Files
EmbeddedAVR/main.c
2025-05-05 10:55:01 +02:00

550 lines
17 KiB
C

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdlib.h>
#include "i2c.h"
#include <stdbool.h>
#include <avr/iom32.h>
// Register Map Definitions
#define REGISTER_SERVOA_POSITIONH 0
#define REGISTER_SERVOA_POSITIONL 1
#define REGISTER_SERVOA_KPA 2
#define REGISTER_SERVOA_KPB 3
#define REGISTER_SERVOA_KPC 4
#define REGISTER_SERVOA_KPD 5
#define REGISTER_SERVOA_KIA 6
#define REGISTER_SERVOA_KIB 7
#define REGISTER_SERVOA_KIC 8
#define REGISTER_SERVOA_KID 9
#define REGISTER_SERVOA_KDA 10
#define REGISTER_SERVOA_KDB 11
#define REGISTER_SERVOA_KDC 12
#define REGISTER_SERVOA_KDD 13
#define REGISTER_SERVOB_POSITIONH 14
#define REGISTER_SERVOB_POSITIONL 15
#define REGISTER_SERVOB_KPA 16
#define REGISTER_SERVOB_KPB 17
#define REGISTER_SERVOB_KPC 18
#define REGISTER_SERVOB_KPD 19
#define REGISTER_SERVOB_KIA 20
#define REGISTER_SERVOB_KIB 21
#define REGISTER_SERVOB_KIC 22
#define REGISTER_SERVOB_KID 23
#define REGISTER_SERVOB_KDA 24
#define REGISTER_SERVOB_KDB 25
#define REGISTER_SERVOB_KDC 26
#define REGISTER_SERVOB_KDD 27
const char version[] = "ServoMotor";
// Motor Pins
#define MOTOR_A_POT 2
#define MOTOR_A_PIN_A PD5
#define MOTOR_A_PIN_B PD7
#define MOTOR_A_PIN_A_OCR OCR1A
#define MOTOR_A_PIN_B_OCR OCR2
#define MOTOR_B_POT 3
#define MOTOR_B_PIN_A PB3
#define MOTOR_B_PIN_B PD4
#define MOTOR_B_PIN_A_OCR OCR0
#define MOTOR_B_PIN_B_OCR OCR1B
#define Slave_Address 0x69
// I2C Slave Register Map
#define REGISTER_COUNT 28
volatile uint8_t registers[REGISTER_COUNT];
// I2C State
volatile uint8_t reg_pointer = 0;
volatile bool expecting_address = true;
// Servo Motor Structure
typedef struct {
uint8_t pot_channel;
volatile uint8_t *pin_a_port;
volatile uint8_t *pin_a_ddr;
uint8_t pin_a_bit;
volatile uint8_t *pin_b_port;
volatile uint8_t *pin_b_ddr;
uint8_t pin_b_bit;
float kp, ki, kd;
int16_t target;
int16_t current;
float integral;
int16_t last_error;
int8_t pot_dir; // Direction multiplier (1 or -1)
int8_t motor_dir; // Direction multiplier (1 or -1)
volatile void *ocr_a;
volatile void *ocr_b;
bool ocr_a_16bit;
bool ocr_b_16bit;
} ServoMotor;
// Motor Configuration
ServoMotor motor_a = {
.pot_channel = MOTOR_A_POT,
.pin_a_port = &PORTD,
.pin_a_bit = MOTOR_A_PIN_A,
.pin_a_ddr = &DDRD,
.pin_b_port = &PORTD,
.pin_b_bit = MOTOR_A_PIN_B,
.pin_b_ddr = &DDRD,
.kp = 1.0f,
.ki = 0.0f,
.kd = 0.0f,
.target = 0,
.current = 0,
.integral = 0,
.last_error = 0,
.pot_dir = 1,
.motor_dir = 1,
.ocr_a = &MOTOR_A_PIN_A_OCR,
.ocr_b = &MOTOR_A_PIN_B_OCR,
.ocr_a_16bit = true,
.ocr_b_16bit = false
};
ServoMotor motor_b = {
.pot_channel = MOTOR_B_POT,
.pin_a_port = &PORTB,
.pin_a_bit = MOTOR_B_PIN_A,
.pin_a_ddr = &DDRB,
.pin_b_port = &PORTD,
.pin_b_bit = MOTOR_B_PIN_B,
.pin_b_ddr = &DDRD,
.kp = 1.0f,
.ki = 0.0f,
.kd = 0.0f,
.target = 0,
.current = 0,
.integral = 0,
.last_error = 0,
.pot_dir = 1,
.motor_dir = 1,
.ocr_a = &MOTOR_B_PIN_A_OCR,
.ocr_b = &MOTOR_B_PIN_B_OCR,
.ocr_a_16bit = false,
.ocr_b_16bit = true
};
// Function to set OCR registers (8-bit or 16-bit)
void set_ocr(volatile void *reg, bool is_16bit, uint16_t value) {
if (is_16bit) {
*((volatile uint16_t *)reg) = value;
} else {
*((volatile uint8_t *)reg) = (uint8_t)value;
}
}
// Setup Timer1 for PWM (used by both motors)
void setup_pwm_motor_a(void) {
// Setup Timer1 (shared)
DDRD |= (1 << PD5); // OC1A output
TCCR1A |= (1 << COM1A1); // Non-inverting PWM
TCCR1A |= (1 << COM1B1); // Also needed for Motor B on OC1B (PD4)
TCCR1B |= (1 << WGM13) | (1 << WGM12) | (1 << CS11); // Fast PWM, prescaler 8
TCCR1A |= (1 << WGM11); // Complete mode 14
ICR1 = 255; // Top value for PWM (8-bit resolution)
// Setup Timer2 (OC2 for PD7)
DDRD |= (1 << PD7);
TCCR2 |= (1 << WGM20) | (1 << WGM21); // Fast PWM
TCCR2 |= (1 << COM21); // Non-inverting
TCCR2 |= (1 << CS21); // Prescaler 8
}
// Setup Timer0 for PWM
void setup_pwm_motor_b(void) {
// Setup Timer0 (OC0 for PB3)
DDRB |= (1 << PB3);
TCCR0 |= (1 << WGM00) | (1 << WGM01); // Fast PWM
TCCR0 |= (1 << COM01); // Non-inverting
TCCR0 |= (1 << CS01); // Prescaler 8
// OC1B on PD4 (Timer1 already configured in setup_pwm_motor_a)
DDRD |= (1 << PD4); // Make sure it's output
}
// Initialize ADC
void adc_init(void) {
// AREF = AVcc, ADC Left Adjust Result = 0
ADMUX = (1 << REFS0);
// Enable ADC, prescaler = 128 (16MHz/128 = 125kHz)
ADCSRA = (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
}
// Read ADC value
uint16_t read_adc(uint8_t channel) {
// Select ADC channel with safety mask
ADMUX = (ADMUX & 0xF8) | (channel & 0x07);
// Start single conversion
ADCSRA |= (1 << ADSC);
// Wait for conversion to complete
while (ADCSRA & (1 << ADSC));
// Return 10-bit ADC result
return ADC;
}
// Control motor with PWM and direction
void control_motor(ServoMotor *motor, uint8_t pwm, int8_t direction) {
// Apply motor direction correction
direction *= motor->motor_dir;
// Stop motor if PWM is 0 or target is 0
if (pwm == 0 || motor->target == 0) {
// Coast mode: both LOW
*(motor->pin_a_port) &= ~(1 << motor->pin_a_bit);
*(motor->pin_b_port) &= ~(1 << motor->pin_b_bit);
set_ocr(motor->ocr_a, motor->ocr_a_16bit, 0);
set_ocr(motor->ocr_b, motor->ocr_b_16bit, 0);
return;
}
// Apply direction based on target sign
if (direction > 0) {
// Forward: PWM on A, B LOW
*(motor->pin_b_port) &= ~(1 << motor->pin_b_bit);
set_ocr(motor->ocr_a, motor->ocr_a_16bit, pwm);
set_ocr(motor->ocr_b, motor->ocr_b_16bit, 0);
} else {
// Reverse: PWM on B, A LOW
*(motor->pin_a_port) &= ~(1 << motor->pin_a_bit);
set_ocr(motor->ocr_a, motor->ocr_a_16bit, 0);
set_ocr(motor->ocr_b, motor->ocr_b_16bit, pwm);
}
}
// PID control loop for a motor
void update_motor(ServoMotor *motor) {
// Read current position from potentiometer
motor->current = motor->pot_dir * read_adc(motor->pot_channel);
// Calculate error
int16_t error = motor->target - motor->current;
// Update integral term with anti-windup
motor->integral += error;
if (motor->integral > 1000) motor->integral = 1000;
if (motor->integral < -1000) motor->integral = -1000;
// Calculate derivative term
int16_t derivative = error - motor->last_error;
motor->last_error = error;
// Calculate PID output
float output = motor->kp * error + motor->ki * motor->integral + motor->kd * derivative;
// Determine direction and PWM value
int8_t direction = (output >= 0) ? 1 : -1;
uint8_t pwm = abs((int16_t)output);
// Cap PWM at 255 (8-bit)
if (pwm > 255)
pwm = 255;
// Apply control to motor
control_motor(motor, pwm, direction);
}
// I2C Interrupt Service Routine
ISR(TWI_vect) {
uint8_t status = TWSR & 0xF8; // Read TWI status register with masking lower three bits
// Own SLA+W received & ACK returned
if (status == 0x60 || status == 0x68) {
TWCR |= (1 << TWINT); // Clear interrupt flag to receive next byte
return;
}
// Data received & ACK returned in SLA+W mode
if (status == 0x80 || status == 0x90) {
uint8_t received_byte = TWDR;
if (expecting_address) {
reg_pointer = received_byte;
expecting_address = false;
} else {
ServoMotor *currentMotor;
uint8_t offset = 0;
// Determine which motor based on register address
if (reg_pointer >= REGISTER_SERVOB_POSITIONH) {
offset = REGISTER_SERVOB_POSITIONH;
currentMotor = &motor_b;
} else {
offset = 0;
currentMotor = &motor_a;
}
uint8_t local_reg = reg_pointer - offset;
// Process register write based on local register address
switch (local_reg) {
case REGISTER_SERVOA_POSITIONH:
currentMotor->target &= 0x00FF;
currentMotor->target |= ((uint16_t)received_byte << 8);
break;
case REGISTER_SERVOA_POSITIONL:
currentMotor->target &= 0xFF00;
currentMotor->target |= received_byte;
break;
case REGISTER_SERVOA_KPA:
case REGISTER_SERVOA_KPB:
case REGISTER_SERVOA_KPC:
case REGISTER_SERVOA_KPD:
*((uint8_t *)&currentMotor->kp + (local_reg - REGISTER_SERVOA_KPA)) = received_byte;
break;
case REGISTER_SERVOA_KIA:
case REGISTER_SERVOA_KIB:
case REGISTER_SERVOA_KIC:
case REGISTER_SERVOA_KID:
*((uint8_t *)&currentMotor->ki + (local_reg - REGISTER_SERVOA_KIA)) = received_byte;
break;
case REGISTER_SERVOA_KDA:
case REGISTER_SERVOA_KDB:
case REGISTER_SERVOA_KDC:
case REGISTER_SERVOA_KDD:
*((uint8_t *)&currentMotor->kd + (local_reg - REGISTER_SERVOA_KDA)) = received_byte;
break;
default:
// Store in general register map
if (reg_pointer < REGISTER_COUNT) {
registers[reg_pointer] = received_byte;
}
break;
}
// Auto-increment register pointer
reg_pointer++;
}
TWCR |= (1 << TWINT); // Clear interrupt flag
return;
}
// STOP or REPEATED START received in slave receiver mode
if (status == 0xA0) {
expecting_address = true; // Reset for next transaction
TWCR |= (1 << TWINT); // Clear interrupt flag
return;
}
// Own SLA+R received & ACK returned
if (status == 0xA8 || status == 0xB0) {
ServoMotor *currentMotor;
uint8_t offset = 0;
uint8_t data_to_send = 0;
// Determine which motor based on register address
if (reg_pointer >= REGISTER_SERVOB_POSITIONH) {
offset = REGISTER_SERVOB_POSITIONH;
currentMotor = &motor_b;
} else {
offset = 0;
currentMotor = &motor_a;
}
uint8_t local_reg = reg_pointer - offset;
// Process register read based on local register address
switch (local_reg) {
case REGISTER_SERVOA_POSITIONH:
data_to_send = (currentMotor->current >> 8) & 0xFF;
break;
case REGISTER_SERVOA_POSITIONL:
data_to_send = currentMotor->current & 0xFF;
break;
case REGISTER_SERVOA_KPA:
case REGISTER_SERVOA_KPB:
case REGISTER_SERVOA_KPC:
case REGISTER_SERVOA_KPD:
data_to_send = *((uint8_t *)&currentMotor->kp + (local_reg - REGISTER_SERVOA_KPA));
break;
case REGISTER_SERVOA_KIA:
case REGISTER_SERVOA_KIB:
case REGISTER_SERVOA_KIC:
case REGISTER_SERVOA_KID:
data_to_send = *((uint8_t *)&currentMotor->ki + (local_reg - REGISTER_SERVOA_KIA));
break;
case REGISTER_SERVOA_KDA:
case REGISTER_SERVOA_KDB:
case REGISTER_SERVOA_KDC:
case REGISTER_SERVOA_KDD:
data_to_send = *((uint8_t *)&currentMotor->kd + (local_reg - REGISTER_SERVOA_KDA));
break;
default:
if (reg_pointer < REGISTER_COUNT) {
data_to_send = registers[reg_pointer];
} else {
data_to_send = version[reg_pointer % sizeof(version)];
}
break;
}
// Send data
TWDR = data_to_send;
// Auto-increment register pointer
reg_pointer++;
// Send ACK if not the last byte
if (reg_pointer < REGISTER_COUNT) {
TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWEA) | (1 << TWIE);
} else {
// Send NACK for last byte
TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWIE);
}
return;
}
// Data byte transmitted & ACK received
if (status == 0xB8) {
ServoMotor *currentMotor;
uint8_t offset = 0;
uint8_t data_to_send = 0;
// Determine which motor based on register address
if (reg_pointer >= REGISTER_SERVOB_POSITIONH) {
offset = REGISTER_SERVOB_POSITIONH;
currentMotor = &motor_b;
} else {
offset = 0;
currentMotor = &motor_a;
}
uint8_t local_reg = reg_pointer - offset;
// Process next register read
switch (local_reg) {
case REGISTER_SERVOA_POSITIONH:
data_to_send = (currentMotor->current >> 8) & 0xFF;
break;
case REGISTER_SERVOA_POSITIONL:
data_to_send = currentMotor->current & 0xFF;
break;
case REGISTER_SERVOA_KPA:
case REGISTER_SERVOA_KPB:
case REGISTER_SERVOA_KPC:
case REGISTER_SERVOA_KPD:
data_to_send = *((uint8_t *)&currentMotor->kp + (local_reg - REGISTER_SERVOA_KPA));
break;
case REGISTER_SERVOA_KIA:
case REGISTER_SERVOA_KIB:
case REGISTER_SERVOA_KIC:
case REGISTER_SERVOA_KID:
data_to_send = *((uint8_t *)&currentMotor->ki + (local_reg - REGISTER_SERVOA_KIA));
break;
case REGISTER_SERVOA_KDA:
case REGISTER_SERVOA_KDB:
case REGISTER_SERVOA_KDC:
case REGISTER_SERVOA_KDD:
data_to_send = *((uint8_t *)&currentMotor->kd + (local_reg - REGISTER_SERVOA_KDA));
break;
default:
if (reg_pointer < REGISTER_COUNT) {
data_to_send = registers[reg_pointer];
}
break;
}
// Send data
TWDR = data_to_send;
// Auto-increment register pointer
reg_pointer++;
// Send ACK if not the last byte
if (reg_pointer < REGISTER_COUNT) {
TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWEA) | (1 << TWIE);
} else {
// Send NACK for last byte
TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWIE);
}
return;
}
// Data byte transmitted & NACK received or last byte transmitted & ACK received
if (status == 0xC0 || status == 0xC8) {
expecting_address = true;
TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWEA) | (1 << TWIE);
return;
}
// Default: re-enable TWI interrupt
TWCR |= (1 << TWINT);
}
// Heartbeat counter for LED blinking
volatile uint16_t heartbeat_counter = 0;
// Main function
int main(void) {
// Set LED pin as output (PA7)
DDRA |= (1 << PA7);
PORTA |= (1 << PA7); // Turn on LED initially
// Initialize I2C as slave
I2C_Slave_Init(Slave_Address);
// Initialize ADC
adc_init();
// Configure motor pins as outputs
*(motor_a.pin_a_ddr) |= (1 << motor_a.pin_a_bit);
*(motor_a.pin_b_ddr) |= (1 << motor_a.pin_b_bit);
*(motor_b.pin_a_ddr) |= (1 << motor_b.pin_a_bit);
*(motor_b.pin_b_ddr) |= (1 << motor_b.pin_b_bit);
// Configure PWM for both motors
setup_pwm_motor_a();
setup_pwm_motor_b();
// Initialize all registers to 0
for (uint8_t i = 0; i < REGISTER_COUNT; i++) {
registers[i] = 0;
}
// Enable global interrupts
sei();
// Main loop
while (1) {
// Update motor control
update_motor(&motor_a);
update_motor(&motor_b);
// Heartbeat LED - toggle every ~0.5 seconds
heartbeat_counter++;
if (heartbeat_counter >= 500) {
PORTA ^= (1 << PA7);
heartbeat_counter = 0;
}
// Small delay for stability
_delay_us(50);
}
return 0; // Never reached
}