This commit is contained in:
2025-04-28 00:07:43 +02:00
parent 0c71409c30
commit 8b9e72ef71
9 changed files with 266 additions and 212 deletions

View File

@@ -6,12 +6,18 @@
#define BLINK_GPIO 2
//uint8_t powerMode = LOW_POWER_MODE;
uint8_t powerMode = HIGH_POWER_MODE;
static uint8_t s_led_state = 0;
uint8_t telemetryIndex = 1;
uint8_t foundDevices[128];
uint8_t prevDevices[128];
const uint8_t expectedAdressesCount = 5;
const uint8_t expectedAdresses[] = {MCP23018_ADDRESS, BME680_ADDRESS, CCS811_ADDRESS, MPU9250_ADDRESS, INA260_ADDRESS};
uint8_t foundDevices[5];
uint8_t prevDevices[5];
static void configure_led(void)
{
@@ -19,93 +25,131 @@ static void configure_led(void)
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
}
// void update_devices() {
// memcpy(prevDevices, foundDevices, sizeof(prevDevices));
// memset(foundDevices, 0, sizeof(foundDevices));
// for (uint8_t i = 0; i < 128; i++)
// {
// fflush(stdout);
// esp_err_t ret = i2c_master_probe(i2c0_bus_hdl, i, 20);
// if (ret == ESP_OK)
// {
// foundDevices[i] = 1;
// printf("Found device at 0x%02X\n", i);
// }
// }
// }
void update_devices()
{
memcpy(prevDevices, foundDevices, sizeof(prevDevices));
for (uint8_t i = 0; i < expectedAdressesCount; i++)
{
fflush(stdout);
// void init_connected() {
// for (uint8_t i = 0; i < 128; i++) {
// if (foundDevices[i] != prevDevices[i]) {
// if (foundDevices[i]) {
// switch (i)
// {
// case MCP23018_ADDRESS:
// /* code */
// if (mcp23018_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// break;
esp_err_t ret = i2c_master_probe(i2c0_bus_hdl, expectedAdresses[i], 20);
// case INA260_ADDRESS:
// if (ina260_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// /* code */
// break;
if (ret == ESP_OK)
{
if (foundDevices[i] == 0)
{
foundDevices[i] = 1;
}
// printf("Found device at 0x%02X\n", i);
}
else
{
foundDevices[i] = 0;
if (i == 1 && powerMode != HIGH_POWER_MODE)
{
continue;
}
printf("Not found device at 0x%02X\n", expectedAdresses[i]);
}
}
}
// case CCS811_ADDRESS:
// if (ccs811_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// /* code */
// break;
void setPowerMode(uint8_t powerModeIn)
{
powerMode = powerModeIn;
if (foundDevices[0] == 2)
{
if (powerMode == HIGH_POWER_MODE) {
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_WAKE, 0);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_POWER, 1);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_MICS_POWER, 1);
} else {
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_WAKE, 1);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_POWER, 0);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_MICS_POWER, 0);
}
}
}
// case MPU9250_ADDRESS:
// if (mpu9250_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// /* code */
// break;
void init_connected()
{
// case BME680_ADDRESS:
// if (bme680b_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// /* code */
// break;
// default:
// break;
// }
// }
// }
// }
// }
for (uint8_t i = 0; i < expectedAdressesCount; i++)
{
if (foundDevices[i] != prevDevices[i])
{
if (foundDevices[i])
{
esp_err_t ret = ESP_FAIL;
bool foundUsed = true;
switch (i)
{
case MCP23018_ADDRESS:
/* code */
ret = mcp23018_init();
setPowerMode(powerMode);
mcp3550_spi_init();
break;
case INA260_ADDRESS:
ret = ina260_init();
/* code */
break;
case CCS811_ADDRESS:
ret = ccs811_init();
/* code */
break;
case MPU9250_ADDRESS:
ret = mpu9250_init();
/* code */
break;
case BME680_ADDRESS:
ret = bme680b_init();
/* code */
break;
default:
foundUsed = false;
break;
}
if (foundUsed)
{
if (ret == ESP_OK)
{
foundDevices[i] = 2;
}
else
{
printf("Device init error at 0x%02X - %s\n", expectedAdresses[i], esp_err_to_name(ret));
}
}
}
}
}
}
void i2c_sensors_task(void *pvParameters)
{
memset(foundDevices, 0, sizeof(foundDevices));
memset(prevDevices, 0, sizeof(prevDevices));
bme680b_init();
mpu9250_init();
ccs811_init();
ina260_init();
// bme680b_init();
// mpu9250_init();
// ccs811_init();
// ina260_init();
// update_devices();
// init_connected();
update_devices();
init_connected();
// initialize the xLastWakeTime variable with the current time.
const int64_t interval_us = 100000; // 100 ms
const int64_t interval_us = 50000; // 50 ms
int64_t start_time, end_time, elapsed;
//
// initialize i2c device configuration
mcp3550_spi_init();
configure_led();
int16_t accel[3], gyro[3], temp, magnet[3];
@@ -121,82 +165,96 @@ void i2c_sensors_task(void *pvParameters)
uint16_t power;
bme680_data_t bmeData;
mics_adc_data_t ADCData;
// task loop entry point
for (;;)
{
start_time = esp_timer_get_time(); // µs since boot
uint8_t presentDevices = 0;
update_devices();
init_connected();
//
// handle sensor
if (BME680_DEV_HANDLE)
if (foundDevices[BME680_ADDRESS] == 2)
{
esp_err_t result = bme680_get_data(BME680_DEV_HANDLE, &bmeData);
if (result != ESP_OK)
presentDevices |= BME680_PRESENT_BIT;
if (BME680_DEV_HANDLE)
{
ESP_LOGE(TAG_BME, "bme680 device read failed (%s)", esp_err_to_name(result));
esp_err_t result = bme680_get_data(BME680_DEV_HANDLE, &bmeData);
if (result != ESP_OK)
{
ESP_LOGE(TAG_BME, "bme680 device read failed (%s)", esp_err_to_name(result));
}
else
{
bmeData.barometric_pressure = bmeData.barometric_pressure / 100;
ESP_LOGI(TAG_BME, "dewpoint temperature:%.2f °C", bmeData.dewpoint_temperature);
ESP_LOGI(TAG_BME, "air temperature: %.2f °C", bmeData.air_temperature);
ESP_LOGI(TAG_BME, "relative humidity: %.2f %%", bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "barometric pressure: %.2f hPa", bmeData.barometric_pressure);
ccs811_set_env_data(bmeData.air_temperature, bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "gas resistance: %.2f kOhms", bmeData.gas_resistance / 1000);
ESP_LOGI(TAG_BME, "iaq score: %u (%s)", bmeData.iaq_score, bme680_air_quality_to_string(bmeData.iaq_score));
}
}
else
{
bmeData.barometric_pressure = bmeData.barometric_pressure / 100;
ESP_LOGI(TAG_BME, "dewpoint temperature:%.2f °C", bmeData.dewpoint_temperature);
ESP_LOGI(TAG_BME, "air temperature: %.2f °C", bmeData.air_temperature);
ESP_LOGI(TAG_BME, "relative humidity: %.2f %%", bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "barometric pressure: %.2f hPa", bmeData.barometric_pressure);
ccs811_set_env_data(bmeData.air_temperature, bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "gas resistance: %.2f kOhms", bmeData.gas_resistance / 1000);
ESP_LOGI(TAG_BME, "iaq score: %u (%s)", bmeData.iaq_score, bme680_air_quality_to_string(bmeData.iaq_score));
bme680b_init();
}
}
else
if (foundDevices[CCS811_ADDRESS] == 2)
{
bme680b_init();
presentDevices |= CCS811_PRESENT_BIT;
ccs811_get_data(&eCO2, &tvoc, &currentCCS, &rawData);
ESP_LOGI(TAG_CCS, "eCO₂: %d ppm, TVOC: %d ppb", eCO2, tvoc);
ESP_LOGI(TAG_CCS, "Current: %d μA, Raw voltage: %d V", currentCCS, rawData);
}
ccs811_get_data(&eCO2, &tvoc, &currentCCS, &rawData);
ESP_LOGI(TAG_CCS, "eCO₂: %d ppm, TVOC: %d ppb", eCO2, tvoc);
ESP_LOGI(TAG_CCS, "Current: %d μA, Raw voltage: %d V", currentCCS, rawData);
if (mpu9250_read_sensor_data(MPU9250_DEV_HANDLE, accel, gyro, &temp, magnet) == ESP_OK)
if (foundDevices[MPU9250_ADDRESS] == 2)
{
mpu9250_convert_data(accel, gyro, temp, magnet, accel_f, gyro_f, &temp_f, magnet_f);
ESP_LOGI(TAG_MPU, "Accel: X=%.2f g, Y=%.2f g, Z=%.2f g", accel_f[0], accel_f[1], accel_f[2]);
ESP_LOGI(TAG_MPU, "Gyro: X=%.2f°/s, Y=%.2f°/s, Z=%.2f°/s", gyro_f[0], gyro_f[1], gyro_f[2]);
ESP_LOGI(TAG_MPU, "Magnet: X=%.2fμT, Y=%.2fμT, Z=%.2fμT", magnet_f[0], magnet_f[1], magnet_f[2]);
ESP_LOGI(TAG_MPU, "Temperature: %.2f °C", temp_f);
}
else
{
ESP_LOGE(TAG_MPU, "Failed to read sensor data");
presentDevices |= MPU9250_PRESENT_BIT;
if (mpu9250_read_sensor_data(MPU9250_DEV_HANDLE, accel, gyro, &temp, magnet) == ESP_OK)
{
mpu9250_convert_data(accel, gyro, temp, magnet, accel_f, gyro_f, &temp_f, magnet_f);
ESP_LOGI(TAG_MPU, "Accel: X=%.2f g, Y=%.2f g, Z=%.2f g", accel_f[0], accel_f[1], accel_f[2]);
ESP_LOGI(TAG_MPU, "Gyro: X=%.2f°/s, Y=%.2f°/s, Z=%.2f°/s", gyro_f[0], gyro_f[1], gyro_f[2]);
ESP_LOGI(TAG_MPU, "Magnet: X=%.2fμT, Y=%.2fμT, Z=%.2fμT", magnet_f[0], magnet_f[1], magnet_f[2]);
ESP_LOGI(TAG_MPU, "Temperature: %.2f °C", temp_f);
}
else
{
ESP_LOGE(TAG_MPU, "Failed to read sensor data");
}
}
ina260_readParams(&volts, &current, &power);
ina260_printParams(volts, current, power);
float VREFVoltage = 2.5;
// mics_adc_data_t ADCData;
// memset(&ADCData, 0, sizeof(ADCData));
mics_adc_data_t ADCData = mcp3550_read_all(VREFVoltage);
log_mics_adc_values(&ADCData);
//int32_t nh3val = mcp3550_read(MCP_CS_ADC_NH3);
//ESP_LOGI(TAG_BME, "MICS NH3: %ld -> %fV", nh3val, mcp3550_to_voltage(nh3val, VREFVoltage));
//gpio_set_level(BLINK_GPIO, s_led_state);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CS_ADC_UVC, s_led_state);
/* Toggle the LED state */
s_led_state = !s_led_state;
end_time = esp_timer_get_time();
elapsed = end_time - start_time;
if (elapsed < interval_us)
if (foundDevices[INA260_ADDRESS] == 2)
{
vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
presentDevices |= INA260_PRESENT_BIT;
ina260_readParams(&volts, &current, &power);
ina260_printParams(volts, current, power);
}
if (packetReadiness == 0) {
if (foundDevices[MCP23018_ADDRESS] == 2)
{
presentDevices |= MCP23018_PRESENT_BIT;
float VREFVoltage = 2.5;
ADCData = mcp3550_read_all(VREFVoltage);
log_mics_adc_values(&ADCData);
}
if (packetReadiness == 0)
{
memset(&telemetryPacket, 0, sizeof(telemetryPacket));
telemetryPacket.accelerationX = accel[0];
telemetryPacket.accelerationY = accel[1];
@@ -221,7 +279,6 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.current = current;
telemetryPacket.power = power;
telemetryPacket.temperature = bmeData.raw_data.temperature;
telemetryPacket.humidity = bmeData.raw_data.humidity;
telemetryPacket.pressure = bmeData.raw_data.pressure;
@@ -244,7 +301,7 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.NO2 = ADCData.raw_no2;
telemetryPacket.UVC = ADCData.raw_uvc;
//TODO MOVE THIS TO A BETTER PLACE FOR SYNC
// TODO MOVE THIS TO A BETTER PLACE FOR SYNC
telemetryPacket.time_seconds = gpsDataOut.time_seconds;
telemetryPacket.latitude_centi_degrees = gpsDataOut.latitude_centi_degrees;
telemetryPacket.longitude_centi_degrees = gpsDataOut.longitude_centi_degrees;
@@ -263,11 +320,20 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.currentServoA = servoState.currentServoA;
telemetryPacket.currentServoB = servoState.currentServoB;
telemetryPacket.presentDevices = presentDevices;
telemetryPacket.telemetryIndex = telemetryIndex++;
}
packetReadiness = 1;
s_led_state = !s_led_state;
end_time = esp_timer_get_time();
elapsed = end_time - start_time;
if (elapsed < interval_us)
{
vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
}
}
//
// free resources