get mostly one directional comms working

This commit is contained in:
2025-04-27 01:43:55 +02:00
parent af4d8654de
commit 3457b76938
12 changed files with 402 additions and 97 deletions

View File

@@ -1,6 +1,6 @@
{ {
"C_Cpp.intelliSenseEngine": "default", "C_Cpp.intelliSenseEngine": "default",
"idf.espIdfPath": "/home/bruno/esp/v5.4.1/esp-idf", "idf.espIdfPath": "/home/bruno/esp/master/esp-idf",
"idf.pythonInstallPath": "/usr/bin/python", "idf.pythonInstallPath": "/usr/bin/python",
"idf.openOcdConfigs": [ "idf.openOcdConfigs": [
"board/esp32s3-builtin.cfg" "board/esp32s3-builtin.cfg"

View File

@@ -2,7 +2,7 @@ dependencies:
idf: idf:
source: source:
type: idf type: idf
version: 5.4.1 version: 5.5.0
k0i05/esp_bme680: k0i05/esp_bme680:
component_hash: 2df0cb14d4425565a8745d4a96bfaa8ff7e90bbec3e208a073821406dded23c8 component_hash: 2df0cb14d4425565a8745d4a96bfaa8ff7e90bbec3e208a073821406dded23c8
dependencies: dependencies:

View File

@@ -2,8 +2,20 @@
#define PACKETS_STRUCTS #define PACKETS_STRUCTS
#include "stdint.h" #include "stdint.h"
#define UplinkSync "PlechHore"
#define DownlinkSync "PlechDole"
#define UplinkPacketType_SystemControl 0
#define UplinkPacketType_Ping 1
#define UplinkPacketType_ACK 255
#define DownlinkPacketType_Telemetry 0
#define DownlinkPacketType_Ping 1
#define DownlinkPacketType_ACK 255
typedef struct __attribute__((packed)) typedef struct __attribute__((packed))
{ {
char syncPhrase[10];
uint32_t packetIndex; uint32_t packetIndex;
uint8_t packetType; uint8_t packetType;
uint32_t missionTimer; uint32_t missionTimer;
@@ -44,6 +56,15 @@ typedef struct __attribute__((packed))
uint8_t gas_range; uint8_t gas_range;
uint8_t gas_index; uint8_t gas_index;
float air_temperature; /*!< air temperature in degrees celsius */
float relative_humidity; /*!< relative humidity in percent */
float barometric_pressure; /*!< barometric pressure in hecto-pascal */
float gas_resistance; /*!< gas resistance in ohms */
uint16_t iaq_score; /*!< air quality index (0..500) */
float temperature_score;
float humidity_score;
float gas_score;
// GPS DATA // GPS DATA
uint32_t time_seconds; // Seconds since start of day uint32_t time_seconds; // Seconds since start of day
int32_t latitude_centi_degrees; // Latitude * 10,000 int32_t latitude_centi_degrees; // Latitude * 10,000
@@ -73,6 +94,7 @@ typedef struct __attribute__((packed))
typedef struct __attribute__((packed)) typedef struct __attribute__((packed))
{ {
char syncPhrase[10];
uint32_t packetIndex; uint32_t packetIndex;
uint8_t packetType; uint8_t packetType;
} UplinkPacket; } UplinkPacket;
@@ -85,4 +107,15 @@ typedef struct __attribute__((packed))
uint16_t servoB; uint16_t servoB;
} SystemControlPacket; } SystemControlPacket;
typedef struct __attribute__((packed))
{
uint8_t PingData[20];
} PingPacket;
typedef struct __attribute__((packed))
{
uint32_t packetIndex;
uint32_t crc32Checksum;
} ACKPacket;
#endif #endif

View File

@@ -5,100 +5,280 @@
#include "esp_log.h" #include "esp_log.h"
#include "string.h" #include "string.h"
#include "esp_timer.h" #include "esp_timer.h"
#include "esp_rom_crc.h"
const char *msg = "Testing 123 test why is this not on air";
#define TAG "LoRa" #define TAG "LoRa"
uint32_t packetIndex = 0; #define ACK_TIMEOUT_MS 500 // Wait 300ms for ACK
#define MAX_RETRIES 3
uint32_t packetIndexTX = 0;
uint32_t packetIndexRX = 0;
TelemetryPacket telemetryPacket; TelemetryPacket telemetryPacket;
uint8_t packetReadiness = 0; uint8_t packetReadiness = 0;
void lora_comms_task(void *pvParameters) volatile bool ackReceived = false;
uint32_t lastAckIndex = 0;
SemaphoreHandle_t loraRadioMutex;
void setup_lora(void)
{ {
const int64_t interval_us = 100000; // 100 ms
int64_t start_time, end_time, elapsed;
LoRaInit(); LoRaInit();
int8_t txPowerInDbm = 20; int8_t txPowerInDbm = 20;
uint32_t frequencyInHz = 869525000;
float tcxoVoltage = 2.2;
bool useRegulatorLDO = true;
uint32_t frequencyInHz = 0;
frequencyInHz = 869525000;
ESP_LOGW(TAG, "Enable TCXO"); ESP_LOGW(TAG, "Enable TCXO");
float tcxoVoltage = 2.2; // use TCXO LoRaDebugPrint(false);
bool useRegulatorLDO = true; // use DCDC + LDO
// LoRaDebugPrint(true);
if (LoRaBegin(frequencyInHz, txPowerInDbm, tcxoVoltage, useRegulatorLDO) != 0) if (LoRaBegin(frequencyInHz, txPowerInDbm, tcxoVoltage, useRegulatorLDO) != 0)
{ {
ESP_LOGE(TAG, "Does not recognize the module"); ESP_LOGE(TAG, "LoRa module not recognized. Halting.");
while (1) while (1)
{ {
vTaskDelay(1); vTaskDelay(1);
} }
} }
uint8_t spreadingFactor = 7; uint8_t spreadingFactor = 6;
uint8_t bandwidth = SX126X_LORA_BW_250_0; uint8_t bandwidth = SX126X_LORA_BW_250_0;
uint8_t codingRate = SX126X_LORA_CR_4_8; uint8_t codingRate = SX126X_LORA_CR_4_8;
uint16_t preambleLength = 8; uint16_t preambleLength = 8;
uint8_t payloadLen = 0;
bool crcOn = true; bool crcOn = true;
bool invertIrq = false; bool invertIrq = false;
LoRaConfig(spreadingFactor, bandwidth, codingRate, preambleLength, payloadLen, crcOn, invertIrq);
uint8_t bufIn[256]; // Maximum Payload size of SX1261/62/68 is 255 LoRaConfig(spreadingFactor, bandwidth, codingRate, preambleLength, 0, crcOn, invertIrq);
uint8_t bufOut[256]; // Maximum Payload size of SX1261/62/68 is 255 }
static void prepare_downbound_packet(DownBoundPacket *packet, uint8_t type, uint64_t missionTimer)
{
memset(packet, 0, sizeof(DownBoundPacket));
packet->missionTimer = missionTimer;
packet->packetIndex = packetIndexTX++;
ESP_LOGI(TAG_RADIO, "Sending downbound packet with index %ld", packetIndexTX - 1);
packet->packetType = type;
strcpy(packet->syncPhrase, "PlechDole");
}
static void send_packet_with_retries(uint8_t *data, uint16_t size)
{
for (int retry = 0; retry <= MAX_RETRIES; retry++)
{
if (xSemaphoreTake(loraRadioMutex, portMAX_DELAY) == pdTRUE)
{
if (!LoRaSend(data, size, SX126x_TXMODE_SYNC))
{
ESP_LOGW(TAG, "LoRaSend failed, retry %d", retry);
xSemaphoreGive(loraRadioMutex);
}
else
{
ESP_LOGI(TAG, "%d byte packet sent (attempt %d)", size, retry + 1);
xSemaphoreGive(loraRadioMutex);
// Wait for ACK
ackReceived = false;
uint64_t start_wait = esp_timer_get_time();
while ((esp_timer_get_time() - start_wait) < (ACK_TIMEOUT_MS * 1000))
{
if (ackReceived)
{
ESP_LOGI(TAG, "ACK received for packet.");
return;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
ESP_LOGW(TAG, "ACK timeout, retrying...");
}
}
}
ESP_LOGE(TAG, "Failed to send packet after %d retries", MAX_RETRIES);
}
void prepare_and_send_telemetry(uint64_t missionTimer)
{
uint8_t bufOut[256] = {0};
DownBoundPacket downboundPacket; DownBoundPacket downboundPacket;
UplinkPacket uplinkPacket; prepare_downbound_packet(&downboundPacket, DownlinkPacketType_Telemetry, missionTimer);
SystemControlPacket systemControlPacket;
while (1) uint16_t offset = 0;
{ memcpy(bufOut + offset, &downboundPacket, sizeof(downboundPacket));
start_time = esp_timer_get_time(); // µs since boot offset += sizeof(downboundPacket);
if (packetReadiness == 1) memcpy(bufOut + offset, &telemetryPacket, sizeof(telemetryPacket));
{ offset += sizeof(telemetryPacket);
uint8_t downPacketSize = 0;
memset(bufOut, 0, sizeof(bufOut));
downboundPacket.missionTimer = start_time;
downboundPacket.packetIndex = packetIndex++;
downboundPacket.packetType = 1;
memcpy(bufOut, &downboundPacket, sizeof(downboundPacket)); send_packet_with_retries(bufOut, offset);
downPacketSize += sizeof(downboundPacket);
memcpy(((uint8_t *)bufOut) + downPacketSize, &telemetryPacket, sizeof(telemetryPacket));
downPacketSize += sizeof(telemetryPacket);
ESP_LOGI(pcTaskGetName(NULL), "%d byte packet sent...", downPacketSize);
// Wait for transmission to complete
if (LoRaSend(bufOut, downPacketSize, SX126x_TXMODE_SYNC) == false)
{
ESP_LOGE(pcTaskGetName(NULL), "LoRaSend fail");
} else {
packetReadiness = 0; packetReadiness = 0;
} }
static void build_and_send_ack(uint32_t ackIndex, uint32_t crc32Checksum, uint64_t missionTimer)
{
uint8_t bufOut[256] = {0};
DownBoundPacket downboundPacket;
prepare_downbound_packet(&downboundPacket, DownlinkPacketType_ACK, missionTimer);
ACKPacket ackPacket = {
.packetIndex = ackIndex,
.crc32Checksum = crc32Checksum,
};
uint16_t offset = 0;
memcpy(bufOut + offset, &downboundPacket, sizeof(downboundPacket));
offset += sizeof(downboundPacket);
memcpy(bufOut + offset, &ackPacket, sizeof(ackPacket));
offset += sizeof(ackPacket);
if (xSemaphoreTake(loraRadioMutex, portMAX_DELAY) == pdTRUE)
{
if (!LoRaSend(bufOut, offset, SX126x_TXMODE_SYNC))
{
ESP_LOGE(TAG, "Failed to send ACK");
}
else
{
ESP_LOGI(TAG, "%d byte ACK sent", offset);
}
xSemaphoreGive(loraRadioMutex);
}
} }
void process_uplink_packet(uint8_t *data, uint8_t len, uint64_t missionTimer)
{
if (len < sizeof(UplinkPacket))
{
ESP_LOGW(TAG, "Uplink packet too small: %d bytes", len);
return;
}
UplinkPacket uplinkPacket;
memcpy(&uplinkPacket, data, sizeof(UplinkPacket));
if (strcmp(UplinkSync, uplinkPacket.syncPhrase) != 0)
{
ESP_LOGW(TAG, "Invalid sync phrase");
return;
}
ESP_LOGI(TAG, "Got uplink packet of type %d, index %d", uplinkPacket.packetType, uplinkPacket.packetIndex);
uint8_t payloadRXLen = len - sizeof(UplinkPacket);
if (uplinkPacket.packetType == UplinkPacketType_ACK)
{
ESP_LOGI(TAG, "Received ACK for packet %d", uplinkPacket.packetIndex);
ackReceived = true;
lastAckIndex = uplinkPacket.packetIndex;
return;
}
if (uplinkPacket.packetIndex == packetIndexRX + 1)
{
ESP_LOGI(TAG, "Packet arrived in correct order");
packetIndexRX = uplinkPacket.packetIndex;
uint32_t crc = esp_rom_crc32_le(0, data + sizeof(UplinkPacket), payloadRXLen);
build_and_send_ack(packetIndexRX, crc, missionTimer);
switch (uplinkPacket.packetType)
{
case UplinkPacketType_SystemControl:
if (payloadRXLen == sizeof(SystemControlPacket))
{
SystemControlPacket sysCtrl;
memcpy(&sysCtrl, data + sizeof(UplinkPacket), sizeof(SystemControlPacket));
// TODO: Process sysCtrl
}
else
{
ESP_LOGW(TAG, "SystemControlPacket size mismatch");
}
break;
case UplinkPacketType_Ping:
// TODO: handle Ping
break;
default:
ESP_LOGW(TAG, "Unknown uplink packet type %d", uplinkPacket.packetType);
break;
}
}
else if (uplinkPacket.packetIndex > packetIndexRX + 1)
{
ESP_LOGW(TAG, "Skipped %d packets", uplinkPacket.packetIndex - (packetIndexRX + 1));
packetIndexRX = uplinkPacket.packetIndex;
}
else
{
ESP_LOGW(TAG, "Duplicate packet: %d", (packetIndexRX + 1) - uplinkPacket.packetIndex);
}
}
void lora_receive_task(void *pvParameters)
{
ESP_LOGI(TAG, "lora_receive_task started");
uint8_t bufIn[256];
while (1)
{
// Wait to take the semaphore before accessing LoRa
if (xSemaphoreTake(loraRadioMutex, 0) == pdTRUE)
{
uint8_t rxLen = LoRaReceive(bufIn, sizeof(bufIn)); uint8_t rxLen = LoRaReceive(bufIn, sizeof(bufIn));
if (rxLen > 0) if (rxLen > 0)
{ {
ESP_LOGI(pcTaskGetName(NULL), "%d byte packet received:[%.*s]", rxLen, rxLen, bufIn); ESP_LOGI(TAG, "%d byte packet received", rxLen);
process_uplink_packet(bufIn, rxLen, esp_timer_get_time());
int8_t rssi, snr; int8_t rssi, snr;
GetPacketStatus(&rssi, &snr); GetPacketStatus(&rssi, &snr);
ESP_LOGI(pcTaskGetName(NULL), "rssi=%d[dBm] snr=%d[dB]", rssi, snr); ESP_LOGI(TAG, "rssi=%d[dBm], snr=%d[dB]", rssi, snr);
} }
int lost = GetPacketLost(); // Release the semaphore when done with LoRa RX
if (lost != 0) xSemaphoreGive(loraRadioMutex);
}
vTaskDelay(pdMS_TO_TICKS(10)); // Delay to prevent busy-waiting
}
}
void lora_comms_task(void *pvParameters)
{ {
ESP_LOGW(pcTaskGetName(NULL), "%d packets lost", lost);
ESP_LOGI(TAG, "lora_comms_task started");
// Initialize the semaphore for radio access (binary semaphore, 1 = available)
loraRadioMutex = xSemaphoreCreateMutex();
xSemaphoreGive(loraRadioMutex); // Set semaphore as available
const int64_t interval_us = 400000; // 400 ms
setup_lora();
xTaskCreate(
lora_receive_task,
"LoraReceiveTask",
8192,
NULL,
(tskIDLE_PRIORITY + 2),
NULL);
while (1)
{
int64_t start_time = esp_timer_get_time();
if (packetReadiness)
{
ESP_LOGI(TAG, "Preparing telemetry");
prepare_and_send_telemetry(start_time);
} }
end_time = esp_timer_get_time(); int64_t end_time = esp_timer_get_time();
elapsed = end_time - start_time; int64_t elapsed = end_time - start_time;
if (elapsed < interval_us) if (elapsed < interval_us)
{ {
@@ -106,3 +286,49 @@ void lora_comms_task(void *pvParameters)
} }
} }
} }
// void lora_comms_task(void *pvParameters)
// {
// const int64_t interval_us = 400000; // 100 ms
// int64_t start_time, end_time, elapsed;
// setup_lora();
// uint8_t bufIn[256];
// while (1)
// {
// start_time = esp_timer_get_time();
// if (packetReadiness)
// {
// ESP_LOGI(TAG, "Preparing telemetry");
// prepare_and_send_telemetry(start_time);
// }
// uint8_t rxLen = LoRaReceive(bufIn, sizeof(bufIn));
// if (rxLen > 0)
// {
// ESP_LOGI(TAG, "%d byte packet received", rxLen);
// process_uplink_packet(bufIn, rxLen, start_time);
// int8_t rssi, snr;
// GetPacketStatus(&rssi, &snr);
// ESP_LOGI(TAG, "rssi=%d[dBm], snr=%d[dB]", rssi, snr);
// }
// int lost = GetPacketLost();
// if (lost != 0)
// {
// ESP_LOGW(TAG, "%d packets lost", lost);
// }
// end_time = esp_timer_get_time();
// elapsed = end_time - start_time;
// if (elapsed < interval_us)
// {
// vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
// }
// }
// }

View File

@@ -12,8 +12,10 @@
#include "packets.h" #include "packets.h"
void lora_comms_task(void *pvParameters); void lora_comms_task(void *pvParameters);
void lora_receive_task(void *pvParameters);
extern TelemetryPacket telemetryPacket; extern TelemetryPacket telemetryPacket;
extern uint8_t packetReadiness; extern uint8_t packetReadiness;
extern SemaphoreHandle_t loraRadioMutex;
#endif #endif

View File

@@ -122,7 +122,6 @@ void i2c_sensors_task(void *pvParameters)
// task loop entry point // task loop entry point
for (;;) for (;;)
{ {
packetReadiness = 2;
start_time = esp_timer_get_time(); // µs since boot start_time = esp_timer_get_time(); // µs since boot
// //
// handle sensor // handle sensor
@@ -174,15 +173,15 @@ void i2c_sensors_task(void *pvParameters)
float VREFVoltage = 2.5; float VREFVoltage = 2.5;
mics_adc_data_t ADCData; // mics_adc_data_t ADCData;
memset(&ADCData, 0, sizeof(ADCData)); // memset(&ADCData, 0, sizeof(ADCData));
//mics_adc_data_t ADCData = mcp3550_read_all(VREFVoltage); mics_adc_data_t ADCData = mcp3550_read_all(VREFVoltage);
//log_mics_adc_values(&ADCData); log_mics_adc_values(&ADCData);
int32_t nh3val = mcp3550_read(MCP_CS_ADC_NH3); //int32_t nh3val = mcp3550_read(MCP_CS_ADC_NH3);
ESP_LOGI(TAG_BME, "MICS NH3: %ld -> %fV", nh3val, mcp3550_to_voltage(nh3val, VREFVoltage)); //ESP_LOGI(TAG_BME, "MICS NH3: %ld -> %fV", nh3val, mcp3550_to_voltage(nh3val, VREFVoltage));
//gpio_set_level(BLINK_GPIO, s_led_state); //gpio_set_level(BLINK_GPIO, s_led_state);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CS_ADC_UVC, s_led_state); mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CS_ADC_UVC, s_led_state);
@@ -229,6 +228,15 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.heater_stable = bmeData.raw_data.heater_stable; telemetryPacket.heater_stable = bmeData.raw_data.heater_stable;
telemetryPacket.gas_valid = bmeData.raw_data.gas_valid; telemetryPacket.gas_valid = bmeData.raw_data.gas_valid;
telemetryPacket.air_temperature = bmeData.air_temperature;
telemetryPacket.relative_humidity = bmeData.relative_humidity;
telemetryPacket.barometric_pressure = bmeData.barometric_pressure;
telemetryPacket.gas_resistance = bmeData.gas_resistance;
telemetryPacket.iaq_score = bmeData.iaq_score;
telemetryPacket.temperature_score = bmeData.temperature_score;
telemetryPacket.humidity_score = bmeData.humidity_score;
telemetryPacket.gas_score = bmeData.gas_score;
telemetryPacket.NH3 = ADCData.raw_nh3; telemetryPacket.NH3 = ADCData.raw_nh3;
telemetryPacket.CO = ADCData.raw_co; telemetryPacket.CO = ADCData.raw_co;
telemetryPacket.NO2 = ADCData.raw_no2; telemetryPacket.NO2 = ADCData.raw_no2;

View File

@@ -1,7 +1,5 @@
#include "ccs811.h" #include "ccs811.h"
#define CONFIG_FREERTOS_HZ 100
i2c_device_config_t CCS811_DEV_CFG = { i2c_device_config_t CCS811_DEV_CFG = {
.dev_addr_length = I2C_ADDR_BIT_LEN_7, .dev_addr_length = I2C_ADDR_BIT_LEN_7,
.device_address = CCS811_ADDRESS, .device_address = CCS811_ADDRESS,

View File

@@ -81,9 +81,7 @@ void ina260_printParams(uint16_t volt, uint16_t cur, uint16_t pow)
float miliVolts = volt * 1.25; float miliVolts = volt * 1.25;
float miliAmps = cur * 1.25; float miliAmps = cur * 1.25;
float power = pow * 10; float power = pow * 10;
cur *= 125; ESP_LOGI(TAG_INA, "Current: %.3f mA (raw %d)", miliAmps, cur);
ESP_LOGI(TAG_INA, "Current: %.3f mA (raw %d)", miliAmps, volt); ESP_LOGI(TAG_INA, "Voltage: %.3f mV (raw %d)", miliVolts, volt);
cur *= 125;
ESP_LOGI(TAG_INA, "Voltage: %.3f mV (raw %d)", miliVolts, cur);
ESP_LOGI(TAG_INA, "Power: %.3f mW (raw %d)", power, pow); ESP_LOGI(TAG_INA, "Power: %.3f mW (raw %d)", power, pow);
} }

View File

@@ -84,41 +84,81 @@ void mcp3550_spi_init()
// return value; // return value;
// } // }
// int32_t mcp3550_read(uint8_t cs_pin)
// {
// uint8_t rx_buf[4] = {0};
// uint32_t timeout_us = MCP3550_TIMEOUT_MS * 1000;
// int64_t start = esp_timer_get_time();
// // Start conversion
// mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 0); // CS LOW
// // Wait until MISO/SDO goes LOW = DR ready
// while (gpio_get_level(MCP3550_MISO_GPIO)) {
// if ((esp_timer_get_time() - start) > timeout_us) {
// ESP_LOGW(TAG_MICS, "Timeout waiting for MISO=0 on CS %u", cs_pin);
// mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH
// return INT32_MIN;
// }
// esp_rom_delay_us(10); // micro delay
// }
// // Data is ready, do full SPI read
// spi_transaction_t trans = {
// .length = 25, // 25 bits
// .rx_buffer = rx_buf,
// };
// esp_err_t err = spi_device_transmit(mcp3550_handle, &trans);
// mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH to start next conversion
// if (err != ESP_OK) {
// ESP_LOGE(TAG_MICS, "SPI transmit failed");
// return INT32_MIN;
// }
// // Extract 22-bit result
// uint32_t raw = ((rx_buf[0] & 0x3F) << 16) | (rx_buf[1] << 8) | rx_buf[2];
// // Sign-extend 22-bit value
// int32_t value = raw;
// if (value & (1 << 21)) value |= 0xFFC00000;
// return value;
// }
int32_t mcp3550_read(uint8_t cs_pin) int32_t mcp3550_read(uint8_t cs_pin)
{ {
uint8_t rx_buf[4] = {0}; uint32_t data = 0;
uint32_t timeout_us = MCP3550_TIMEOUT_MS * 1000;
int64_t start = esp_timer_get_time(); int64_t start = esp_timer_get_time();
uint32_t timeout_us = MCP3550_TIMEOUT_MS * 1000;
// Start conversion // CS LOW
mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 0); // CS LOW mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 0);
// Wait until MISO/SDO goes LOW = DR ready // Wait for DR (MISO LOW)
while (gpio_get_level(MCP3550_MISO_GPIO)) { while (gpio_get_level(MCP3550_MISO_GPIO)) {
if ((esp_timer_get_time() - start) > timeout_us) { if ((esp_timer_get_time() - start) > timeout_us) {
ESP_LOGW(TAG_MICS, "Timeout waiting for MISO=0 on CS %u", cs_pin); ESP_LOGW(TAG_MICS, "Timeout waiting for MISO=0 on CS %u", cs_pin);
mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH
return INT32_MIN; return INT32_MIN;
} }
esp_rom_delay_us(10); // micro delay vTaskDelay(pdMS_TO_TICKS(10)); // Wait 1 tick (e.g., 1ms)
} }
// Data is ready, do full SPI read // Clock out 25 bits
spi_transaction_t trans = { for (int i = 0; i < 25; i++) {
.length = 25, // 25 bits gpio_set_level(MCP3550_SCK_GPIO, 1);
.rx_buffer = rx_buf, esp_rom_delay_us(5); // small delay to simulate clock high
}; data = (data << 1) | gpio_get_level(MCP3550_MISO_GPIO);
esp_err_t err = spi_device_transmit(mcp3550_handle, &trans); gpio_set_level(MCP3550_SCK_GPIO, 0);
esp_rom_delay_us(5); // small delay to simulate clock low
mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH to start next conversion
if (err != ESP_OK) {
ESP_LOGE(TAG_MICS, "SPI transmit failed");
return INT32_MIN;
} }
// Extract 22-bit result mcp23018_set_pin(MCP23018_DEV_HANDLE, cs_pin, 1); // CS HIGH
uint32_t raw = ((rx_buf[0] & 0x3F) << 16) | (rx_buf[1] << 8) | rx_buf[2];
// Extract 22-bit value (bits [23:2])
uint32_t raw = (data >> 2) & 0x3FFFFF;
// Sign-extend 22-bit value // Sign-extend 22-bit value
int32_t value = raw; int32_t value = raw;

View File

@@ -7,8 +7,6 @@
#include "esp_log.h" #include "esp_log.h"
#include "buscfg.h" #include "buscfg.h"
#define CONFIG_FREERTOS_HZ 100
#define MCP3550_SPS 3.75f #define MCP3550_SPS 3.75f
#define MCP3550_CONVERSION_MS ((int)(1000.0f / MCP3550_SPS)) // ~267ms #define MCP3550_CONVERSION_MS ((int)(1000.0f / MCP3550_SPS)) // ~267ms

View File

@@ -262,6 +262,8 @@ void LoRaConfig(uint8_t spreadingFactor, uint8_t bandwidth, uint8_t codingRate,
SX126X_IRQ_NONE //interrupts on DIO3 SX126X_IRQ_NONE //interrupts on DIO3
); );
ESP_LOGI(TAG, "Almost done setting LoRa");
// Receive state no receive timeoout // Receive state no receive timeoout
SetRx(0xFFFFFF); SetRx(0xFFFFFF);
} }

View File

@@ -30,11 +30,11 @@
#define TAG "cantest" #define TAG "cantest"
#define CONFIG_FREERTOS_HZ 100
void app_main(void) void app_main(void)
{ {
ESP_LOGI("BOOT", "BRN Systems incorporated CanSat flight firmware build at %s %s", __DATE__, __TIME__);
/* instantiate i2c master bus 0 */ /* instantiate i2c master bus 0 */
ESP_ERROR_CHECK(i2c_new_master_bus(&i2c0_bus_cfg, &i2c0_bus_hdl)); ESP_ERROR_CHECK(i2c_new_master_bus(&i2c0_bus_cfg, &i2c0_bus_hdl));