forked from Mirrorlandia_minetest/minetest
1585 lines
42 KiB
C++
1585 lines
42 KiB
C++
/*
|
|
Minetest
|
|
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "mapblock_mesh.h"
|
|
#include "client.h"
|
|
#include "mapblock.h"
|
|
#include "map.h"
|
|
#include "profiler.h"
|
|
#include "shader.h"
|
|
#include "mesh.h"
|
|
#include "minimap.h"
|
|
#include "content_mapblock.h"
|
|
#include "util/directiontables.h"
|
|
#include "client/meshgen/collector.h"
|
|
#include "client/renderingengine.h"
|
|
#include <array>
|
|
#include <algorithm>
|
|
|
|
/*
|
|
MeshMakeData
|
|
*/
|
|
|
|
MeshMakeData::MeshMakeData(Client *client, bool use_shaders):
|
|
m_client(client),
|
|
m_use_shaders(use_shaders)
|
|
{}
|
|
|
|
void MeshMakeData::fillBlockDataBegin(const v3s16 &blockpos)
|
|
{
|
|
m_blockpos = blockpos;
|
|
|
|
v3s16 blockpos_nodes = m_blockpos*MAP_BLOCKSIZE;
|
|
|
|
m_vmanip.clear();
|
|
VoxelArea voxel_area(blockpos_nodes - v3s16(1,1,1) * MAP_BLOCKSIZE,
|
|
blockpos_nodes + v3s16(1,1,1) * MAP_BLOCKSIZE*2-v3s16(1,1,1));
|
|
m_vmanip.addArea(voxel_area);
|
|
}
|
|
|
|
void MeshMakeData::fillBlockData(const v3s16 &block_offset, MapNode *data)
|
|
{
|
|
v3s16 data_size(MAP_BLOCKSIZE, MAP_BLOCKSIZE, MAP_BLOCKSIZE);
|
|
VoxelArea data_area(v3s16(0,0,0), data_size - v3s16(1,1,1));
|
|
|
|
v3s16 bp = m_blockpos + block_offset;
|
|
v3s16 blockpos_nodes = bp * MAP_BLOCKSIZE;
|
|
m_vmanip.copyFrom(data, data_area, v3s16(0,0,0), blockpos_nodes, data_size);
|
|
}
|
|
|
|
void MeshMakeData::fill(MapBlock *block)
|
|
{
|
|
fillBlockDataBegin(block->getPos());
|
|
|
|
fillBlockData(v3s16(0,0,0), block->getData());
|
|
|
|
// Get map for reading neighbor blocks
|
|
Map *map = block->getParent();
|
|
|
|
for (const v3s16 &dir : g_26dirs) {
|
|
v3s16 bp = m_blockpos + dir;
|
|
MapBlock *b = map->getBlockNoCreateNoEx(bp);
|
|
if(b)
|
|
fillBlockData(dir, b->getData());
|
|
}
|
|
}
|
|
|
|
void MeshMakeData::setCrack(int crack_level, v3s16 crack_pos)
|
|
{
|
|
if (crack_level >= 0)
|
|
m_crack_pos_relative = crack_pos - m_blockpos*MAP_BLOCKSIZE;
|
|
}
|
|
|
|
void MeshMakeData::setSmoothLighting(bool smooth_lighting)
|
|
{
|
|
m_smooth_lighting = smooth_lighting;
|
|
}
|
|
|
|
/*
|
|
Light and vertex color functions
|
|
*/
|
|
|
|
/*
|
|
Calculate non-smooth lighting at interior of node.
|
|
Single light bank.
|
|
*/
|
|
static u8 getInteriorLight(enum LightBank bank, MapNode n, s32 increment,
|
|
const NodeDefManager *ndef)
|
|
{
|
|
u8 light = n.getLight(bank, ndef->getLightingFlags(n));
|
|
light = rangelim(light + increment, 0, LIGHT_SUN);
|
|
return decode_light(light);
|
|
}
|
|
|
|
/*
|
|
Calculate non-smooth lighting at interior of node.
|
|
Both light banks.
|
|
*/
|
|
u16 getInteriorLight(MapNode n, s32 increment, const NodeDefManager *ndef)
|
|
{
|
|
u16 day = getInteriorLight(LIGHTBANK_DAY, n, increment, ndef);
|
|
u16 night = getInteriorLight(LIGHTBANK_NIGHT, n, increment, ndef);
|
|
return day | (night << 8);
|
|
}
|
|
|
|
/*
|
|
Calculate non-smooth lighting at face of node.
|
|
Single light bank.
|
|
*/
|
|
static u8 getFaceLight(enum LightBank bank, MapNode n, MapNode n2,
|
|
v3s16 face_dir, const NodeDefManager *ndef)
|
|
{
|
|
ContentLightingFlags f1 = ndef->getLightingFlags(n);
|
|
ContentLightingFlags f2 = ndef->getLightingFlags(n2);
|
|
|
|
u8 light;
|
|
u8 l1 = n.getLight(bank, f1);
|
|
u8 l2 = n2.getLight(bank, f2);
|
|
if(l1 > l2)
|
|
light = l1;
|
|
else
|
|
light = l2;
|
|
|
|
// Boost light level for light sources
|
|
u8 light_source = MYMAX(f1.light_source, f2.light_source);
|
|
if(light_source > light)
|
|
light = light_source;
|
|
|
|
return decode_light(light);
|
|
}
|
|
|
|
/*
|
|
Calculate non-smooth lighting at face of node.
|
|
Both light banks.
|
|
*/
|
|
u16 getFaceLight(MapNode n, MapNode n2, const v3s16 &face_dir,
|
|
const NodeDefManager *ndef)
|
|
{
|
|
u16 day = getFaceLight(LIGHTBANK_DAY, n, n2, face_dir, ndef);
|
|
u16 night = getFaceLight(LIGHTBANK_NIGHT, n, n2, face_dir, ndef);
|
|
return day | (night << 8);
|
|
}
|
|
|
|
/*
|
|
Calculate smooth lighting at the XYZ- corner of p.
|
|
Both light banks
|
|
*/
|
|
static u16 getSmoothLightCombined(const v3s16 &p,
|
|
const std::array<v3s16,8> &dirs, MeshMakeData *data)
|
|
{
|
|
const NodeDefManager *ndef = data->m_client->ndef();
|
|
|
|
u16 ambient_occlusion = 0;
|
|
u16 light_count = 0;
|
|
u8 light_source_max = 0;
|
|
u16 light_day = 0;
|
|
u16 light_night = 0;
|
|
bool direct_sunlight = false;
|
|
|
|
auto add_node = [&] (u8 i, bool obstructed = false) -> bool {
|
|
if (obstructed) {
|
|
ambient_occlusion++;
|
|
return false;
|
|
}
|
|
MapNode n = data->m_vmanip.getNodeNoExNoEmerge(p + dirs[i]);
|
|
if (n.getContent() == CONTENT_IGNORE)
|
|
return true;
|
|
const ContentFeatures &f = ndef->get(n);
|
|
if (f.light_source > light_source_max)
|
|
light_source_max = f.light_source;
|
|
// Check f.solidness because fast-style leaves look better this way
|
|
if (f.param_type == CPT_LIGHT && f.solidness != 2) {
|
|
u8 light_level_day = n.getLight(LIGHTBANK_DAY, f.getLightingFlags());
|
|
u8 light_level_night = n.getLight(LIGHTBANK_NIGHT, f.getLightingFlags());
|
|
if (light_level_day == LIGHT_SUN)
|
|
direct_sunlight = true;
|
|
light_day += decode_light(light_level_day);
|
|
light_night += decode_light(light_level_night);
|
|
light_count++;
|
|
} else {
|
|
ambient_occlusion++;
|
|
}
|
|
return f.light_propagates;
|
|
};
|
|
|
|
bool obstructed[4] = { true, true, true, true };
|
|
add_node(0);
|
|
bool opaque1 = !add_node(1);
|
|
bool opaque2 = !add_node(2);
|
|
bool opaque3 = !add_node(3);
|
|
obstructed[0] = opaque1 && opaque2;
|
|
obstructed[1] = opaque1 && opaque3;
|
|
obstructed[2] = opaque2 && opaque3;
|
|
for (u8 k = 0; k < 3; ++k)
|
|
if (add_node(k + 4, obstructed[k]))
|
|
obstructed[3] = false;
|
|
if (add_node(7, obstructed[3])) { // wrap light around nodes
|
|
ambient_occlusion -= 3;
|
|
for (u8 k = 0; k < 3; ++k)
|
|
add_node(k + 4, !obstructed[k]);
|
|
}
|
|
|
|
if (light_count == 0) {
|
|
light_day = light_night = 0;
|
|
} else {
|
|
light_day /= light_count;
|
|
light_night /= light_count;
|
|
}
|
|
|
|
// boost direct sunlight, if any
|
|
if (direct_sunlight)
|
|
light_day = 0xFF;
|
|
|
|
// Boost brightness around light sources
|
|
bool skip_ambient_occlusion_day = false;
|
|
if (decode_light(light_source_max) >= light_day) {
|
|
light_day = decode_light(light_source_max);
|
|
skip_ambient_occlusion_day = true;
|
|
}
|
|
|
|
bool skip_ambient_occlusion_night = false;
|
|
if(decode_light(light_source_max) >= light_night) {
|
|
light_night = decode_light(light_source_max);
|
|
skip_ambient_occlusion_night = true;
|
|
}
|
|
|
|
if (ambient_occlusion > 4) {
|
|
static thread_local const float ao_gamma = rangelim(
|
|
g_settings->getFloat("ambient_occlusion_gamma"), 0.25, 4.0);
|
|
|
|
// Table of gamma space multiply factors.
|
|
static thread_local const float light_amount[3] = {
|
|
powf(0.75, 1.0 / ao_gamma),
|
|
powf(0.5, 1.0 / ao_gamma),
|
|
powf(0.25, 1.0 / ao_gamma)
|
|
};
|
|
|
|
//calculate table index for gamma space multiplier
|
|
ambient_occlusion -= 5;
|
|
|
|
if (!skip_ambient_occlusion_day)
|
|
light_day = rangelim(core::round32(
|
|
light_day * light_amount[ambient_occlusion]), 0, 255);
|
|
if (!skip_ambient_occlusion_night)
|
|
light_night = rangelim(core::round32(
|
|
light_night * light_amount[ambient_occlusion]), 0, 255);
|
|
}
|
|
|
|
return light_day | (light_night << 8);
|
|
}
|
|
|
|
/*
|
|
Calculate smooth lighting at the given corner of p.
|
|
Both light banks.
|
|
Node at p is solid, and thus the lighting is face-dependent.
|
|
*/
|
|
u16 getSmoothLightSolid(const v3s16 &p, const v3s16 &face_dir, const v3s16 &corner, MeshMakeData *data)
|
|
{
|
|
return getSmoothLightTransparent(p + face_dir, corner - 2 * face_dir, data);
|
|
}
|
|
|
|
/*
|
|
Calculate smooth lighting at the given corner of p.
|
|
Both light banks.
|
|
Node at p is not solid, and the lighting is not face-dependent.
|
|
*/
|
|
u16 getSmoothLightTransparent(const v3s16 &p, const v3s16 &corner, MeshMakeData *data)
|
|
{
|
|
const std::array<v3s16,8> dirs = {{
|
|
// Always shine light
|
|
v3s16(0,0,0),
|
|
v3s16(corner.X,0,0),
|
|
v3s16(0,corner.Y,0),
|
|
v3s16(0,0,corner.Z),
|
|
|
|
// Can be obstructed
|
|
v3s16(corner.X,corner.Y,0),
|
|
v3s16(corner.X,0,corner.Z),
|
|
v3s16(0,corner.Y,corner.Z),
|
|
v3s16(corner.X,corner.Y,corner.Z)
|
|
}};
|
|
return getSmoothLightCombined(p, dirs, data);
|
|
}
|
|
|
|
void get_sunlight_color(video::SColorf *sunlight, u32 daynight_ratio){
|
|
f32 rg = daynight_ratio / 1000.0f - 0.04f;
|
|
f32 b = (0.98f * daynight_ratio) / 1000.0f + 0.078f;
|
|
sunlight->r = rg;
|
|
sunlight->g = rg;
|
|
sunlight->b = b;
|
|
}
|
|
|
|
void final_color_blend(video::SColor *result,
|
|
u16 light, u32 daynight_ratio)
|
|
{
|
|
video::SColorf dayLight;
|
|
get_sunlight_color(&dayLight, daynight_ratio);
|
|
final_color_blend(result,
|
|
encode_light(light, 0), dayLight);
|
|
}
|
|
|
|
void final_color_blend(video::SColor *result,
|
|
const video::SColor &data, const video::SColorf &dayLight)
|
|
{
|
|
static const video::SColorf artificialColor(1.04f, 1.04f, 1.04f);
|
|
|
|
video::SColorf c(data);
|
|
f32 n = 1 - c.a;
|
|
|
|
f32 r = c.r * (c.a * dayLight.r + n * artificialColor.r) * 2.0f;
|
|
f32 g = c.g * (c.a * dayLight.g + n * artificialColor.g) * 2.0f;
|
|
f32 b = c.b * (c.a * dayLight.b + n * artificialColor.b) * 2.0f;
|
|
|
|
// Emphase blue a bit in darker places
|
|
// Each entry of this array represents a range of 8 blue levels
|
|
static const u8 emphase_blue_when_dark[32] = {
|
|
1, 4, 6, 6, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
b += emphase_blue_when_dark[irr::core::clamp((s32) ((r + g + b) / 3 * 255),
|
|
0, 255) / 8] / 255.0f;
|
|
|
|
result->setRed(core::clamp((s32) (r * 255.0f), 0, 255));
|
|
result->setGreen(core::clamp((s32) (g * 255.0f), 0, 255));
|
|
result->setBlue(core::clamp((s32) (b * 255.0f), 0, 255));
|
|
}
|
|
|
|
/*
|
|
Mesh generation helpers
|
|
*/
|
|
|
|
// This table is moved outside getNodeVertexDirs to avoid the compiler using
|
|
// a mutex to initialize this table at runtime right in the hot path.
|
|
// For details search the internet for "cxa_guard_acquire".
|
|
static const v3s16 vertex_dirs_table[] = {
|
|
// ( 1, 0, 0)
|
|
v3s16( 1,-1, 1), v3s16( 1,-1,-1),
|
|
v3s16( 1, 1,-1), v3s16( 1, 1, 1),
|
|
// ( 0, 1, 0)
|
|
v3s16( 1, 1,-1), v3s16(-1, 1,-1),
|
|
v3s16(-1, 1, 1), v3s16( 1, 1, 1),
|
|
// ( 0, 0, 1)
|
|
v3s16(-1,-1, 1), v3s16( 1,-1, 1),
|
|
v3s16( 1, 1, 1), v3s16(-1, 1, 1),
|
|
// invalid
|
|
v3s16(), v3s16(), v3s16(), v3s16(),
|
|
// ( 0, 0,-1)
|
|
v3s16( 1,-1,-1), v3s16(-1,-1,-1),
|
|
v3s16(-1, 1,-1), v3s16( 1, 1,-1),
|
|
// ( 0,-1, 0)
|
|
v3s16( 1,-1, 1), v3s16(-1,-1, 1),
|
|
v3s16(-1,-1,-1), v3s16( 1,-1,-1),
|
|
// (-1, 0, 0)
|
|
v3s16(-1,-1,-1), v3s16(-1,-1, 1),
|
|
v3s16(-1, 1, 1), v3s16(-1, 1,-1)
|
|
};
|
|
|
|
/*
|
|
vertex_dirs: v3s16[4]
|
|
*/
|
|
static void getNodeVertexDirs(const v3s16 &dir, v3s16 *vertex_dirs)
|
|
{
|
|
/*
|
|
If looked from outside the node towards the face, the corners are:
|
|
0: bottom-right
|
|
1: bottom-left
|
|
2: top-left
|
|
3: top-right
|
|
*/
|
|
|
|
// Direction must be (1,0,0), (-1,0,0), (0,1,0), (0,-1,0),
|
|
// (0,0,1), (0,0,-1)
|
|
assert(dir.X * dir.X + dir.Y * dir.Y + dir.Z * dir.Z == 1);
|
|
|
|
// Convert direction to single integer for table lookup
|
|
u8 idx = (dir.X + 2 * dir.Y + 3 * dir.Z) & 7;
|
|
idx = (idx - 1) * 4;
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#if __GNUC__ > 7
|
|
#pragma GCC diagnostic ignored "-Wclass-memaccess"
|
|
#endif
|
|
#endif
|
|
memcpy(vertex_dirs, &vertex_dirs_table[idx], 4 * sizeof(v3s16));
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
static void getNodeTextureCoords(v3f base, const v3f &scale, const v3s16 &dir, float *u, float *v)
|
|
{
|
|
if (dir.X > 0 || dir.Y != 0 || dir.Z < 0)
|
|
base -= scale;
|
|
if (dir == v3s16(0,0,1)) {
|
|
*u = -base.X;
|
|
*v = -base.Y;
|
|
} else if (dir == v3s16(0,0,-1)) {
|
|
*u = base.X + 1;
|
|
*v = -base.Y - 1;
|
|
} else if (dir == v3s16(1,0,0)) {
|
|
*u = base.Z + 1;
|
|
*v = -base.Y - 1;
|
|
} else if (dir == v3s16(-1,0,0)) {
|
|
*u = -base.Z;
|
|
*v = -base.Y;
|
|
} else if (dir == v3s16(0,1,0)) {
|
|
*u = base.X + 1;
|
|
*v = -base.Z - 1;
|
|
} else if (dir == v3s16(0,-1,0)) {
|
|
*u = base.X + 1;
|
|
*v = base.Z + 1;
|
|
}
|
|
}
|
|
|
|
struct FastFace
|
|
{
|
|
TileSpec tile;
|
|
video::S3DVertex vertices[4]; // Precalculated vertices
|
|
/*!
|
|
* The face is divided into two triangles. If this is true,
|
|
* vertices 0 and 2 are connected, othervise vertices 1 and 3
|
|
* are connected.
|
|
*/
|
|
bool vertex_0_2_connected;
|
|
};
|
|
|
|
static void makeFastFace(const TileSpec &tile, u16 li0, u16 li1, u16 li2, u16 li3,
|
|
const v3f &tp, const v3f &p, const v3s16 &dir, const v3f &scale, std::vector<FastFace> &dest)
|
|
{
|
|
// Position is at the center of the cube.
|
|
v3f pos = p * BS;
|
|
|
|
float x0 = 0.0f;
|
|
float y0 = 0.0f;
|
|
float w = 1.0f;
|
|
float h = 1.0f;
|
|
|
|
v3f vertex_pos[4];
|
|
v3s16 vertex_dirs[4];
|
|
getNodeVertexDirs(dir, vertex_dirs);
|
|
if (tile.world_aligned)
|
|
getNodeTextureCoords(tp, scale, dir, &x0, &y0);
|
|
|
|
v3s16 t;
|
|
u16 t1;
|
|
switch (tile.rotation) {
|
|
case 0:
|
|
break;
|
|
case 1: //R90
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[3];
|
|
vertex_dirs[3] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[1];
|
|
vertex_dirs[1] = t;
|
|
t1 = li0;
|
|
li0 = li3;
|
|
li3 = li2;
|
|
li2 = li1;
|
|
li1 = t1;
|
|
break;
|
|
case 2: //R180
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[2];
|
|
vertex_dirs[2] = t;
|
|
t = vertex_dirs[1];
|
|
vertex_dirs[1] = vertex_dirs[3];
|
|
vertex_dirs[3] = t;
|
|
t1 = li0;
|
|
li0 = li2;
|
|
li2 = t1;
|
|
t1 = li1;
|
|
li1 = li3;
|
|
li3 = t1;
|
|
break;
|
|
case 3: //R270
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[1];
|
|
vertex_dirs[1] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[3];
|
|
vertex_dirs[3] = t;
|
|
t1 = li0;
|
|
li0 = li1;
|
|
li1 = li2;
|
|
li2 = li3;
|
|
li3 = t1;
|
|
break;
|
|
case 4: //FXR90
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[3];
|
|
vertex_dirs[3] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[1];
|
|
vertex_dirs[1] = t;
|
|
t1 = li0;
|
|
li0 = li3;
|
|
li3 = li2;
|
|
li2 = li1;
|
|
li1 = t1;
|
|
y0 += h;
|
|
h *= -1;
|
|
break;
|
|
case 5: //FXR270
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[1];
|
|
vertex_dirs[1] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[3];
|
|
vertex_dirs[3] = t;
|
|
t1 = li0;
|
|
li0 = li1;
|
|
li1 = li2;
|
|
li2 = li3;
|
|
li3 = t1;
|
|
y0 += h;
|
|
h *= -1;
|
|
break;
|
|
case 6: //FYR90
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[3];
|
|
vertex_dirs[3] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[1];
|
|
vertex_dirs[1] = t;
|
|
t1 = li0;
|
|
li0 = li3;
|
|
li3 = li2;
|
|
li2 = li1;
|
|
li1 = t1;
|
|
x0 += w;
|
|
w *= -1;
|
|
break;
|
|
case 7: //FYR270
|
|
t = vertex_dirs[0];
|
|
vertex_dirs[0] = vertex_dirs[1];
|
|
vertex_dirs[1] = vertex_dirs[2];
|
|
vertex_dirs[2] = vertex_dirs[3];
|
|
vertex_dirs[3] = t;
|
|
t1 = li0;
|
|
li0 = li1;
|
|
li1 = li2;
|
|
li2 = li3;
|
|
li3 = t1;
|
|
x0 += w;
|
|
w *= -1;
|
|
break;
|
|
case 8: //FX
|
|
y0 += h;
|
|
h *= -1;
|
|
break;
|
|
case 9: //FY
|
|
x0 += w;
|
|
w *= -1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (u16 i = 0; i < 4; i++) {
|
|
vertex_pos[i] = v3f(
|
|
BS / 2 * vertex_dirs[i].X,
|
|
BS / 2 * vertex_dirs[i].Y,
|
|
BS / 2 * vertex_dirs[i].Z
|
|
);
|
|
}
|
|
|
|
for (v3f &vpos : vertex_pos) {
|
|
vpos.X *= scale.X;
|
|
vpos.Y *= scale.Y;
|
|
vpos.Z *= scale.Z;
|
|
vpos += pos;
|
|
}
|
|
|
|
f32 abs_scale = 1.0f;
|
|
if (scale.X < 0.999f || scale.X > 1.001f) abs_scale = scale.X;
|
|
else if (scale.Y < 0.999f || scale.Y > 1.001f) abs_scale = scale.Y;
|
|
else if (scale.Z < 0.999f || scale.Z > 1.001f) abs_scale = scale.Z;
|
|
|
|
v3f normal(dir.X, dir.Y, dir.Z);
|
|
|
|
u16 li[4] = { li0, li1, li2, li3 };
|
|
u16 day[4];
|
|
u16 night[4];
|
|
|
|
for (u8 i = 0; i < 4; i++) {
|
|
day[i] = li[i] >> 8;
|
|
night[i] = li[i] & 0xFF;
|
|
}
|
|
|
|
bool vertex_0_2_connected = abs(day[0] - day[2]) + abs(night[0] - night[2])
|
|
< abs(day[1] - day[3]) + abs(night[1] - night[3]);
|
|
|
|
v2f32 f[4] = {
|
|
core::vector2d<f32>(x0 + w * abs_scale, y0 + h),
|
|
core::vector2d<f32>(x0, y0 + h),
|
|
core::vector2d<f32>(x0, y0),
|
|
core::vector2d<f32>(x0 + w * abs_scale, y0) };
|
|
|
|
// equivalent to dest.push_back(FastFace()) but faster
|
|
dest.emplace_back();
|
|
FastFace& face = *dest.rbegin();
|
|
|
|
for (u8 i = 0; i < 4; i++) {
|
|
video::SColor c = encode_light(li[i], tile.emissive_light);
|
|
if (!tile.emissive_light)
|
|
applyFacesShading(c, normal);
|
|
|
|
face.vertices[i] = video::S3DVertex(vertex_pos[i], normal, c, f[i]);
|
|
}
|
|
|
|
/*
|
|
Revert triangles for nicer looking gradient if the
|
|
brightness of vertices 1 and 3 differ less than
|
|
the brightness of vertices 0 and 2.
|
|
*/
|
|
face.vertex_0_2_connected = vertex_0_2_connected;
|
|
face.tile = tile;
|
|
}
|
|
|
|
/*
|
|
Nodes make a face if contents differ and solidness differs.
|
|
Return value:
|
|
0: No face
|
|
1: Face uses m1's content
|
|
2: Face uses m2's content
|
|
equivalent: Whether the blocks share the same face (eg. water and glass)
|
|
|
|
TODO: Add 3: Both faces drawn with backface culling, remove equivalent
|
|
*/
|
|
static u8 face_contents(content_t m1, content_t m2, bool *equivalent,
|
|
const NodeDefManager *ndef)
|
|
{
|
|
*equivalent = false;
|
|
|
|
if (m1 == m2 || m1 == CONTENT_IGNORE || m2 == CONTENT_IGNORE)
|
|
return 0;
|
|
|
|
const ContentFeatures &f1 = ndef->get(m1);
|
|
const ContentFeatures &f2 = ndef->get(m2);
|
|
|
|
// Contents don't differ for different forms of same liquid
|
|
if (f1.sameLiquidRender(f2))
|
|
return 0;
|
|
|
|
u8 c1 = f1.solidness;
|
|
u8 c2 = f2.solidness;
|
|
|
|
if (c1 == c2)
|
|
return 0;
|
|
|
|
if (c1 == 0)
|
|
c1 = f1.visual_solidness;
|
|
else if (c2 == 0)
|
|
c2 = f2.visual_solidness;
|
|
|
|
if (c1 == c2) {
|
|
*equivalent = true;
|
|
// If same solidness, liquid takes precense
|
|
if (f1.isLiquidRender())
|
|
return 1;
|
|
if (f2.isLiquidRender())
|
|
return 2;
|
|
}
|
|
|
|
if (c1 > c2)
|
|
return 1;
|
|
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
Gets nth node tile (0 <= n <= 5).
|
|
*/
|
|
void getNodeTileN(MapNode mn, const v3s16 &p, u8 tileindex, MeshMakeData *data, TileSpec &tile)
|
|
{
|
|
const NodeDefManager *ndef = data->m_client->ndef();
|
|
const ContentFeatures &f = ndef->get(mn);
|
|
tile = f.tiles[tileindex];
|
|
bool has_crack = p == data->m_crack_pos_relative;
|
|
for (TileLayer &layer : tile.layers) {
|
|
if (layer.texture_id == 0)
|
|
continue;
|
|
if (!layer.has_color)
|
|
mn.getColor(f, &(layer.color));
|
|
// Apply temporary crack
|
|
if (has_crack)
|
|
layer.material_flags |= MATERIAL_FLAG_CRACK;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Gets node tile given a face direction.
|
|
*/
|
|
void getNodeTile(MapNode mn, const v3s16 &p, const v3s16 &dir, MeshMakeData *data, TileSpec &tile)
|
|
{
|
|
const NodeDefManager *ndef = data->m_client->ndef();
|
|
|
|
// Direction must be (1,0,0), (-1,0,0), (0,1,0), (0,-1,0),
|
|
// (0,0,1), (0,0,-1) or (0,0,0)
|
|
assert(dir.X * dir.X + dir.Y * dir.Y + dir.Z * dir.Z <= 1);
|
|
|
|
// Convert direction to single integer for table lookup
|
|
// 0 = (0,0,0)
|
|
// 1 = (1,0,0)
|
|
// 2 = (0,1,0)
|
|
// 3 = (0,0,1)
|
|
// 4 = invalid, treat as (0,0,0)
|
|
// 5 = (0,0,-1)
|
|
// 6 = (0,-1,0)
|
|
// 7 = (-1,0,0)
|
|
u8 dir_i = ((dir.X + 2 * dir.Y + 3 * dir.Z) & 7) * 2;
|
|
|
|
// Get rotation for things like chests
|
|
u8 facedir = mn.getFaceDir(ndef, true);
|
|
|
|
static const u16 dir_to_tile[24 * 16] =
|
|
{
|
|
// 0 +X +Y +Z -Z -Y -X -> value=tile,rotation
|
|
0,0, 2,0 , 0,0 , 4,0 , 0,0, 5,0 , 1,0 , 3,0 , // rotate around y+ 0 - 3
|
|
0,0, 4,0 , 0,3 , 3,0 , 0,0, 2,0 , 1,1 , 5,0 ,
|
|
0,0, 3,0 , 0,2 , 5,0 , 0,0, 4,0 , 1,2 , 2,0 ,
|
|
0,0, 5,0 , 0,1 , 2,0 , 0,0, 3,0 , 1,3 , 4,0 ,
|
|
|
|
0,0, 2,3 , 5,0 , 0,2 , 0,0, 1,0 , 4,2 , 3,1 , // rotate around z+ 4 - 7
|
|
0,0, 4,3 , 2,0 , 0,1 , 0,0, 1,1 , 3,2 , 5,1 ,
|
|
0,0, 3,3 , 4,0 , 0,0 , 0,0, 1,2 , 5,2 , 2,1 ,
|
|
0,0, 5,3 , 3,0 , 0,3 , 0,0, 1,3 , 2,2 , 4,1 ,
|
|
|
|
0,0, 2,1 , 4,2 , 1,2 , 0,0, 0,0 , 5,0 , 3,3 , // rotate around z- 8 - 11
|
|
0,0, 4,1 , 3,2 , 1,3 , 0,0, 0,3 , 2,0 , 5,3 ,
|
|
0,0, 3,1 , 5,2 , 1,0 , 0,0, 0,2 , 4,0 , 2,3 ,
|
|
0,0, 5,1 , 2,2 , 1,1 , 0,0, 0,1 , 3,0 , 4,3 ,
|
|
|
|
0,0, 0,3 , 3,3 , 4,1 , 0,0, 5,3 , 2,3 , 1,3 , // rotate around x+ 12 - 15
|
|
0,0, 0,2 , 5,3 , 3,1 , 0,0, 2,3 , 4,3 , 1,0 ,
|
|
0,0, 0,1 , 2,3 , 5,1 , 0,0, 4,3 , 3,3 , 1,1 ,
|
|
0,0, 0,0 , 4,3 , 2,1 , 0,0, 3,3 , 5,3 , 1,2 ,
|
|
|
|
0,0, 1,1 , 2,1 , 4,3 , 0,0, 5,1 , 3,1 , 0,1 , // rotate around x- 16 - 19
|
|
0,0, 1,2 , 4,1 , 3,3 , 0,0, 2,1 , 5,1 , 0,0 ,
|
|
0,0, 1,3 , 3,1 , 5,3 , 0,0, 4,1 , 2,1 , 0,3 ,
|
|
0,0, 1,0 , 5,1 , 2,3 , 0,0, 3,1 , 4,1 , 0,2 ,
|
|
|
|
0,0, 3,2 , 1,2 , 4,2 , 0,0, 5,2 , 0,2 , 2,2 , // rotate around y- 20 - 23
|
|
0,0, 5,2 , 1,3 , 3,2 , 0,0, 2,2 , 0,1 , 4,2 ,
|
|
0,0, 2,2 , 1,0 , 5,2 , 0,0, 4,2 , 0,0 , 3,2 ,
|
|
0,0, 4,2 , 1,1 , 2,2 , 0,0, 3,2 , 0,3 , 5,2
|
|
|
|
};
|
|
u16 tile_index = facedir * 16 + dir_i;
|
|
getNodeTileN(mn, p, dir_to_tile[tile_index], data, tile);
|
|
tile.rotation = tile.world_aligned ? 0 : dir_to_tile[tile_index + 1];
|
|
}
|
|
|
|
static void getTileInfo(
|
|
// Input:
|
|
MeshMakeData *data,
|
|
const v3s16 &p,
|
|
const v3s16 &face_dir,
|
|
// Output:
|
|
bool &makes_face,
|
|
v3s16 &p_corrected,
|
|
v3s16 &face_dir_corrected,
|
|
u16 *lights,
|
|
u8 &waving,
|
|
TileSpec &tile
|
|
)
|
|
{
|
|
VoxelManipulator &vmanip = data->m_vmanip;
|
|
const NodeDefManager *ndef = data->m_client->ndef();
|
|
v3s16 blockpos_nodes = data->m_blockpos * MAP_BLOCKSIZE;
|
|
|
|
const MapNode &n0 = vmanip.getNodeRefUnsafe(blockpos_nodes + p);
|
|
|
|
// Don't even try to get n1 if n0 is already CONTENT_IGNORE
|
|
if (n0.getContent() == CONTENT_IGNORE) {
|
|
makes_face = false;
|
|
return;
|
|
}
|
|
|
|
const MapNode &n1 = vmanip.getNodeRefUnsafeCheckFlags(blockpos_nodes + p + face_dir);
|
|
|
|
if (n1.getContent() == CONTENT_IGNORE) {
|
|
makes_face = false;
|
|
return;
|
|
}
|
|
|
|
// This is hackish
|
|
bool equivalent = false;
|
|
u8 mf = face_contents(n0.getContent(), n1.getContent(),
|
|
&equivalent, ndef);
|
|
|
|
if (mf == 0) {
|
|
makes_face = false;
|
|
return;
|
|
}
|
|
|
|
makes_face = true;
|
|
|
|
MapNode n = n0;
|
|
|
|
if (mf == 1) {
|
|
p_corrected = p;
|
|
face_dir_corrected = face_dir;
|
|
} else {
|
|
n = n1;
|
|
p_corrected = p + face_dir;
|
|
face_dir_corrected = -face_dir;
|
|
}
|
|
|
|
getNodeTile(n, p_corrected, face_dir_corrected, data, tile);
|
|
const ContentFeatures &f = ndef->get(n);
|
|
waving = f.waving;
|
|
tile.emissive_light = f.light_source;
|
|
|
|
// eg. water and glass
|
|
if (equivalent) {
|
|
for (TileLayer &layer : tile.layers)
|
|
layer.material_flags |= MATERIAL_FLAG_BACKFACE_CULLING;
|
|
}
|
|
|
|
if (!data->m_smooth_lighting) {
|
|
lights[0] = lights[1] = lights[2] = lights[3] =
|
|
getFaceLight(n0, n1, face_dir, ndef);
|
|
} else {
|
|
v3s16 vertex_dirs[4];
|
|
getNodeVertexDirs(face_dir_corrected, vertex_dirs);
|
|
|
|
v3s16 light_p = blockpos_nodes + p_corrected;
|
|
for (u16 i = 0; i < 4; i++)
|
|
lights[i] = getSmoothLightSolid(light_p, face_dir_corrected, vertex_dirs[i], data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
startpos:
|
|
translate_dir: unit vector with only one of x, y or z
|
|
face_dir: unit vector with only one of x, y or z
|
|
*/
|
|
static void updateFastFaceRow(
|
|
MeshMakeData *data,
|
|
const v3s16 &&startpos,
|
|
v3s16 translate_dir,
|
|
const v3f &&translate_dir_f,
|
|
const v3s16 &&face_dir,
|
|
std::vector<FastFace> &dest)
|
|
{
|
|
static thread_local const bool waving_liquids =
|
|
g_settings->getBool("enable_shaders") &&
|
|
g_settings->getBool("enable_waving_water");
|
|
|
|
static thread_local const bool force_not_tiling =
|
|
g_settings->getBool("enable_dynamic_shadows");
|
|
|
|
v3s16 p = startpos;
|
|
|
|
u16 continuous_tiles_count = 1;
|
|
|
|
bool makes_face = false;
|
|
v3s16 p_corrected;
|
|
v3s16 face_dir_corrected;
|
|
u16 lights[4] = {0, 0, 0, 0};
|
|
u8 waving = 0;
|
|
TileSpec tile;
|
|
|
|
// Get info of first tile
|
|
getTileInfo(data, p, face_dir,
|
|
makes_face, p_corrected, face_dir_corrected,
|
|
lights, waving, tile);
|
|
|
|
// Unroll this variable which has a significant build cost
|
|
TileSpec next_tile;
|
|
for (u16 j = 0; j < MAP_BLOCKSIZE; j++) {
|
|
// If tiling can be done, this is set to false in the next step
|
|
bool next_is_different = true;
|
|
|
|
bool next_makes_face = false;
|
|
v3s16 next_p_corrected;
|
|
v3s16 next_face_dir_corrected;
|
|
u16 next_lights[4] = {0, 0, 0, 0};
|
|
|
|
// If at last position, there is nothing to compare to and
|
|
// the face must be drawn anyway
|
|
if (j != MAP_BLOCKSIZE - 1) {
|
|
p += translate_dir;
|
|
|
|
getTileInfo(data, p, face_dir,
|
|
next_makes_face, next_p_corrected,
|
|
next_face_dir_corrected, next_lights,
|
|
waving,
|
|
next_tile);
|
|
|
|
if (!force_not_tiling
|
|
&& next_makes_face == makes_face
|
|
&& next_p_corrected == p_corrected + translate_dir
|
|
&& next_face_dir_corrected == face_dir_corrected
|
|
&& memcmp(next_lights, lights, sizeof(lights)) == 0
|
|
// Don't apply fast faces to waving water.
|
|
&& (waving != 3 || !waving_liquids)
|
|
&& next_tile.isTileable(tile)) {
|
|
next_is_different = false;
|
|
continuous_tiles_count++;
|
|
}
|
|
}
|
|
if (next_is_different) {
|
|
/*
|
|
Create a face if there should be one
|
|
*/
|
|
if (makes_face) {
|
|
// Floating point conversion of the position vector
|
|
v3f pf(p_corrected.X, p_corrected.Y, p_corrected.Z);
|
|
// Center point of face (kind of)
|
|
v3f sp = pf - ((f32)continuous_tiles_count * 0.5f - 0.5f)
|
|
* translate_dir_f;
|
|
v3f scale(1, 1, 1);
|
|
|
|
if (translate_dir.X != 0)
|
|
scale.X = continuous_tiles_count;
|
|
if (translate_dir.Y != 0)
|
|
scale.Y = continuous_tiles_count;
|
|
if (translate_dir.Z != 0)
|
|
scale.Z = continuous_tiles_count;
|
|
|
|
makeFastFace(tile, lights[0], lights[1], lights[2], lights[3],
|
|
pf, sp, face_dir_corrected, scale, dest);
|
|
g_profiler->avg("Meshgen: Tiles per face [#]", continuous_tiles_count);
|
|
}
|
|
|
|
continuous_tiles_count = 1;
|
|
}
|
|
|
|
makes_face = next_makes_face;
|
|
p_corrected = next_p_corrected;
|
|
face_dir_corrected = next_face_dir_corrected;
|
|
memcpy(lights, next_lights, sizeof(lights));
|
|
if (next_is_different)
|
|
tile = std::move(next_tile); // faster than copy
|
|
}
|
|
}
|
|
|
|
static void updateAllFastFaceRows(MeshMakeData *data,
|
|
std::vector<FastFace> &dest)
|
|
{
|
|
/*
|
|
Go through every y,z and get top(y+) faces in rows of x+
|
|
*/
|
|
for (s16 y = 0; y < MAP_BLOCKSIZE; y++)
|
|
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
|
|
updateFastFaceRow(data,
|
|
v3s16(0, y, z),
|
|
v3s16(1, 0, 0), //dir
|
|
v3f (1, 0, 0),
|
|
v3s16(0, 1, 0), //face dir
|
|
dest);
|
|
|
|
/*
|
|
Go through every x,y and get right(x+) faces in rows of z+
|
|
*/
|
|
for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
|
|
for (s16 y = 0; y < MAP_BLOCKSIZE; y++)
|
|
updateFastFaceRow(data,
|
|
v3s16(x, y, 0),
|
|
v3s16(0, 0, 1), //dir
|
|
v3f (0, 0, 1),
|
|
v3s16(1, 0, 0), //face dir
|
|
dest);
|
|
|
|
/*
|
|
Go through every y,z and get back(z+) faces in rows of x+
|
|
*/
|
|
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
|
|
for (s16 y = 0; y < MAP_BLOCKSIZE; y++)
|
|
updateFastFaceRow(data,
|
|
v3s16(0, y, z),
|
|
v3s16(1, 0, 0), //dir
|
|
v3f (1, 0, 0),
|
|
v3s16(0, 0, 1), //face dir
|
|
dest);
|
|
}
|
|
|
|
static void applyTileColor(PreMeshBuffer &pmb)
|
|
{
|
|
video::SColor tc = pmb.layer.color;
|
|
if (tc == video::SColor(0xFFFFFFFF))
|
|
return;
|
|
for (video::S3DVertex &vertex : pmb.vertices) {
|
|
video::SColor *c = &vertex.Color;
|
|
c->set(c->getAlpha(),
|
|
c->getRed() * tc.getRed() / 255,
|
|
c->getGreen() * tc.getGreen() / 255,
|
|
c->getBlue() * tc.getBlue() / 255);
|
|
}
|
|
}
|
|
|
|
/*
|
|
MapBlockBspTree
|
|
*/
|
|
|
|
void MapBlockBspTree::buildTree(const std::vector<MeshTriangle> *triangles)
|
|
{
|
|
this->triangles = triangles;
|
|
|
|
nodes.clear();
|
|
|
|
// assert that triangle index can fit into s32
|
|
assert(triangles->size() <= 0x7FFFFFFFL);
|
|
std::vector<s32> indexes;
|
|
indexes.reserve(triangles->size());
|
|
for (u32 i = 0; i < triangles->size(); i++)
|
|
indexes.push_back(i);
|
|
|
|
if (!indexes.empty()) {
|
|
// Start in the center of the block with increment of one quarter in each direction
|
|
root = buildTree(v3f(1, 0, 0), v3f((MAP_BLOCKSIZE + 1) * 0.5f * BS), MAP_BLOCKSIZE * 0.25f * BS, indexes, 0);
|
|
} else {
|
|
root = -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Find a candidate plane to split a set of triangles in two
|
|
*
|
|
* The candidate plane is represented by one of the triangles from the set.
|
|
*
|
|
* @param list Vector of indexes of the triangles in the set
|
|
* @param triangles Vector of all triangles in the BSP tree
|
|
* @return Address of the triangle that represents the proposed split plane
|
|
*/
|
|
static const MeshTriangle *findSplitCandidate(const std::vector<s32> &list, const std::vector<MeshTriangle> &triangles)
|
|
{
|
|
// find the center of the cluster.
|
|
v3f center(0, 0, 0);
|
|
size_t n = list.size();
|
|
for (s32 i : list) {
|
|
center += triangles[i].centroid / n;
|
|
}
|
|
|
|
// find the triangle with the largest area and closest to the center
|
|
const MeshTriangle *candidate_triangle = &triangles[list[0]];
|
|
const MeshTriangle *ith_triangle;
|
|
for (s32 i : list) {
|
|
ith_triangle = &triangles[i];
|
|
if (ith_triangle->areaSQ > candidate_triangle->areaSQ ||
|
|
(ith_triangle->areaSQ == candidate_triangle->areaSQ &&
|
|
ith_triangle->centroid.getDistanceFromSQ(center) < candidate_triangle->centroid.getDistanceFromSQ(center))) {
|
|
candidate_triangle = ith_triangle;
|
|
}
|
|
}
|
|
return candidate_triangle;
|
|
}
|
|
|
|
s32 MapBlockBspTree::buildTree(v3f normal, v3f origin, float delta, const std::vector<s32> &list, u32 depth)
|
|
{
|
|
// if the list is empty, don't bother
|
|
if (list.empty())
|
|
return -1;
|
|
|
|
// if there is only one triangle, or the delta is insanely small, this is a leaf node
|
|
if (list.size() == 1 || delta < 0.01) {
|
|
nodes.emplace_back(normal, origin, list, -1, -1);
|
|
return nodes.size() - 1;
|
|
}
|
|
|
|
std::vector<s32> front_list;
|
|
std::vector<s32> back_list;
|
|
std::vector<s32> node_list;
|
|
|
|
// split the list
|
|
for (s32 i : list) {
|
|
const MeshTriangle &triangle = (*triangles)[i];
|
|
float factor = normal.dotProduct(triangle.centroid - origin);
|
|
if (factor == 0)
|
|
node_list.push_back(i);
|
|
else if (factor > 0)
|
|
front_list.push_back(i);
|
|
else
|
|
back_list.push_back(i);
|
|
}
|
|
|
|
// define the new split-plane
|
|
v3f candidate_normal(normal.Z, normal.X, normal.Y);
|
|
float candidate_delta = delta;
|
|
if (depth % 3 == 2)
|
|
candidate_delta /= 2;
|
|
|
|
s32 front_index = -1;
|
|
s32 back_index = -1;
|
|
|
|
if (!front_list.empty()) {
|
|
v3f next_normal = candidate_normal;
|
|
v3f next_origin = origin + delta * normal;
|
|
float next_delta = candidate_delta;
|
|
if (next_delta < 5) {
|
|
const MeshTriangle *candidate = findSplitCandidate(front_list, *triangles);
|
|
next_normal = candidate->getNormal();
|
|
next_origin = candidate->centroid;
|
|
}
|
|
front_index = buildTree(next_normal, next_origin, next_delta, front_list, depth + 1);
|
|
|
|
// if there are no other triangles, don't create a new node
|
|
if (back_list.empty() && node_list.empty())
|
|
return front_index;
|
|
}
|
|
|
|
if (!back_list.empty()) {
|
|
v3f next_normal = candidate_normal;
|
|
v3f next_origin = origin - delta * normal;
|
|
float next_delta = candidate_delta;
|
|
if (next_delta < 5) {
|
|
const MeshTriangle *candidate = findSplitCandidate(back_list, *triangles);
|
|
next_normal = candidate->getNormal();
|
|
next_origin = candidate->centroid;
|
|
}
|
|
|
|
back_index = buildTree(next_normal, next_origin, next_delta, back_list, depth + 1);
|
|
|
|
// if there are no other triangles, don't create a new node
|
|
if (front_list.empty() && node_list.empty())
|
|
return back_index;
|
|
}
|
|
|
|
nodes.emplace_back(normal, origin, node_list, front_index, back_index);
|
|
|
|
return nodes.size() - 1;
|
|
}
|
|
|
|
void MapBlockBspTree::traverse(s32 node, v3f viewpoint, std::vector<s32> &output) const
|
|
{
|
|
if (node < 0) return; // recursion break;
|
|
|
|
const TreeNode &n = nodes[node];
|
|
float factor = n.normal.dotProduct(viewpoint - n.origin);
|
|
|
|
if (factor > 0)
|
|
traverse(n.back_ref, viewpoint, output);
|
|
else
|
|
traverse(n.front_ref, viewpoint, output);
|
|
|
|
if (factor != 0)
|
|
for (s32 i : n.triangle_refs)
|
|
output.push_back(i);
|
|
|
|
if (factor > 0)
|
|
traverse(n.front_ref, viewpoint, output);
|
|
else
|
|
traverse(n.back_ref, viewpoint, output);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
PartialMeshBuffer
|
|
*/
|
|
|
|
void PartialMeshBuffer::beforeDraw() const
|
|
{
|
|
// Patch the indexes in the mesh buffer before draw
|
|
m_buffer->Indices = std::move(m_vertex_indexes);
|
|
m_buffer->setDirty(scene::EBT_INDEX);
|
|
}
|
|
|
|
void PartialMeshBuffer::afterDraw() const
|
|
{
|
|
// Take the data back
|
|
m_vertex_indexes = m_buffer->Indices.steal();
|
|
}
|
|
|
|
/*
|
|
MapBlockMesh
|
|
*/
|
|
|
|
MapBlockMesh::MapBlockMesh(MeshMakeData *data, v3s16 camera_offset):
|
|
m_minimap_mapblock(NULL),
|
|
m_tsrc(data->m_client->getTextureSource()),
|
|
m_shdrsrc(data->m_client->getShaderSource()),
|
|
m_animation_force_timer(0), // force initial animation
|
|
m_last_crack(-1),
|
|
m_last_daynight_ratio((u32) -1)
|
|
{
|
|
for (auto &m : m_mesh)
|
|
m = new scene::SMesh();
|
|
m_enable_shaders = data->m_use_shaders;
|
|
m_enable_vbo = g_settings->getBool("enable_vbo");
|
|
|
|
if (data->m_client->getMinimap()) {
|
|
m_minimap_mapblock = new MinimapMapblock;
|
|
m_minimap_mapblock->getMinimapNodes(
|
|
&data->m_vmanip, data->m_blockpos * MAP_BLOCKSIZE);
|
|
}
|
|
|
|
// 4-21ms for MAP_BLOCKSIZE=16 (NOTE: probably outdated)
|
|
// 24-155ms for MAP_BLOCKSIZE=32 (NOTE: probably outdated)
|
|
//TimeTaker timer1("MapBlockMesh()");
|
|
|
|
std::vector<FastFace> fastfaces_new;
|
|
fastfaces_new.reserve(512);
|
|
|
|
/*
|
|
We are including the faces of the trailing edges of the block.
|
|
This means that when something changes, the caller must
|
|
also update the meshes of the blocks at the leading edges.
|
|
|
|
NOTE: This is the slowest part of this method.
|
|
*/
|
|
{
|
|
// 4-23ms for MAP_BLOCKSIZE=16 (NOTE: probably outdated)
|
|
//TimeTaker timer2("updateAllFastFaceRows()");
|
|
updateAllFastFaceRows(data, fastfaces_new);
|
|
}
|
|
// End of slow part
|
|
|
|
/*
|
|
Convert FastFaces to MeshCollector
|
|
*/
|
|
|
|
MeshCollector collector(m_bounding_sphere_center);
|
|
|
|
{
|
|
// avg 0ms (100ms spikes when loading textures the first time)
|
|
// (NOTE: probably outdated)
|
|
//TimeTaker timer2("MeshCollector building");
|
|
|
|
for (const FastFace &f : fastfaces_new) {
|
|
static const u16 indices[] = {0, 1, 2, 2, 3, 0};
|
|
static const u16 indices_alternate[] = {0, 1, 3, 2, 3, 1};
|
|
const u16 *indices_p =
|
|
f.vertex_0_2_connected ? indices : indices_alternate;
|
|
collector.append(f.tile, f.vertices, 4, indices_p, 6);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Add special graphics:
|
|
- torches
|
|
- flowing water
|
|
- fences
|
|
- whatever
|
|
*/
|
|
|
|
{
|
|
MapblockMeshGenerator(data, &collector,
|
|
data->m_client->getSceneManager()->getMeshManipulator()).generate();
|
|
}
|
|
|
|
/*
|
|
Convert MeshCollector to SMesh
|
|
*/
|
|
|
|
const bool desync_animations = g_settings->getBool(
|
|
"desynchronize_mapblock_texture_animation");
|
|
|
|
m_bounding_radius = std::sqrt(collector.m_bounding_radius_sq);
|
|
|
|
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
|
|
for(u32 i = 0; i < collector.prebuffers[layer].size(); i++)
|
|
{
|
|
PreMeshBuffer &p = collector.prebuffers[layer][i];
|
|
|
|
applyTileColor(p);
|
|
|
|
// Generate animation data
|
|
// - Cracks
|
|
if (p.layer.material_flags & MATERIAL_FLAG_CRACK) {
|
|
// Find the texture name plus ^[crack:N:
|
|
std::ostringstream os(std::ios::binary);
|
|
os << m_tsrc->getTextureName(p.layer.texture_id) << "^[crack";
|
|
if (p.layer.material_flags & MATERIAL_FLAG_CRACK_OVERLAY)
|
|
os << "o"; // use ^[cracko
|
|
u8 tiles = p.layer.scale;
|
|
if (tiles > 1)
|
|
os << ":" << (u32)tiles;
|
|
os << ":" << (u32)p.layer.animation_frame_count << ":";
|
|
m_crack_materials.insert(std::make_pair(
|
|
std::pair<u8, u32>(layer, i), os.str()));
|
|
// Replace tile texture with the cracked one
|
|
p.layer.texture = m_tsrc->getTextureForMesh(
|
|
os.str() + "0",
|
|
&p.layer.texture_id);
|
|
}
|
|
// - Texture animation
|
|
if (p.layer.material_flags & MATERIAL_FLAG_ANIMATION) {
|
|
// Add to MapBlockMesh in order to animate these tiles
|
|
auto &info = m_animation_info[{layer, i}];
|
|
info.tile = p.layer;
|
|
info.frame = 0;
|
|
if (desync_animations) {
|
|
// Get starting position from noise
|
|
info.frame_offset =
|
|
100000 * (2.0 + noise3d(
|
|
data->m_blockpos.X, data->m_blockpos.Y,
|
|
data->m_blockpos.Z, 0));
|
|
} else {
|
|
// Play all synchronized
|
|
info.frame_offset = 0;
|
|
}
|
|
// Replace tile texture with the first animation frame
|
|
p.layer.texture = (*p.layer.frames)[0].texture;
|
|
}
|
|
|
|
if (!m_enable_shaders) {
|
|
// Extract colors for day-night animation
|
|
// Dummy sunlight to handle non-sunlit areas
|
|
video::SColorf sunlight;
|
|
get_sunlight_color(&sunlight, 0);
|
|
|
|
std::map<u32, video::SColor> colors;
|
|
const u32 vertex_count = p.vertices.size();
|
|
for (u32 j = 0; j < vertex_count; j++) {
|
|
video::SColor *vc = &p.vertices[j].Color;
|
|
video::SColor copy = *vc;
|
|
if (vc->getAlpha() == 0) // No sunlight - no need to animate
|
|
final_color_blend(vc, copy, sunlight); // Finalize color
|
|
else // Record color to animate
|
|
colors[j] = copy;
|
|
|
|
// The sunlight ratio has been stored,
|
|
// delete alpha (for the final rendering).
|
|
vc->setAlpha(255);
|
|
}
|
|
if (!colors.empty())
|
|
m_daynight_diffs[{layer, i}] = std::move(colors);
|
|
}
|
|
|
|
// Create material
|
|
video::SMaterial material;
|
|
material.setFlag(video::EMF_LIGHTING, false);
|
|
material.setFlag(video::EMF_BACK_FACE_CULLING, true);
|
|
material.setFlag(video::EMF_BILINEAR_FILTER, false);
|
|
material.setFlag(video::EMF_FOG_ENABLE, true);
|
|
material.setTexture(0, p.layer.texture);
|
|
|
|
if (m_enable_shaders) {
|
|
material.MaterialType = m_shdrsrc->getShaderInfo(
|
|
p.layer.shader_id).material;
|
|
p.layer.applyMaterialOptionsWithShaders(material);
|
|
if (p.layer.normal_texture)
|
|
material.setTexture(1, p.layer.normal_texture);
|
|
material.setTexture(2, p.layer.flags_texture);
|
|
} else {
|
|
p.layer.applyMaterialOptions(material);
|
|
}
|
|
|
|
scene::SMesh *mesh = (scene::SMesh *)m_mesh[layer];
|
|
|
|
scene::SMeshBuffer *buf = new scene::SMeshBuffer();
|
|
buf->Material = material;
|
|
if (p.layer.isTransparent()) {
|
|
buf->append(&p.vertices[0], p.vertices.size(), nullptr, 0);
|
|
|
|
MeshTriangle t;
|
|
t.buffer = buf;
|
|
m_transparent_triangles.reserve(p.indices.size() / 3);
|
|
for (u32 i = 0; i < p.indices.size(); i += 3) {
|
|
t.p1 = p.indices[i];
|
|
t.p2 = p.indices[i + 1];
|
|
t.p3 = p.indices[i + 2];
|
|
t.updateAttributes();
|
|
m_transparent_triangles.push_back(t);
|
|
}
|
|
} else {
|
|
buf->append(&p.vertices[0], p.vertices.size(),
|
|
&p.indices[0], p.indices.size());
|
|
}
|
|
mesh->addMeshBuffer(buf);
|
|
buf->drop();
|
|
}
|
|
|
|
if (m_mesh[layer]) {
|
|
// Use VBO for mesh (this just would set this for ever buffer)
|
|
if (m_enable_vbo)
|
|
m_mesh[layer]->setHardwareMappingHint(scene::EHM_STATIC);
|
|
}
|
|
}
|
|
|
|
//std::cout<<"added "<<fastfaces.getSize()<<" faces."<<std::endl;
|
|
m_bsp_tree.buildTree(&m_transparent_triangles);
|
|
|
|
// Check if animation is required for this mesh
|
|
m_has_animation =
|
|
!m_crack_materials.empty() ||
|
|
!m_daynight_diffs.empty() ||
|
|
!m_animation_info.empty();
|
|
}
|
|
|
|
MapBlockMesh::~MapBlockMesh()
|
|
{
|
|
for (scene::IMesh *m : m_mesh) {
|
|
#if IRRLICHT_VERSION_MT_REVISION < 5
|
|
if (m_enable_vbo) {
|
|
for (u32 i = 0; i < m->getMeshBufferCount(); i++) {
|
|
scene::IMeshBuffer *buf = m->getMeshBuffer(i);
|
|
RenderingEngine::get_video_driver()->removeHardwareBuffer(buf);
|
|
}
|
|
}
|
|
#endif
|
|
m->drop();
|
|
}
|
|
delete m_minimap_mapblock;
|
|
}
|
|
|
|
bool MapBlockMesh::animate(bool faraway, float time, int crack,
|
|
u32 daynight_ratio)
|
|
{
|
|
if (!m_has_animation) {
|
|
m_animation_force_timer = 100000;
|
|
return false;
|
|
}
|
|
|
|
m_animation_force_timer = myrand_range(5, 100);
|
|
|
|
// Cracks
|
|
if (crack != m_last_crack) {
|
|
for (auto &crack_material : m_crack_materials) {
|
|
scene::IMeshBuffer *buf = m_mesh[crack_material.first.first]->
|
|
getMeshBuffer(crack_material.first.second);
|
|
|
|
// Create new texture name from original
|
|
std::string s = crack_material.second + itos(crack);
|
|
u32 new_texture_id = 0;
|
|
video::ITexture *new_texture =
|
|
m_tsrc->getTextureForMesh(s, &new_texture_id);
|
|
buf->getMaterial().setTexture(0, new_texture);
|
|
|
|
// If the current material is also animated, update animation info
|
|
auto anim_it = m_animation_info.find(crack_material.first);
|
|
if (anim_it != m_animation_info.end()) {
|
|
TileLayer &tile = anim_it->second.tile;
|
|
tile.texture = new_texture;
|
|
tile.texture_id = new_texture_id;
|
|
// force animation update
|
|
anim_it->second.frame = -1;
|
|
}
|
|
}
|
|
|
|
m_last_crack = crack;
|
|
}
|
|
|
|
// Texture animation
|
|
for (auto &it : m_animation_info) {
|
|
const TileLayer &tile = it.second.tile;
|
|
// Figure out current frame
|
|
int frameno = (int)(time * 1000 / tile.animation_frame_length_ms
|
|
+ it.second.frame_offset) % tile.animation_frame_count;
|
|
// If frame doesn't change, skip
|
|
if (frameno == it.second.frame)
|
|
continue;
|
|
|
|
it.second.frame = frameno;
|
|
|
|
scene::IMeshBuffer *buf = m_mesh[it.first.first]->getMeshBuffer(it.first.second);
|
|
|
|
const FrameSpec &frame = (*tile.frames)[frameno];
|
|
buf->getMaterial().setTexture(0, frame.texture);
|
|
if (m_enable_shaders) {
|
|
if (frame.normal_texture)
|
|
buf->getMaterial().setTexture(1, frame.normal_texture);
|
|
buf->getMaterial().setTexture(2, frame.flags_texture);
|
|
}
|
|
}
|
|
|
|
// Day-night transition
|
|
if (!m_enable_shaders && (daynight_ratio != m_last_daynight_ratio)) {
|
|
// Force reload mesh to VBO
|
|
if (m_enable_vbo)
|
|
for (scene::IMesh *m : m_mesh)
|
|
m->setDirty();
|
|
video::SColorf day_color;
|
|
get_sunlight_color(&day_color, daynight_ratio);
|
|
|
|
for (auto &daynight_diff : m_daynight_diffs) {
|
|
scene::IMeshBuffer *buf = m_mesh[daynight_diff.first.first]->
|
|
getMeshBuffer(daynight_diff.first.second);
|
|
video::S3DVertex *vertices = (video::S3DVertex *)buf->getVertices();
|
|
for (const auto &j : daynight_diff.second)
|
|
final_color_blend(&(vertices[j.first].Color), j.second,
|
|
day_color);
|
|
}
|
|
m_last_daynight_ratio = daynight_ratio;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void MapBlockMesh::updateTransparentBuffers(v3f camera_pos, v3s16 block_pos)
|
|
{
|
|
// nothing to do if the entire block is opaque
|
|
if (m_transparent_triangles.empty())
|
|
return;
|
|
|
|
v3f block_posf = intToFloat(block_pos * MAP_BLOCKSIZE, BS);
|
|
v3f rel_camera_pos = camera_pos - block_posf;
|
|
|
|
std::vector<s32> triangle_refs;
|
|
m_bsp_tree.traverse(rel_camera_pos, triangle_refs);
|
|
|
|
// arrange index sequences into partial buffers
|
|
m_transparent_buffers.clear();
|
|
|
|
scene::SMeshBuffer *current_buffer = nullptr;
|
|
std::vector<u16> current_strain;
|
|
for (auto i : triangle_refs) {
|
|
const auto &t = m_transparent_triangles[i];
|
|
if (current_buffer != t.buffer) {
|
|
if (current_buffer) {
|
|
m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
|
|
current_strain.clear();
|
|
}
|
|
current_buffer = t.buffer;
|
|
}
|
|
current_strain.push_back(t.p1);
|
|
current_strain.push_back(t.p2);
|
|
current_strain.push_back(t.p3);
|
|
}
|
|
|
|
if (!current_strain.empty())
|
|
m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
|
|
}
|
|
|
|
void MapBlockMesh::consolidateTransparentBuffers()
|
|
{
|
|
m_transparent_buffers.clear();
|
|
|
|
scene::SMeshBuffer *current_buffer = nullptr;
|
|
std::vector<u16> current_strain;
|
|
|
|
// use the fact that m_transparent_triangles is already arranged by buffer
|
|
for (const auto &t : m_transparent_triangles) {
|
|
if (current_buffer != t.buffer) {
|
|
if (current_buffer != nullptr) {
|
|
this->m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
|
|
current_strain.clear();
|
|
}
|
|
current_buffer = t.buffer;
|
|
}
|
|
current_strain.push_back(t.p1);
|
|
current_strain.push_back(t.p2);
|
|
current_strain.push_back(t.p3);
|
|
}
|
|
|
|
if (!current_strain.empty()) {
|
|
this->m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
|
|
}
|
|
}
|
|
|
|
video::SColor encode_light(u16 light, u8 emissive_light)
|
|
{
|
|
// Get components
|
|
u32 day = (light & 0xff);
|
|
u32 night = (light >> 8);
|
|
// Add emissive light
|
|
night += emissive_light * 2.5f;
|
|
if (night > 255)
|
|
night = 255;
|
|
// Since we don't know if the day light is sunlight or
|
|
// artificial light, assume it is artificial when the night
|
|
// light bank is also lit.
|
|
if (day < night)
|
|
day = 0;
|
|
else
|
|
day = day - night;
|
|
u32 sum = day + night;
|
|
// Ratio of sunlight:
|
|
u32 r;
|
|
if (sum > 0)
|
|
r = day * 255 / sum;
|
|
else
|
|
r = 0;
|
|
// Average light:
|
|
float b = (day + night) / 2;
|
|
return video::SColor(r, b, b, b);
|
|
}
|