minetest/src/client/tile.cpp

1955 lines
53 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "tile.h"
#include <ICameraSceneNode.h>
#include "util/string.h"
#include "util/container.h"
#include "util/thread.h"
#include "util/numeric.h"
#include "irrlichttypes_extrabloated.h"
#include "debug.h"
#include "main.h" // for g_settings
#include "filesys.h"
#include "settings.h"
#include "mesh.h"
#include "log.h"
#include "gamedef.h"
#include "strfnd.h"
#include "util/string.h" // for parseColorString()
#ifdef __ANDROID__
#include <GLES/gl.h>
#endif
/*
A cache from texture name to texture path
*/
MutexedMap<std::string, std::string> g_texturename_to_path_cache;
/*
Replaces the filename extension.
eg:
std::string image = "a/image.png"
replace_ext(image, "jpg")
-> image = "a/image.jpg"
Returns true on success.
*/
static bool replace_ext(std::string &path, const char *ext)
{
if (ext == NULL)
return false;
// Find place of last dot, fail if \ or / found.
s32 last_dot_i = -1;
for (s32 i=path.size()-1; i>=0; i--)
{
if (path[i] == '.')
{
last_dot_i = i;
break;
}
if (path[i] == '\\' || path[i] == '/')
break;
}
// If not found, return an empty string
if (last_dot_i == -1)
return false;
// Else make the new path
path = path.substr(0, last_dot_i+1) + ext;
return true;
}
/*
Find out the full path of an image by trying different filename
extensions.
If failed, return "".
*/
std::string getImagePath(std::string path)
{
// A NULL-ended list of possible image extensions
const char *extensions[] = {
"png", "jpg", "bmp", "tga",
"pcx", "ppm", "psd", "wal", "rgb",
NULL
};
// If there is no extension, add one
if (removeStringEnd(path, extensions) == "")
path = path + ".png";
// Check paths until something is found to exist
const char **ext = extensions;
do{
bool r = replace_ext(path, *ext);
if (r == false)
return "";
if (fs::PathExists(path))
return path;
}
while((++ext) != NULL);
return "";
}
/*
Gets the path to a texture by first checking if the texture exists
in texture_path and if not, using the data path.
Checks all supported extensions by replacing the original extension.
If not found, returns "".
Utilizes a thread-safe cache.
*/
std::string getTexturePath(const std::string &filename)
{
std::string fullpath = "";
/*
Check from cache
*/
bool incache = g_texturename_to_path_cache.get(filename, &fullpath);
if (incache)
return fullpath;
/*
Check from texture_path
*/
std::string texture_path = g_settings->get("texture_path");
if (texture_path != "")
{
std::string testpath = texture_path + DIR_DELIM + filename;
// Check all filename extensions. Returns "" if not found.
fullpath = getImagePath(testpath);
}
/*
Check from default data directory
*/
if (fullpath == "")
{
std::string base_path = porting::path_share + DIR_DELIM + "textures"
+ DIR_DELIM + "base" + DIR_DELIM + "pack";
std::string testpath = base_path + DIR_DELIM + filename;
// Check all filename extensions. Returns "" if not found.
fullpath = getImagePath(testpath);
}
// Add to cache (also an empty result is cached)
g_texturename_to_path_cache.set(filename, fullpath);
// Finally return it
return fullpath;
}
void clearTextureNameCache()
{
g_texturename_to_path_cache.clear();
}
/*
Stores internal information about a texture.
*/
struct TextureInfo
{
std::string name;
video::ITexture *texture;
TextureInfo(
const std::string &name_,
video::ITexture *texture_=NULL
):
name(name_),
texture(texture_)
{
}
};
/*
SourceImageCache: A cache used for storing source images.
*/
class SourceImageCache
{
public:
~SourceImageCache() {
for (std::map<std::string, video::IImage*>::iterator iter = m_images.begin();
iter != m_images.end(); iter++) {
iter->second->drop();
}
m_images.clear();
}
void insert(const std::string &name, video::IImage *img,
bool prefer_local, video::IVideoDriver *driver)
{
assert(img);
// Remove old image
std::map<std::string, video::IImage*>::iterator n;
n = m_images.find(name);
if (n != m_images.end()){
if (n->second)
n->second->drop();
}
video::IImage* toadd = img;
bool need_to_grab = true;
// Try to use local texture instead if asked to
if (prefer_local){
std::string path = getTexturePath(name);
if (path != ""){
video::IImage *img2 = driver->createImageFromFile(path.c_str());
if (img2){
toadd = img2;
need_to_grab = false;
}
}
}
if (need_to_grab)
toadd->grab();
m_images[name] = toadd;
}
video::IImage* get(const std::string &name)
{
std::map<std::string, video::IImage*>::iterator n;
n = m_images.find(name);
if (n != m_images.end())
return n->second;
return NULL;
}
// Primarily fetches from cache, secondarily tries to read from filesystem
video::IImage* getOrLoad(const std::string &name, IrrlichtDevice *device)
{
std::map<std::string, video::IImage*>::iterator n;
n = m_images.find(name);
if (n != m_images.end()){
n->second->grab(); // Grab for caller
return n->second;
}
video::IVideoDriver* driver = device->getVideoDriver();
std::string path = getTexturePath(name);
if (path == ""){
infostream<<"SourceImageCache::getOrLoad(): No path found for \""
<<name<<"\""<<std::endl;
return NULL;
}
infostream<<"SourceImageCache::getOrLoad(): Loading path \""<<path
<<"\""<<std::endl;
video::IImage *img = driver->createImageFromFile(path.c_str());
if (img){
m_images[name] = img;
img->grab(); // Grab for caller
}
return img;
}
private:
std::map<std::string, video::IImage*> m_images;
};
/*
TextureSource
*/
class TextureSource : public IWritableTextureSource
{
public:
TextureSource(IrrlichtDevice *device);
virtual ~TextureSource();
/*
Example case:
Now, assume a texture with the id 1 exists, and has the name
"stone.png^mineral1".
Then a random thread calls getTextureId for a texture called
"stone.png^mineral1^crack0".
...Now, WTF should happen? Well:
- getTextureId strips off stuff recursively from the end until
the remaining part is found, or nothing is left when
something is stripped out
But it is slow to search for textures by names and modify them
like that?
- ContentFeatures is made to contain ids for the basic plain
textures
- Crack textures can be slow by themselves, but the framework
must be fast.
Example case #2:
- Assume a texture with the id 1 exists, and has the name
"stone.png^mineral_coal.png".
- Now getNodeTile() stumbles upon a node which uses
texture id 1, and determines that MATERIAL_FLAG_CRACK
must be applied to the tile
- MapBlockMesh::animate() finds the MATERIAL_FLAG_CRACK and
has received the current crack level 0 from the client. It
finds out the name of the texture with getTextureName(1),
appends "^crack0" to it and gets a new texture id with
getTextureId("stone.png^mineral_coal.png^crack0").
*/
/*
Gets a texture id from cache or
- if main thread, generates the texture, adds to cache and returns id.
- if other thread, adds to request queue and waits for main thread.
The id 0 points to a NULL texture. It is returned in case of error.
*/
u32 getTextureId(const std::string &name);
// Finds out the name of a cached texture.
std::string getTextureName(u32 id);
/*
If texture specified by the name pointed by the id doesn't
exist, create it, then return the cached texture.
Can be called from any thread. If called from some other thread
and not found in cache, the call is queued to the main thread
for processing.
*/
video::ITexture* getTexture(u32 id);
video::ITexture* getTexture(const std::string &name, u32 *id);
// Returns a pointer to the irrlicht device
virtual IrrlichtDevice* getDevice()
{
return m_device;
}
bool isKnownSourceImage(const std::string &name)
{
bool is_known = false;
bool cache_found = m_source_image_existence.get(name, &is_known);
if (cache_found)
return is_known;
// Not found in cache; find out if a local file exists
is_known = (getTexturePath(name) != "");
m_source_image_existence.set(name, is_known);
return is_known;
}
// Processes queued texture requests from other threads.
// Shall be called from the main thread.
void processQueue();
// Insert an image into the cache without touching the filesystem.
// Shall be called from the main thread.
void insertSourceImage(const std::string &name, video::IImage *img);
// Rebuild images and textures from the current set of source images
// Shall be called from the main thread.
void rebuildImagesAndTextures();
// Render a mesh to a texture.
// Returns NULL if render-to-texture failed.
// Shall be called from the main thread.
video::ITexture* generateTextureFromMesh(
const TextureFromMeshParams &params);
// Generates an image from a full string like
// "stone.png^mineral_coal.png^[crack:1:0".
// Shall be called from the main thread.
video::IImage* generateImage(const std::string &name);
video::ITexture* getNormalTexture(const std::string &name);
private:
// The id of the thread that is allowed to use irrlicht directly
threadid_t m_main_thread;
// The irrlicht device
IrrlichtDevice *m_device;
// Cache of source images
// This should be only accessed from the main thread
SourceImageCache m_sourcecache;
// Generate a texture
u32 generateTexture(const std::string &name);
// Generate image based on a string like "stone.png" or "[crack:1:0".
// if baseimg is NULL, it is created. Otherwise stuff is made on it.
bool generateImagePart(std::string part_of_name, video::IImage *& baseimg);
// Thread-safe cache of what source images are known (true = known)
MutexedMap<std::string, bool> m_source_image_existence;
// A texture id is index in this array.
// The first position contains a NULL texture.
std::vector<TextureInfo> m_textureinfo_cache;
// Maps a texture name to an index in the former.
std::map<std::string, u32> m_name_to_id;
// The two former containers are behind this mutex
JMutex m_textureinfo_cache_mutex;
// Queued texture fetches (to be processed by the main thread)
RequestQueue<std::string, u32, u8, u8> m_get_texture_queue;
// Textures that have been overwritten with other ones
// but can't be deleted because the ITexture* might still be used
std::vector<video::ITexture*> m_texture_trash;
// Cached settings needed for making textures from meshes
bool m_setting_trilinear_filter;
bool m_setting_bilinear_filter;
bool m_setting_anisotropic_filter;
};
IWritableTextureSource* createTextureSource(IrrlichtDevice *device)
{
return new TextureSource(device);
}
TextureSource::TextureSource(IrrlichtDevice *device):
m_device(device)
{
assert(m_device);
m_main_thread = get_current_thread_id();
// Add a NULL TextureInfo as the first index, named ""
m_textureinfo_cache.push_back(TextureInfo(""));
m_name_to_id[""] = 0;
// Cache some settings
// Note: Since this is only done once, the game must be restarted
// for these settings to take effect
m_setting_trilinear_filter = g_settings->getBool("trilinear_filter");
m_setting_bilinear_filter = g_settings->getBool("bilinear_filter");
m_setting_anisotropic_filter = g_settings->getBool("anisotropic_filter");
}
TextureSource::~TextureSource()
{
video::IVideoDriver* driver = m_device->getVideoDriver();
unsigned int textures_before = driver->getTextureCount();
for (std::vector<TextureInfo>::iterator iter =
m_textureinfo_cache.begin();
iter != m_textureinfo_cache.end(); iter++)
{
//cleanup texture
if (iter->texture)
driver->removeTexture(iter->texture);
}
m_textureinfo_cache.clear();
for (std::vector<video::ITexture*>::iterator iter =
m_texture_trash.begin(); iter != m_texture_trash.end();
iter++) {
video::ITexture *t = *iter;
//cleanup trashed texture
driver->removeTexture(t);
}
infostream << "~TextureSource() "<< textures_before << "/"
<< driver->getTextureCount() << std::endl;
}
u32 TextureSource::getTextureId(const std::string &name)
{
//infostream<<"getTextureId(): \""<<name<<"\""<<std::endl;
{
/*
See if texture already exists
*/
JMutexAutoLock lock(m_textureinfo_cache_mutex);
std::map<std::string, u32>::iterator n;
n = m_name_to_id.find(name);
if (n != m_name_to_id.end())
{
return n->second;
}
}
/*
Get texture
*/
if (get_current_thread_id() == m_main_thread)
{
return generateTexture(name);
}
else
{
infostream<<"getTextureId(): Queued: name=\""<<name<<"\""<<std::endl;
// We're gonna ask the result to be put into here
static ResultQueue<std::string, u32, u8, u8> result_queue;
// Throw a request in
m_get_texture_queue.add(name, 0, 0, &result_queue);
/*infostream<<"Waiting for texture from main thread, name=\""
<<name<<"\""<<std::endl;*/
try
{
while(true) {
// Wait result for a second
GetResult<std::string, u32, u8, u8>
result = result_queue.pop_front(1000);
if (result.key == name) {
return result.item;
}
}
}
catch(ItemNotFoundException &e)
{
errorstream<<"Waiting for texture " << name << " timed out."<<std::endl;
return 0;
}
}
infostream<<"getTextureId(): Failed"<<std::endl;
return 0;
}
// Draw an image on top of an another one, using the alpha channel of the
// source image
static void blit_with_alpha(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size);
// Like blit_with_alpha, but only modifies destination pixels that
// are fully opaque
static void blit_with_alpha_overlay(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size);
// Like blit_with_alpha overlay, but uses an int to calculate the ratio
// and modifies any destination pixels that are not fully transparent
static void blit_with_interpolate_overlay(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size, int ratio);
// Apply a mask to an image
static void apply_mask(video::IImage *mask, video::IImage *dst,
v2s32 mask_pos, v2s32 dst_pos, v2u32 size);
// Draw or overlay a crack
static void draw_crack(video::IImage *crack, video::IImage *dst,
bool use_overlay, s32 frame_count, s32 progression,
video::IVideoDriver *driver);
// Brighten image
void brighten(video::IImage *image);
// Parse a transform name
u32 parseImageTransform(const std::string& s);
// Apply transform to image dimension
core::dimension2d<u32> imageTransformDimension(u32 transform, core::dimension2d<u32> dim);
// Apply transform to image data
void imageTransform(u32 transform, video::IImage *src, video::IImage *dst);
/*
This method generates all the textures
*/
u32 TextureSource::generateTexture(const std::string &name)
{
//infostream << "generateTexture(): name=\"" << name << "\"" << std::endl;
// Empty name means texture 0
if (name == "") {
infostream<<"generateTexture(): name is empty"<<std::endl;
return 0;
}
{
/*
See if texture already exists
*/
JMutexAutoLock lock(m_textureinfo_cache_mutex);
std::map<std::string, u32>::iterator n;
n = m_name_to_id.find(name);
if (n != m_name_to_id.end()) {
return n->second;
}
}
/*
Calling only allowed from main thread
*/
if (get_current_thread_id() != m_main_thread) {
errorstream<<"TextureSource::generateTexture() "
"called not from main thread"<<std::endl;
return 0;
}
video::IVideoDriver *driver = m_device->getVideoDriver();
assert(driver);
video::IImage *img = generateImage(name);
video::ITexture *tex = NULL;
if (img != NULL) {
#ifdef __ANDROID__
img = Align2Npot2(img, driver);
#endif
// Create texture from resulting image
tex = driver->addTexture(name.c_str(), img);
img->drop();
}
/*
Add texture to caches (add NULL textures too)
*/
JMutexAutoLock lock(m_textureinfo_cache_mutex);
u32 id = m_textureinfo_cache.size();
TextureInfo ti(name, tex);
m_textureinfo_cache.push_back(ti);
m_name_to_id[name] = id;
return id;
}
std::string TextureSource::getTextureName(u32 id)
{
JMutexAutoLock lock(m_textureinfo_cache_mutex);
if (id >= m_textureinfo_cache.size())
{
errorstream<<"TextureSource::getTextureName(): id="<<id
<<" >= m_textureinfo_cache.size()="
<<m_textureinfo_cache.size()<<std::endl;
return "";
}
return m_textureinfo_cache[id].name;
}
video::ITexture* TextureSource::getTexture(u32 id)
{
JMutexAutoLock lock(m_textureinfo_cache_mutex);
if (id >= m_textureinfo_cache.size())
return NULL;
return m_textureinfo_cache[id].texture;
}
video::ITexture* TextureSource::getTexture(const std::string &name, u32 *id)
{
u32 actual_id = getTextureId(name);
if (id){
*id = actual_id;
}
return getTexture(actual_id);
}
void TextureSource::processQueue()
{
/*
Fetch textures
*/
//NOTE this is only thread safe for ONE consumer thread!
if (!m_get_texture_queue.empty())
{
GetRequest<std::string, u32, u8, u8>
request = m_get_texture_queue.pop();
/*infostream<<"TextureSource::processQueue(): "
<<"got texture request with "
<<"name=\""<<request.key<<"\""
<<std::endl;*/
m_get_texture_queue.pushResult(request, generateTexture(request.key));
}
}
void TextureSource::insertSourceImage(const std::string &name, video::IImage *img)
{
//infostream<<"TextureSource::insertSourceImage(): name="<<name<<std::endl;
assert(get_current_thread_id() == m_main_thread);
m_sourcecache.insert(name, img, true, m_device->getVideoDriver());
m_source_image_existence.set(name, true);
}
void TextureSource::rebuildImagesAndTextures()
{
JMutexAutoLock lock(m_textureinfo_cache_mutex);
video::IVideoDriver* driver = m_device->getVideoDriver();
assert(driver != 0);
// Recreate textures
for (u32 i=0; i<m_textureinfo_cache.size(); i++){
TextureInfo *ti = &m_textureinfo_cache[i];
video::IImage *img = generateImage(ti->name);
#ifdef __ANDROID__
img = Align2Npot2(img, driver);
assert(img->getDimension().Height == npot2(img->getDimension().Height));
assert(img->getDimension().Width == npot2(img->getDimension().Width));
#endif
// Create texture from resulting image
video::ITexture *t = NULL;
if (img) {
t = driver->addTexture(ti->name.c_str(), img);
img->drop();
}
video::ITexture *t_old = ti->texture;
// Replace texture
ti->texture = t;
if (t_old)
m_texture_trash.push_back(t_old);
}
}
video::ITexture* TextureSource::generateTextureFromMesh(
const TextureFromMeshParams &params)
{
video::IVideoDriver *driver = m_device->getVideoDriver();
assert(driver);
#ifdef __ANDROID__
const GLubyte* renderstr = glGetString(GL_RENDERER);
std::string renderer((char*) renderstr);
// use no render to texture hack
if (
(renderer.find("Adreno") != std::string::npos) ||
(renderer.find("Mali") != std::string::npos) ||
(renderer.find("Immersion") != std::string::npos) ||
(renderer.find("Tegra") != std::string::npos) ||
g_settings->getBool("inventory_image_hack")
) {
// Get a scene manager
scene::ISceneManager *smgr_main = m_device->getSceneManager();
assert(smgr_main);
scene::ISceneManager *smgr = smgr_main->createNewSceneManager();
assert(smgr);
const float scaling = 0.2;
scene::IMeshSceneNode* meshnode =
smgr->addMeshSceneNode(params.mesh, NULL,
-1, v3f(0,0,0), v3f(0,0,0),
v3f(1.0 * scaling,1.0 * scaling,1.0 * scaling), true);
meshnode->setMaterialFlag(video::EMF_LIGHTING, true);
meshnode->setMaterialFlag(video::EMF_ANTI_ALIASING, true);
meshnode->setMaterialFlag(video::EMF_TRILINEAR_FILTER, m_setting_trilinear_filter);
meshnode->setMaterialFlag(video::EMF_BILINEAR_FILTER, m_setting_bilinear_filter);
meshnode->setMaterialFlag(video::EMF_ANISOTROPIC_FILTER, m_setting_anisotropic_filter);
scene::ICameraSceneNode* camera = smgr->addCameraSceneNode(0,
params.camera_position, params.camera_lookat);
// second parameter of setProjectionMatrix (isOrthogonal) is ignored
camera->setProjectionMatrix(params.camera_projection_matrix, false);
smgr->setAmbientLight(params.ambient_light);
smgr->addLightSceneNode(0,
params.light_position,
params.light_color,
params.light_radius*scaling);
core::dimension2d<u32> screen = driver->getScreenSize();
// Render scene
driver->beginScene(true, true, video::SColor(0,0,0,0));
driver->clearZBuffer();
smgr->drawAll();
core::dimension2d<u32> partsize(screen.Width * scaling,screen.Height * scaling);
irr::video::IImage* rawImage =
driver->createImage(irr::video::ECF_A8R8G8B8, partsize);
u8* pixels = static_cast<u8*>(rawImage->lock());
if (!pixels)
{
rawImage->drop();
return NULL;
}
core::rect<s32> source(
screen.Width /2 - (screen.Width * (scaling / 2)),
screen.Height/2 - (screen.Height * (scaling / 2)),
screen.Width /2 + (screen.Width * (scaling / 2)),
screen.Height/2 + (screen.Height * (scaling / 2))
);
glReadPixels(source.UpperLeftCorner.X, source.UpperLeftCorner.Y,
partsize.Width, partsize.Height, GL_RGBA,
GL_UNSIGNED_BYTE, pixels);
driver->endScene();
// Drop scene manager
smgr->drop();
unsigned int pixelcount = partsize.Width*partsize.Height;
u8* runptr = pixels;
for (unsigned int i=0; i < pixelcount; i++) {
u8 B = *runptr;
u8 G = *(runptr+1);
u8 R = *(runptr+2);
u8 A = *(runptr+3);
//BGRA -> RGBA
*runptr = R;
runptr ++;
*runptr = G;
runptr ++;
*runptr = B;
runptr ++;
*runptr = A;
runptr ++;
}
video::IImage* inventory_image =
driver->createImage(irr::video::ECF_A8R8G8B8, params.dim);
rawImage->copyToScaling(inventory_image);
rawImage->drop();
video::ITexture *rtt = driver->addTexture(params.rtt_texture_name.c_str(), inventory_image);
inventory_image->drop();
if (rtt == NULL) {
errorstream << "TextureSource::generateTextureFromMesh(): failed to recreate texture from image: " << params.rtt_texture_name << std::endl;
return NULL;
}
driver->makeColorKeyTexture(rtt, v2s32(0,0));
if (params.delete_texture_on_shutdown)
m_texture_trash.push_back(rtt);
return rtt;
}
#endif
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET) == false)
{
static bool warned = false;
if (!warned)
{
errorstream<<"TextureSource::generateTextureFromMesh(): "
<<"EVDF_RENDER_TO_TARGET not supported."<<std::endl;
warned = true;
}
return NULL;
}
// Create render target texture
video::ITexture *rtt = driver->addRenderTargetTexture(
params.dim, params.rtt_texture_name.c_str(),
video::ECF_A8R8G8B8);
if (rtt == NULL)
{
errorstream<<"TextureSource::generateTextureFromMesh(): "
<<"addRenderTargetTexture returned NULL."<<std::endl;
return NULL;
}
// Set render target
if (!driver->setRenderTarget(rtt, false, true, video::SColor(0,0,0,0))) {
driver->removeTexture(rtt);
errorstream<<"TextureSource::generateTextureFromMesh(): "
<<"failed to set render target"<<std::endl;
return NULL;
}
// Get a scene manager
scene::ISceneManager *smgr_main = m_device->getSceneManager();
assert(smgr_main);
scene::ISceneManager *smgr = smgr_main->createNewSceneManager();
assert(smgr);
scene::IMeshSceneNode* meshnode =
smgr->addMeshSceneNode(params.mesh, NULL,
-1, v3f(0,0,0), v3f(0,0,0), v3f(1,1,1), true);
meshnode->setMaterialFlag(video::EMF_LIGHTING, true);
meshnode->setMaterialFlag(video::EMF_ANTI_ALIASING, true);
meshnode->setMaterialFlag(video::EMF_TRILINEAR_FILTER, m_setting_trilinear_filter);
meshnode->setMaterialFlag(video::EMF_BILINEAR_FILTER, m_setting_bilinear_filter);
meshnode->setMaterialFlag(video::EMF_ANISOTROPIC_FILTER, m_setting_anisotropic_filter);
scene::ICameraSceneNode* camera = smgr->addCameraSceneNode(0,
params.camera_position, params.camera_lookat);
// second parameter of setProjectionMatrix (isOrthogonal) is ignored
camera->setProjectionMatrix(params.camera_projection_matrix, false);
smgr->setAmbientLight(params.ambient_light);
smgr->addLightSceneNode(0,
params.light_position,
params.light_color,
params.light_radius);
// Render scene
driver->beginScene(true, true, video::SColor(0,0,0,0));
smgr->drawAll();
driver->endScene();
// Drop scene manager
smgr->drop();
// Unset render target
driver->setRenderTarget(0, false, true, 0);
if (params.delete_texture_on_shutdown)
m_texture_trash.push_back(rtt);
return rtt;
}
video::IImage* TextureSource::generateImage(const std::string &name)
{
/*
Get the base image
*/
const char separator = '^';
const char paren_open = '(';
const char paren_close = ')';
// Find last separator in the name
s32 last_separator_pos = -1;
u8 paren_bal = 0;
for (s32 i = name.size() - 1; i >= 0; i--) {
switch(name[i]) {
case separator:
if (paren_bal == 0) {
last_separator_pos = i;
i = -1; // break out of loop
}
break;
case paren_open:
if (paren_bal == 0) {
errorstream << "generateImage(): unbalanced parentheses"
<< "(extranous '(') while generating texture \""
<< name << "\"" << std::endl;
return NULL;
}
paren_bal--;
break;
case paren_close:
paren_bal++;
break;
default:
break;
}
}
if (paren_bal > 0) {
errorstream << "generateImage(): unbalanced parentheses"
<< "(missing matching '(') while generating texture \""
<< name << "\"" << std::endl;
return NULL;
}
video::IImage *baseimg = NULL;
/*
If separator was found, make the base image
using a recursive call.
*/
if (last_separator_pos != -1) {
baseimg = generateImage(name.substr(0, last_separator_pos));
}
video::IVideoDriver* driver = m_device->getVideoDriver();
assert(driver);
/*
Parse out the last part of the name of the image and act
according to it
*/
std::string last_part_of_name = name.substr(last_separator_pos + 1);
/*
If this name is enclosed in parentheses, generate it
and blit it onto the base image
*/
if (last_part_of_name[0] == paren_open
&& last_part_of_name[last_part_of_name.size() - 1] == paren_close) {
std::string name2 = last_part_of_name.substr(1,
last_part_of_name.size() - 2);
video::IImage *tmp = generateImage(name2);
if (!tmp) {
errorstream << "generateImage(): "
"Failed to generate \"" << name2 << "\""
<< std::endl;
return NULL;
}
core::dimension2d<u32> dim = tmp->getDimension();
if (!baseimg)
baseimg = driver->createImage(video::ECF_A8R8G8B8, dim);
blit_with_alpha(tmp, baseimg, v2s32(0, 0), v2s32(0, 0), dim);
tmp->drop();
} else if (!generateImagePart(last_part_of_name, baseimg)) {
// Generate image according to part of name
errorstream << "generateImage(): "
"Failed to generate \"" << last_part_of_name << "\""
<< std::endl;
}
// If no resulting image, print a warning
if (baseimg == NULL) {
errorstream << "generateImage(): baseimg is NULL (attempted to"
" create texture \"" << name << "\")" << std::endl;
}
return baseimg;
}
#ifdef __ANDROID__
#include <GLES/gl.h>
/**
* Check and align image to npot2 if required by hardware
* @param image image to check for npot2 alignment
* @param driver driver to use for image operations
* @return image or copy of image aligned to npot2
*/
video::IImage * Align2Npot2(video::IImage * image,
video::IVideoDriver* driver)
{
if (image == NULL) {
return image;
}
core::dimension2d<u32> dim = image->getDimension();
std::string extensions = (char*) glGetString(GL_EXTENSIONS);
if (extensions.find("GL_OES_texture_npot") != std::string::npos) {
return image;
}
unsigned int height = npot2(dim.Height);
unsigned int width = npot2(dim.Width);
if ((dim.Height == height) &&
(dim.Width == width)) {
return image;
}
if (dim.Height > height) {
height *= 2;
}
if (dim.Width > width) {
width *= 2;
}
video::IImage *targetimage =
driver->createImage(video::ECF_A8R8G8B8,
core::dimension2d<u32>(width, height));
if (targetimage != NULL) {
image->copyToScaling(targetimage);
}
image->drop();
return targetimage;
}
#endif
bool TextureSource::generateImagePart(std::string part_of_name,
video::IImage *& baseimg)
{
video::IVideoDriver* driver = m_device->getVideoDriver();
assert(driver);
// Stuff starting with [ are special commands
if (part_of_name.size() == 0 || part_of_name[0] != '[')
{
video::IImage *image = m_sourcecache.getOrLoad(part_of_name, m_device);
#ifdef __ANDROID__
image = Align2Npot2(image, driver);
#endif
if (image == NULL) {
if (part_of_name != "") {
if (part_of_name.find("_normal.png") == std::string::npos){
errorstream<<"generateImage(): Could not load image \""
<<part_of_name<<"\""<<" while building texture"<<std::endl;
errorstream<<"generateImage(): Creating a dummy"
<<" image for \""<<part_of_name<<"\""<<std::endl;
} else {
infostream<<"generateImage(): Could not load normal map \""
<<part_of_name<<"\""<<std::endl;
infostream<<"generateImage(): Creating a dummy"
<<" normal map for \""<<part_of_name<<"\""<<std::endl;
}
}
// Just create a dummy image
//core::dimension2d<u32> dim(2,2);
core::dimension2d<u32> dim(1,1);
image = driver->createImage(video::ECF_A8R8G8B8, dim);
assert(image);
/*image->setPixel(0,0, video::SColor(255,255,0,0));
image->setPixel(1,0, video::SColor(255,0,255,0));
image->setPixel(0,1, video::SColor(255,0,0,255));
image->setPixel(1,1, video::SColor(255,255,0,255));*/
image->setPixel(0,0, video::SColor(255,myrand()%256,
myrand()%256,myrand()%256));
/*image->setPixel(1,0, video::SColor(255,myrand()%256,
myrand()%256,myrand()%256));
image->setPixel(0,1, video::SColor(255,myrand()%256,
myrand()%256,myrand()%256));
image->setPixel(1,1, video::SColor(255,myrand()%256,
myrand()%256,myrand()%256));*/
}
// If base image is NULL, load as base.
if (baseimg == NULL)
{
//infostream<<"Setting "<<part_of_name<<" as base"<<std::endl;
/*
Copy it this way to get an alpha channel.
Otherwise images with alpha cannot be blitted on
images that don't have alpha in the original file.
*/
core::dimension2d<u32> dim = image->getDimension();
baseimg = driver->createImage(video::ECF_A8R8G8B8, dim);
image->copyTo(baseimg);
}
// Else blit on base.
else
{
//infostream<<"Blitting "<<part_of_name<<" on base"<<std::endl;
// Size of the copied area
core::dimension2d<u32> dim = image->getDimension();
//core::dimension2d<u32> dim(16,16);
// Position to copy the blitted to in the base image
core::position2d<s32> pos_to(0,0);
// Position to copy the blitted from in the blitted image
core::position2d<s32> pos_from(0,0);
// Blit
/*image->copyToWithAlpha(baseimg, pos_to,
core::rect<s32>(pos_from, dim),
video::SColor(255,255,255,255),
NULL);*/
blit_with_alpha(image, baseimg, pos_from, pos_to, dim);
}
//cleanup
image->drop();
}
else
{
// A special texture modification
/*infostream<<"generateImage(): generating special "
<<"modification \""<<part_of_name<<"\""
<<std::endl;*/
/*
[crack:N:P
[cracko:N:P
Adds a cracking texture
N = animation frame count, P = crack progression
*/
if (part_of_name.substr(0,6) == "[crack")
{
if (baseimg == NULL) {
errorstream<<"generateImagePart(): baseimg == NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
// Crack image number and overlay option
bool use_overlay = (part_of_name[6] == 'o');
Strfnd sf(part_of_name);
sf.next(":");
s32 frame_count = stoi(sf.next(":"));
s32 progression = stoi(sf.next(":"));
/*
Load crack image.
It is an image with a number of cracking stages
horizontally tiled.
*/
video::IImage *img_crack = m_sourcecache.getOrLoad(
"crack_anylength.png", m_device);
if (img_crack && progression >= 0)
{
draw_crack(img_crack, baseimg,
use_overlay, frame_count,
progression, driver);
img_crack->drop();
}
}
/*
[combine:WxH:X,Y=filename:X,Y=filename2
Creates a bigger texture from an amount of smaller ones
*/
else if (part_of_name.substr(0,8) == "[combine")
{
Strfnd sf(part_of_name);
sf.next(":");
u32 w0 = stoi(sf.next("x"));
u32 h0 = stoi(sf.next(":"));
//infostream<<"combined w="<<w0<<" h="<<h0<<std::endl;
core::dimension2d<u32> dim(w0,h0);
if (baseimg == NULL) {
baseimg = driver->createImage(video::ECF_A8R8G8B8, dim);
baseimg->fill(video::SColor(0,0,0,0));
}
while (sf.atend() == false) {
u32 x = stoi(sf.next(","));
u32 y = stoi(sf.next("="));
std::string filename = sf.next(":");
infostream<<"Adding \""<<filename
<<"\" to combined ("<<x<<","<<y<<")"
<<std::endl;
video::IImage *img = m_sourcecache.getOrLoad(filename, m_device);
if (img) {
core::dimension2d<u32> dim = img->getDimension();
infostream<<"Size "<<dim.Width
<<"x"<<dim.Height<<std::endl;
core::position2d<s32> pos_base(x, y);
video::IImage *img2 =
driver->createImage(video::ECF_A8R8G8B8, dim);
img->copyTo(img2);
img->drop();
/*img2->copyToWithAlpha(baseimg, pos_base,
core::rect<s32>(v2s32(0,0), dim),
video::SColor(255,255,255,255),
NULL);*/
blit_with_alpha(img2, baseimg, v2s32(0,0), pos_base, dim);
img2->drop();
} else {
errorstream << "generateImagePart(): Failed to load image \""
<< filename << "\" for [combine" << std::endl;
}
}
}
/*
"[brighten"
*/
else if (part_of_name.substr(0,9) == "[brighten")
{
if (baseimg == NULL) {
errorstream<<"generateImagePart(): baseimg==NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
brighten(baseimg);
}
/*
"[noalpha"
Make image completely opaque.
Used for the leaves texture when in old leaves mode, so
that the transparent parts don't look completely black
when simple alpha channel is used for rendering.
*/
else if (part_of_name.substr(0,8) == "[noalpha")
{
if (baseimg == NULL){
errorstream<<"generateImagePart(): baseimg==NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
core::dimension2d<u32> dim = baseimg->getDimension();
// Set alpha to full
for (u32 y=0; y<dim.Height; y++)
for (u32 x=0; x<dim.Width; x++)
{
video::SColor c = baseimg->getPixel(x,y);
c.setAlpha(255);
baseimg->setPixel(x,y,c);
}
}
/*
"[makealpha:R,G,B"
Convert one color to transparent.
*/
else if (part_of_name.substr(0,11) == "[makealpha:")
{
if (baseimg == NULL) {
errorstream<<"generateImagePart(): baseimg == NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
Strfnd sf(part_of_name.substr(11));
u32 r1 = stoi(sf.next(","));
u32 g1 = stoi(sf.next(","));
u32 b1 = stoi(sf.next(""));
std::string filename = sf.next("");
core::dimension2d<u32> dim = baseimg->getDimension();
/*video::IImage *oldbaseimg = baseimg;
baseimg = driver->createImage(video::ECF_A8R8G8B8, dim);
oldbaseimg->copyTo(baseimg);
oldbaseimg->drop();*/
// Set alpha to full
for (u32 y=0; y<dim.Height; y++)
for (u32 x=0; x<dim.Width; x++)
{
video::SColor c = baseimg->getPixel(x,y);
u32 r = c.getRed();
u32 g = c.getGreen();
u32 b = c.getBlue();
if (!(r == r1 && g == g1 && b == b1))
continue;
c.setAlpha(0);
baseimg->setPixel(x,y,c);
}
}
/*
"[transformN"
Rotates and/or flips the image.
N can be a number (between 0 and 7) or a transform name.
Rotations are counter-clockwise.
0 I identity
1 R90 rotate by 90 degrees
2 R180 rotate by 180 degrees
3 R270 rotate by 270 degrees
4 FX flip X
5 FXR90 flip X then rotate by 90 degrees
6 FY flip Y
7 FYR90 flip Y then rotate by 90 degrees
Note: Transform names can be concatenated to produce
their product (applies the first then the second).
The resulting transform will be equivalent to one of the
eight existing ones, though (see: dihedral group).
*/
else if (part_of_name.substr(0,10) == "[transform")
{
if (baseimg == NULL) {
errorstream<<"generateImagePart(): baseimg == NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
u32 transform = parseImageTransform(part_of_name.substr(10));
core::dimension2d<u32> dim = imageTransformDimension(
transform, baseimg->getDimension());
video::IImage *image = driver->createImage(
baseimg->getColorFormat(), dim);
assert(image);
imageTransform(transform, baseimg, image);
baseimg->drop();
baseimg = image;
}
/*
[inventorycube{topimage{leftimage{rightimage
In every subimage, replace ^ with &.
Create an "inventory cube".
NOTE: This should be used only on its own.
Example (a grass block (not actually used in game):
"[inventorycube{grass.png{mud.png&grass_side.png{mud.png&grass_side.png"
*/
else if (part_of_name.substr(0,14) == "[inventorycube")
{
if (baseimg != NULL){
errorstream<<"generateImagePart(): baseimg != NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
str_replace(part_of_name, '&', '^');
Strfnd sf(part_of_name);
sf.next("{");
std::string imagename_top = sf.next("{");
std::string imagename_left = sf.next("{");
std::string imagename_right = sf.next("{");
// Generate images for the faces of the cube
video::IImage *img_top = generateImage(imagename_top);
video::IImage *img_left = generateImage(imagename_left);
video::IImage *img_right = generateImage(imagename_right);
if (img_top == NULL || img_left == NULL || img_right == NULL) {
errorstream << "generateImagePart(): Failed to create textures"
<< " for inventorycube \"" << part_of_name << "\""
<< std::endl;
baseimg = generateImage(imagename_top);
return true;
}
#ifdef __ANDROID__
assert(img_top->getDimension().Height == npot2(img_top->getDimension().Height));
assert(img_top->getDimension().Width == npot2(img_top->getDimension().Width));
assert(img_left->getDimension().Height == npot2(img_left->getDimension().Height));
assert(img_left->getDimension().Width == npot2(img_left->getDimension().Width));
assert(img_right->getDimension().Height == npot2(img_right->getDimension().Height));
assert(img_right->getDimension().Width == npot2(img_right->getDimension().Width));
#endif
// Create textures from images
video::ITexture *texture_top = driver->addTexture(
(imagename_top + "__temp__").c_str(), img_top);
video::ITexture *texture_left = driver->addTexture(
(imagename_left + "__temp__").c_str(), img_left);
video::ITexture *texture_right = driver->addTexture(
(imagename_right + "__temp__").c_str(), img_right);
assert(texture_top && texture_left && texture_right);
// Drop images
img_top->drop();
img_left->drop();
img_right->drop();
/*
Draw a cube mesh into a render target texture
*/
scene::IMesh* cube = createCubeMesh(v3f(1, 1, 1));
setMeshColor(cube, video::SColor(255, 255, 255, 255));
cube->getMeshBuffer(0)->getMaterial().setTexture(0, texture_top);
cube->getMeshBuffer(1)->getMaterial().setTexture(0, texture_top);
cube->getMeshBuffer(2)->getMaterial().setTexture(0, texture_right);
cube->getMeshBuffer(3)->getMaterial().setTexture(0, texture_right);
cube->getMeshBuffer(4)->getMaterial().setTexture(0, texture_left);
cube->getMeshBuffer(5)->getMaterial().setTexture(0, texture_left);
TextureFromMeshParams params;
params.mesh = cube;
params.dim.set(64, 64);
params.rtt_texture_name = part_of_name + "_RTT";
// We will delete the rtt texture ourselves
params.delete_texture_on_shutdown = false;
params.camera_position.set(0, 1.0, -1.5);
params.camera_position.rotateXZBy(45);
params.camera_lookat.set(0, 0, 0);
// Set orthogonal projection
params.camera_projection_matrix.buildProjectionMatrixOrthoLH(
1.65, 1.65, 0, 100);
params.ambient_light.set(1.0, 0.2, 0.2, 0.2);
params.light_position.set(10, 100, -50);
params.light_color.set(1.0, 0.5, 0.5, 0.5);
params.light_radius = 1000;
video::ITexture *rtt = generateTextureFromMesh(params);
// Drop mesh
cube->drop();
// Free textures
driver->removeTexture(texture_top);
driver->removeTexture(texture_left);
driver->removeTexture(texture_right);
if (rtt == NULL) {
baseimg = generateImage(imagename_top);
return true;
}
// Create image of render target
video::IImage *image = driver->createImage(rtt, v2s32(0, 0), params.dim);
assert(image);
// Cleanup texture
driver->removeTexture(rtt);
baseimg = driver->createImage(video::ECF_A8R8G8B8, params.dim);
if (image) {
image->copyTo(baseimg);
image->drop();
}
}
/*
[lowpart:percent:filename
Adds the lower part of a texture
*/
else if (part_of_name.substr(0,9) == "[lowpart:")
{
Strfnd sf(part_of_name);
sf.next(":");
u32 percent = stoi(sf.next(":"));
std::string filename = sf.next(":");
//infostream<<"power part "<<percent<<"%% of "<<filename<<std::endl;
if (baseimg == NULL)
baseimg = driver->createImage(video::ECF_A8R8G8B8, v2u32(16,16));
video::IImage *img = m_sourcecache.getOrLoad(filename, m_device);
if (img)
{
core::dimension2d<u32> dim = img->getDimension();
core::position2d<s32> pos_base(0, 0);
video::IImage *img2 =
driver->createImage(video::ECF_A8R8G8B8, dim);
img->copyTo(img2);
img->drop();
core::position2d<s32> clippos(0, 0);
clippos.Y = dim.Height * (100-percent) / 100;
core::dimension2d<u32> clipdim = dim;
clipdim.Height = clipdim.Height * percent / 100 + 1;
core::rect<s32> cliprect(clippos, clipdim);
img2->copyToWithAlpha(baseimg, pos_base,
core::rect<s32>(v2s32(0,0), dim),
video::SColor(255,255,255,255),
&cliprect);
img2->drop();
}
}
/*
[verticalframe:N:I
Crops a frame of a vertical animation.
N = frame count, I = frame index
*/
else if (part_of_name.substr(0,15) == "[verticalframe:")
{
Strfnd sf(part_of_name);
sf.next(":");
u32 frame_count = stoi(sf.next(":"));
u32 frame_index = stoi(sf.next(":"));
if (baseimg == NULL){
errorstream<<"generateImagePart(): baseimg != NULL "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
v2u32 frame_size = baseimg->getDimension();
frame_size.Y /= frame_count;
video::IImage *img = driver->createImage(video::ECF_A8R8G8B8,
frame_size);
if (!img){
errorstream<<"generateImagePart(): Could not create image "
<<"for part_of_name=\""<<part_of_name
<<"\", cancelling."<<std::endl;
return false;
}
// Fill target image with transparency
img->fill(video::SColor(0,0,0,0));
core::dimension2d<u32> dim = frame_size;
core::position2d<s32> pos_dst(0, 0);
core::position2d<s32> pos_src(0, frame_index * frame_size.Y);
baseimg->copyToWithAlpha(img, pos_dst,
core::rect<s32>(pos_src, dim),
video::SColor(255,255,255,255),
NULL);
// Replace baseimg
baseimg->drop();
baseimg = img;
}
/*
[mask:filename
Applies a mask to an image
*/
else if (part_of_name.substr(0,6) == "[mask:")
{
if (baseimg == NULL) {
errorstream << "generateImage(): baseimg == NULL "
<< "for part_of_name=\"" << part_of_name
<< "\", cancelling." << std::endl;
return false;
}
Strfnd sf(part_of_name);
sf.next(":");
std::string filename = sf.next(":");
video::IImage *img = m_sourcecache.getOrLoad(filename, m_device);
if (img) {
apply_mask(img, baseimg, v2s32(0, 0), v2s32(0, 0),
img->getDimension());
} else {
errorstream << "generateImage(): Failed to load \""
<< filename << "\".";
}
}
/*
[colorize:color
Overlays image with given color
color = color as ColorString
*/
else if (part_of_name.substr(0,10) == "[colorize:") {
Strfnd sf(part_of_name);
sf.next(":");
std::string color_str = sf.next(":");
std::string ratio_str = sf.next(":");
if (baseimg == NULL) {
errorstream << "generateImagePart(): baseimg != NULL "
<< "for part_of_name=\"" << part_of_name
<< "\", cancelling." << std::endl;
return false;
}
video::SColor color;
int ratio = -1;
if (!parseColorString(color_str, color, false))
return false;
if (is_number(ratio_str))
ratio = mystoi(ratio_str, 0, 255);
core::dimension2d<u32> dim = baseimg->getDimension();
video::IImage *img = driver->createImage(video::ECF_A8R8G8B8, dim);
if (!img) {
errorstream << "generateImagePart(): Could not create image "
<< "for part_of_name=\"" << part_of_name
<< "\", cancelling." << std::endl;
return false;
}
img->fill(video::SColor(color));
// Overlay the colored image
blit_with_interpolate_overlay(img, baseimg, v2s32(0,0), v2s32(0,0), dim, ratio);
img->drop();
}
else
{
errorstream << "generateImagePart(): Invalid "
" modification: \"" << part_of_name << "\"" << std::endl;
}
}
return true;
}
/*
Draw an image on top of an another one, using the alpha channel of the
source image
This exists because IImage::copyToWithAlpha() doesn't seem to always
work.
*/
static void blit_with_alpha(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size)
{
for (u32 y0=0; y0<size.Y; y0++)
for (u32 x0=0; x0<size.X; x0++)
{
s32 src_x = src_pos.X + x0;
s32 src_y = src_pos.Y + y0;
s32 dst_x = dst_pos.X + x0;
s32 dst_y = dst_pos.Y + y0;
video::SColor src_c = src->getPixel(src_x, src_y);
video::SColor dst_c = dst->getPixel(dst_x, dst_y);
dst_c = src_c.getInterpolated(dst_c, (float)src_c.getAlpha()/255.0f);
dst->setPixel(dst_x, dst_y, dst_c);
}
}
/*
Draw an image on top of an another one, using the alpha channel of the
source image; only modify fully opaque pixels in destinaion
*/
static void blit_with_alpha_overlay(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size)
{
for (u32 y0=0; y0<size.Y; y0++)
for (u32 x0=0; x0<size.X; x0++)
{
s32 src_x = src_pos.X + x0;
s32 src_y = src_pos.Y + y0;
s32 dst_x = dst_pos.X + x0;
s32 dst_y = dst_pos.Y + y0;
video::SColor src_c = src->getPixel(src_x, src_y);
video::SColor dst_c = dst->getPixel(dst_x, dst_y);
if (dst_c.getAlpha() == 255 && src_c.getAlpha() != 0)
{
dst_c = src_c.getInterpolated(dst_c, (float)src_c.getAlpha()/255.0f);
dst->setPixel(dst_x, dst_y, dst_c);
}
}
}
/*
Draw an image on top of an another one, using the specified ratio
modify all partially-opaque pixels in the destination.
*/
static void blit_with_interpolate_overlay(video::IImage *src, video::IImage *dst,
v2s32 src_pos, v2s32 dst_pos, v2u32 size, int ratio)
{
for (u32 y0 = 0; y0 < size.Y; y0++)
for (u32 x0 = 0; x0 < size.X; x0++)
{
s32 src_x = src_pos.X + x0;
s32 src_y = src_pos.Y + y0;
s32 dst_x = dst_pos.X + x0;
s32 dst_y = dst_pos.Y + y0;
video::SColor src_c = src->getPixel(src_x, src_y);
video::SColor dst_c = dst->getPixel(dst_x, dst_y);
if (dst_c.getAlpha() > 0 && src_c.getAlpha() != 0)
{
if (ratio == -1)
dst_c = src_c.getInterpolated(dst_c, (float)src_c.getAlpha()/255.0f);
else
dst_c = src_c.getInterpolated(dst_c, (float)ratio/255.0f);
dst->setPixel(dst_x, dst_y, dst_c);
}
}
}
/*
Apply mask to destination
*/
static void apply_mask(video::IImage *mask, video::IImage *dst,
v2s32 mask_pos, v2s32 dst_pos, v2u32 size)
{
for (u32 y0 = 0; y0 < size.Y; y0++) {
for (u32 x0 = 0; x0 < size.X; x0++) {
s32 mask_x = x0 + mask_pos.X;
s32 mask_y = y0 + mask_pos.Y;
s32 dst_x = x0 + dst_pos.X;
s32 dst_y = y0 + dst_pos.Y;
video::SColor mask_c = mask->getPixel(mask_x, mask_y);
video::SColor dst_c = dst->getPixel(dst_x, dst_y);
dst_c.color &= mask_c.color;
dst->setPixel(dst_x, dst_y, dst_c);
}
}
}
static void draw_crack(video::IImage *crack, video::IImage *dst,
bool use_overlay, s32 frame_count, s32 progression,
video::IVideoDriver *driver)
{
// Dimension of destination image
core::dimension2d<u32> dim_dst = dst->getDimension();
// Dimension of original image
core::dimension2d<u32> dim_crack = crack->getDimension();
// Count of crack stages
s32 crack_count = dim_crack.Height / dim_crack.Width;
// Limit frame_count
if (frame_count > (s32) dim_dst.Height)
frame_count = dim_dst.Height;
if (frame_count < 1)
frame_count = 1;
// Limit progression
if (progression > crack_count-1)
progression = crack_count-1;
// Dimension of a single crack stage
core::dimension2d<u32> dim_crack_cropped(
dim_crack.Width,
dim_crack.Width
);
// Dimension of the scaled crack stage,
// which is the same as the dimension of a single destination frame
core::dimension2d<u32> dim_crack_scaled(
dim_dst.Width,
dim_dst.Height / frame_count
);
// Create cropped and scaled crack images
video::IImage *crack_cropped = driver->createImage(
video::ECF_A8R8G8B8, dim_crack_cropped);
video::IImage *crack_scaled = driver->createImage(
video::ECF_A8R8G8B8, dim_crack_scaled);
if (crack_cropped && crack_scaled)
{
// Crop crack image
v2s32 pos_crack(0, progression*dim_crack.Width);
crack->copyTo(crack_cropped,
v2s32(0,0),
core::rect<s32>(pos_crack, dim_crack_cropped));
// Scale crack image by copying
crack_cropped->copyToScaling(crack_scaled);
// Copy or overlay crack image onto each frame
for (s32 i = 0; i < frame_count; ++i)
{
v2s32 dst_pos(0, dim_crack_scaled.Height * i);
if (use_overlay)
{
blit_with_alpha_overlay(crack_scaled, dst,
v2s32(0,0), dst_pos,
dim_crack_scaled);
}
else
{
blit_with_alpha(crack_scaled, dst,
v2s32(0,0), dst_pos,
dim_crack_scaled);
}
}
}
if (crack_scaled)
crack_scaled->drop();
if (crack_cropped)
crack_cropped->drop();
}
void brighten(video::IImage *image)
{
if (image == NULL)
return;
core::dimension2d<u32> dim = image->getDimension();
for (u32 y=0; y<dim.Height; y++)
for (u32 x=0; x<dim.Width; x++)
{
video::SColor c = image->getPixel(x,y);
c.setRed(0.5 * 255 + 0.5 * (float)c.getRed());
c.setGreen(0.5 * 255 + 0.5 * (float)c.getGreen());
c.setBlue(0.5 * 255 + 0.5 * (float)c.getBlue());
image->setPixel(x,y,c);
}
}
u32 parseImageTransform(const std::string& s)
{
int total_transform = 0;
std::string transform_names[8];
transform_names[0] = "i";
transform_names[1] = "r90";
transform_names[2] = "r180";
transform_names[3] = "r270";
transform_names[4] = "fx";
transform_names[6] = "fy";
std::size_t pos = 0;
while(pos < s.size())
{
int transform = -1;
for (int i = 0; i <= 7; ++i)
{
const std::string &name_i = transform_names[i];
if (s[pos] == ('0' + i))
{
transform = i;
pos++;
break;
}
else if (!(name_i.empty()) &&
lowercase(s.substr(pos, name_i.size())) == name_i)
{
transform = i;
pos += name_i.size();
break;
}
}
if (transform < 0)
break;
// Multiply total_transform and transform in the group D4
int new_total = 0;
if (transform < 4)
new_total = (transform + total_transform) % 4;
else
new_total = (transform - total_transform + 8) % 4;
if ((transform >= 4) ^ (total_transform >= 4))
new_total += 4;
total_transform = new_total;
}
return total_transform;
}
core::dimension2d<u32> imageTransformDimension(u32 transform, core::dimension2d<u32> dim)
{
if (transform % 2 == 0)
return dim;
else
return core::dimension2d<u32>(dim.Height, dim.Width);
}
void imageTransform(u32 transform, video::IImage *src, video::IImage *dst)
{
if (src == NULL || dst == NULL)
return;
core::dimension2d<u32> srcdim = src->getDimension();
core::dimension2d<u32> dstdim = dst->getDimension();
assert(dstdim == imageTransformDimension(transform, srcdim));
assert(transform <= 7);
/*
Compute the transformation from source coordinates (sx,sy)
to destination coordinates (dx,dy).
*/
int sxn = 0;
int syn = 2;
if (transform == 0) // identity
sxn = 0, syn = 2; // sx = dx, sy = dy
else if (transform == 1) // rotate by 90 degrees ccw
sxn = 3, syn = 0; // sx = (H-1) - dy, sy = dx
else if (transform == 2) // rotate by 180 degrees
sxn = 1, syn = 3; // sx = (W-1) - dx, sy = (H-1) - dy
else if (transform == 3) // rotate by 270 degrees ccw
sxn = 2, syn = 1; // sx = dy, sy = (W-1) - dx
else if (transform == 4) // flip x
sxn = 1, syn = 2; // sx = (W-1) - dx, sy = dy
else if (transform == 5) // flip x then rotate by 90 degrees ccw
sxn = 2, syn = 0; // sx = dy, sy = dx
else if (transform == 6) // flip y
sxn = 0, syn = 3; // sx = dx, sy = (H-1) - dy
else if (transform == 7) // flip y then rotate by 90 degrees ccw
sxn = 3, syn = 1; // sx = (H-1) - dy, sy = (W-1) - dx
for (u32 dy=0; dy<dstdim.Height; dy++)
for (u32 dx=0; dx<dstdim.Width; dx++)
{
u32 entries[4] = {dx, dstdim.Width-1-dx, dy, dstdim.Height-1-dy};
u32 sx = entries[sxn];
u32 sy = entries[syn];
video::SColor c = src->getPixel(sx,sy);
dst->setPixel(dx,dy,c);
}
}
video::ITexture* TextureSource::getNormalTexture(const std::string &name)
{
u32 id;
if (isKnownSourceImage("override_normal.png"))
return getTexture("override_normal.png", &id);
std::string fname_base = name;
std::string normal_ext = "_normal.png";
size_t pos = fname_base.find(".");
std::string fname_normal = fname_base.substr(0, pos) + normal_ext;
if (isKnownSourceImage(fname_normal)) {
// look for image extension and replace it
size_t i = 0;
while ((i = fname_base.find(".", i)) != std::string::npos) {
fname_base.replace(i, 4, normal_ext);
i += normal_ext.length();
}
return getTexture(fname_base, &id);
}
return NULL;
}