
|
if (!mesh) {
|
|
// Ignore if mesh doesn't exist
|
|
continue;
|
|
}
|
|
|
|
v3f block_pos = intToFloat(block->getPos() * MAP_BLOCKSIZE, BS) + mesh->getBoundingSphereCenter();
|
|
v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos);
|
|
if (projection.getDistanceFrom(block_pos) > (radius + mesh->getBoundingRadius()))
|
|
continue;
|
|
|
|
blocks_in_range_with_mesh++;
|
|
|
|
// This block is in range. Reset usage timer.
|
|
block->resetUsageTimer();
|
|
|
|
// Add to set
|
|
if (m_drawlist_shadow.emplace(block->getPos(), block).second) {
|
|
block->refGrab();
|
|
}
|
|
}
|
|
}
|
|
|
|
g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh);
|
|
g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size());
|
|
g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded);
|
|
}
|
|
|
|
void ClientMap::reportMetrics(u64 save_time_us, u32 saved_blocks, u32 all_blocks)
|
|
{
|
|
g_profiler->avg("CM::reportMetrics loaded blocks [#]", all_blocks);
|
|
}
|
|
|
|
void ClientMap::updateTransparentMeshBuffers()
|
|
{
|
|
ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG);
|
|
u32 sorted_blocks = 0;
|
|
u32 unsorted_blocks = 0;
|
|
f32 sorting_distance_sq = pow(m_cache_transparency_sorting_distance * BS, 2.0f);
|
|
|
|
|
|
// Update the order of transparent mesh buffers in each mesh
|
|
for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) {
|
|
MapBlock* block = it->second;
|
|
if (!block->mesh)
|
|
continue;
|
|
|
|
if (m_needs_update_transparent_meshes ||
|
|
block->mesh->getTransparentBuffers().size() == 0) {
|
|
|
|
v3s16 block_pos = block->getPos();
|
|
v3f block_pos_f = intToFloat(block_pos * MAP_BLOCKSIZE + MAP_BLOCKSIZE / 2, BS);
|
|
f32 distance = m_camera_position.getDistanceFromSQ(block_pos_f);
|
|
if (distance <= sorting_distance_sq) {
|
|
block->mesh->updateTransparentBuffers(m_camera_position, block_pos);
|
|
++sorted_blocks;
|
|
}
|
|
else {
|
|
block->mesh->consolidateTransparentBuffers();
|
|
++unsorted_blocks;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks);
|
|
g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks);
|
|
m_needs_update_transparent_meshes = false;
|
|
}
|
|
|
|
scene::IMeshBuffer* ClientMap::DrawDescriptor::getBuffer()
|
|
{
|
|
return m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer;
|
|
}
|
|
|
|
void ClientMap::DrawDescriptor::draw(video::IVideoDriver* driver)
|
|
{
|
|
if (m_use_partial_buffer) {
|
|
m_partial_buffer->beforeDraw();
|
|
driver->drawMeshBuffer(m_partial_buffer->getBuffer());
|
|
m_partial_buffer->afterDraw();
|
|
} else {
|
|
driver->drawMeshBuffer(m_buffer);
|
|
}
|
|
}
|
|
|
|
bool ClientMap::isMeshOccluded(MapBlock *mesh_block, u16 mesh_size, v3s16 cam_pos_nodes)
|
|
{
|
|
if (mesh_size == 1)
|
|
return isBlockOccluded(mesh_block, cam_pos_nodes);
|
|
|
|
v3s16 min_edge = mesh_block->getPosRelative();
|
|
v3s16 max_edge = min_edge + mesh_size * MAP_BLOCKSIZE -1;
|
|
bool check_axis[3] = { false, false, false };
|
|
u16 closest_side[3] = { 0, 0, 0 };
|
|
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
if (cam_pos_nodes[axis] < min_edge[axis])
|
|
check_axis[axis] = true;
|
|
else if (cam_pos_nodes[axis] > max_edge[axis]) {
|
|
check_axis[axis] = true;
|
|
closest_side[axis] = mesh_size - 1;
|
|
}
|
|
}
|
|
|
|
std::vector<bool> processed_blocks(mesh_size * mesh_size * mesh_size);
|
|
|
|
// scan the side
|
|
for (u16 i = 0; i < mesh_size; i++)
|
|
for (u16 j = 0; j < mesh_size; j++) {
|
|
v3s16 offsets[3] = {
|
|
v3s16(closest_side[0], i, j),
|
|
v3s16(i, closest_side[1], j),
|
|
v3s16(i, j, closest_side[2])
|
|
};
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
v3s16 offset = offsets[axis];
|
|
int block_index = offset.X + offset.Y * mesh_size + offset.Z * mesh_size * mesh_size;
|
|
if (check_axis[axis] && !processed_blocks[block_index]) {
|
|
processed_blocks[block_index] = true;
|
|
v3s16 block_pos = mesh_block->getPos() + offset;
|
|
MapBlock *block;
|
|
|
|
if (mesh_block->getPos() == block_pos)
|
|
block = mesh_block;
|
|
else
|
|
block = getBlockNoCreateNoEx(block_pos);
|
|
|
|
if (block && !isBlockOccluded(block, cam_pos_nodes))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|