This commit is contained in:
2025-04-28 00:07:43 +02:00
parent 0c71409c30
commit 8b9e72ef71
9 changed files with 266 additions and 212 deletions

View File

@@ -91,6 +91,8 @@ typedef struct __attribute__((packed))
int16_t currentServoB; //148 int16_t currentServoB; //148
int16_t targetServoB; //150 int16_t targetServoB; //150
uint8_t presentDevices;
uint8_t telemetryIndex; //151 uint8_t telemetryIndex; //151
} TelemetryPacket; } TelemetryPacket;

View File

@@ -6,11 +6,13 @@
#include "string.h" #include "string.h"
#include "esp_timer.h" #include "esp_timer.h"
#include "esp_rom_crc.h" #include "esp_rom_crc.h"
#include <hw/buscfg.h>
#include "sensors.h"
#define TAG "LoRa" #define TAG "LoRa"
#define ACK_TIMEOUT_MS 500 // Wait 300ms for ACK #define ACK_TIMEOUT_MS 250 // Wait 300ms for ACK
#define MAX_RETRIES 3 #define MAX_RETRIES 1
uint32_t packetIndexTX = 0; uint32_t packetIndexTX = 0;
uint32_t packetIndexRX = 0; uint32_t packetIndexRX = 0;
@@ -44,10 +46,10 @@ void setup_lora(void)
} }
} }
uint8_t spreadingFactor = 7; uint8_t spreadingFactor = 8;
uint8_t bandwidth = SX126X_LORA_BW_250_0; uint8_t bandwidth = SX126X_LORA_BW_250_0;
uint8_t codingRate = SX126X_LORA_CR_4_8; uint8_t codingRate = SX126X_LORA_CR_4_8;
uint16_t preambleLength = 8; uint16_t preambleLength = 4;
bool crcOn = true; bool crcOn = true;
bool invertIrq = false; bool invertIrq = false;
@@ -65,6 +67,23 @@ static void prepare_downbound_packet(DownBoundPacket *packet, uint8_t type, uint
strcpy(packet->syncPhrase, "PlechDole"); strcpy(packet->syncPhrase, "PlechDole");
} }
static void send_packet_without_retries(uint8_t *data, uint16_t size)
{
if (xSemaphoreTake(loraRadioMutex, portMAX_DELAY) == pdTRUE)
{
if (!LoRaSend(data, size, SX126x_TXMODE_SYNC))
{
ESP_LOGW(TAG, "LoRaSend failed");
xSemaphoreGive(loraRadioMutex);
}
else
{
ESP_LOGI(TAG, "%d byte packet sent", size);
xSemaphoreGive(loraRadioMutex);
}
}
}
static void send_packet_with_retries(uint8_t *data, uint16_t size) static void send_packet_with_retries(uint8_t *data, uint16_t size)
{ {
for (int retry = 0; retry <= MAX_RETRIES; retry++) for (int retry = 0; retry <= MAX_RETRIES; retry++)
@@ -116,7 +135,7 @@ void prepare_and_send_telemetry(uint64_t missionTimer)
memcpy(bufOut + offset, &telemetryPacket, sizeof(telemetryPacket)); memcpy(bufOut + offset, &telemetryPacket, sizeof(telemetryPacket));
offset += sizeof(telemetryPacket); offset += sizeof(telemetryPacket);
send_packet_with_retries(bufOut, offset); send_packet_without_retries(bufOut, offset);
packetReadiness = 0; packetReadiness = 0;
} }
@@ -208,6 +227,7 @@ void process_uplink_packet(uint8_t *data, uint8_t len, uint64_t missionTimer)
{ {
SystemControlPacket sysCtrl; SystemControlPacket sysCtrl;
memcpy(&sysCtrl, data + sizeof(UplinkPacket), sizeof(SystemControlPacket)); memcpy(&sysCtrl, data + sizeof(UplinkPacket), sizeof(SystemControlPacket));
setPowerMode(sysCtrl.powerMode);
// TODO: Process sysCtrl // TODO: Process sysCtrl
} }
else else
@@ -265,13 +285,18 @@ void lora_receive_task(void *pvParameters)
void lora_comms_task(void *pvParameters) void lora_comms_task(void *pvParameters)
{ {
ESP_LOGI(TAG, "lora_comms_task started"); ESP_LOGI(TAG, "lora_comms_task started");
while (foundDevices[0] != 2) {
vTaskDelay(10);
}
// Initialize the semaphore for radio access (binary semaphore, 1 = available) // Initialize the semaphore for radio access (binary semaphore, 1 = available)
loraRadioMutex = xSemaphoreCreateMutex(); loraRadioMutex = xSemaphoreCreateMutex();
xSemaphoreGive(loraRadioMutex); // Set semaphore as available xSemaphoreGive(loraRadioMutex); // Set semaphore as available
const int64_t interval_us = 400000; // 400 ms
setup_lora(); setup_lora();
xTaskCreate( xTaskCreate(
lora_receive_task, lora_receive_task,
@@ -291,6 +316,8 @@ void lora_comms_task(void *pvParameters)
prepare_and_send_telemetry(start_time); prepare_and_send_telemetry(start_time);
} }
const int64_t interval_us = ((powerMode == HIGH_POWER_MODE) ? 10000 : 10000000); // 10 ms or 10 000 ms
int64_t end_time = esp_timer_get_time(); int64_t end_time = esp_timer_get_time();
int64_t elapsed = end_time - start_time; int64_t elapsed = end_time - start_time;
@@ -299,50 +326,4 @@ void lora_comms_task(void *pvParameters)
vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000)); vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
} }
} }
} }
// void lora_comms_task(void *pvParameters)
// {
// const int64_t interval_us = 400000; // 100 ms
// int64_t start_time, end_time, elapsed;
// setup_lora();
// uint8_t bufIn[256];
// while (1)
// {
// start_time = esp_timer_get_time();
// if (packetReadiness)
// {
// ESP_LOGI(TAG, "Preparing telemetry");
// prepare_and_send_telemetry(start_time);
// }
// uint8_t rxLen = LoRaReceive(bufIn, sizeof(bufIn));
// if (rxLen > 0)
// {
// ESP_LOGI(TAG, "%d byte packet received", rxLen);
// process_uplink_packet(bufIn, rxLen, start_time);
// int8_t rssi, snr;
// GetPacketStatus(&rssi, &snr);
// ESP_LOGI(TAG, "rssi=%d[dBm], snr=%d[dB]", rssi, snr);
// }
// int lost = GetPacketLost();
// if (lost != 0)
// {
// ESP_LOGW(TAG, "%d packets lost", lost);
// }
// end_time = esp_timer_get_time();
// elapsed = end_time - start_time;
// if (elapsed < interval_us)
// {
// vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
// }
// }
// }

View File

@@ -6,12 +6,18 @@
#define BLINK_GPIO 2 #define BLINK_GPIO 2
//uint8_t powerMode = LOW_POWER_MODE;
uint8_t powerMode = HIGH_POWER_MODE;
static uint8_t s_led_state = 0; static uint8_t s_led_state = 0;
uint8_t telemetryIndex = 1; uint8_t telemetryIndex = 1;
uint8_t foundDevices[128]; const uint8_t expectedAdressesCount = 5;
uint8_t prevDevices[128]; const uint8_t expectedAdresses[] = {MCP23018_ADDRESS, BME680_ADDRESS, CCS811_ADDRESS, MPU9250_ADDRESS, INA260_ADDRESS};
uint8_t foundDevices[5];
uint8_t prevDevices[5];
static void configure_led(void) static void configure_led(void)
{ {
@@ -19,93 +25,131 @@ static void configure_led(void)
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT); gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
} }
// void update_devices() { void update_devices()
// memcpy(prevDevices, foundDevices, sizeof(prevDevices)); {
// memset(foundDevices, 0, sizeof(foundDevices)); memcpy(prevDevices, foundDevices, sizeof(prevDevices));
// for (uint8_t i = 0; i < 128; i++) for (uint8_t i = 0; i < expectedAdressesCount; i++)
// { {
// fflush(stdout); fflush(stdout);
// esp_err_t ret = i2c_master_probe(i2c0_bus_hdl, i, 20);
// if (ret == ESP_OK)
// {
// foundDevices[i] = 1;
// printf("Found device at 0x%02X\n", i);
// }
// }
// }
// void init_connected() { esp_err_t ret = i2c_master_probe(i2c0_bus_hdl, expectedAdresses[i], 20);
// for (uint8_t i = 0; i < 128; i++) {
// if (foundDevices[i] != prevDevices[i]) {
// if (foundDevices[i]) {
// switch (i)
// {
// case MCP23018_ADDRESS:
// /* code */
// if (mcp23018_init() == ESP_OK) {
// foundDevices[i] = 2;
// }
// break;
// case INA260_ADDRESS: if (ret == ESP_OK)
// if (ina260_init() == ESP_OK) { {
// foundDevices[i] = 2; if (foundDevices[i] == 0)
// } {
// /* code */ foundDevices[i] = 1;
// break; }
// printf("Found device at 0x%02X\n", i);
}
else
{
foundDevices[i] = 0;
if (i == 1 && powerMode != HIGH_POWER_MODE)
{
continue;
}
printf("Not found device at 0x%02X\n", expectedAdresses[i]);
}
}
}
// case CCS811_ADDRESS: void setPowerMode(uint8_t powerModeIn)
// if (ccs811_init() == ESP_OK) { {
// foundDevices[i] = 2; powerMode = powerModeIn;
// } if (foundDevices[0] == 2)
// /* code */ {
// break; if (powerMode == HIGH_POWER_MODE) {
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_WAKE, 0);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_POWER, 1);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_MICS_POWER, 1);
} else {
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_WAKE, 1);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_POWER, 0);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_MICS_POWER, 0);
}
}
}
// case MPU9250_ADDRESS: void init_connected()
// if (mpu9250_init() == ESP_OK) { {
// foundDevices[i] = 2;
// }
// /* code */
// break;
// case BME680_ADDRESS: for (uint8_t i = 0; i < expectedAdressesCount; i++)
// if (bme680b_init() == ESP_OK) { {
// foundDevices[i] = 2; if (foundDevices[i] != prevDevices[i])
// } {
// /* code */ if (foundDevices[i])
// break; {
esp_err_t ret = ESP_FAIL;
// default: bool foundUsed = true;
// break; switch (i)
// } {
// } case MCP23018_ADDRESS:
// } /* code */
// } ret = mcp23018_init();
// } setPowerMode(powerMode);
mcp3550_spi_init();
break;
case INA260_ADDRESS:
ret = ina260_init();
/* code */
break;
case CCS811_ADDRESS:
ret = ccs811_init();
/* code */
break;
case MPU9250_ADDRESS:
ret = mpu9250_init();
/* code */
break;
case BME680_ADDRESS:
ret = bme680b_init();
/* code */
break;
default:
foundUsed = false;
break;
}
if (foundUsed)
{
if (ret == ESP_OK)
{
foundDevices[i] = 2;
}
else
{
printf("Device init error at 0x%02X - %s\n", expectedAdresses[i], esp_err_to_name(ret));
}
}
}
}
}
}
void i2c_sensors_task(void *pvParameters) void i2c_sensors_task(void *pvParameters)
{ {
memset(foundDevices, 0, sizeof(foundDevices)); memset(foundDevices, 0, sizeof(foundDevices));
memset(prevDevices, 0, sizeof(prevDevices)); memset(prevDevices, 0, sizeof(prevDevices));
bme680b_init(); // bme680b_init();
mpu9250_init(); // mpu9250_init();
ccs811_init(); // ccs811_init();
ina260_init(); // ina260_init();
// update_devices(); update_devices();
// init_connected(); init_connected();
// initialize the xLastWakeTime variable with the current time. // initialize the xLastWakeTime variable with the current time.
const int64_t interval_us = 100000; // 100 ms const int64_t interval_us = 50000; // 50 ms
int64_t start_time, end_time, elapsed; int64_t start_time, end_time, elapsed;
// //
// initialize i2c device configuration // initialize i2c device configuration
mcp3550_spi_init();
configure_led(); configure_led();
int16_t accel[3], gyro[3], temp, magnet[3]; int16_t accel[3], gyro[3], temp, magnet[3];
@@ -121,82 +165,96 @@ void i2c_sensors_task(void *pvParameters)
uint16_t power; uint16_t power;
bme680_data_t bmeData; bme680_data_t bmeData;
mics_adc_data_t ADCData;
// task loop entry point // task loop entry point
for (;;) for (;;)
{ {
start_time = esp_timer_get_time(); // µs since boot start_time = esp_timer_get_time(); // µs since boot
uint8_t presentDevices = 0;
update_devices();
init_connected();
// //
// handle sensor // handle sensor
if (BME680_DEV_HANDLE) if (foundDevices[BME680_ADDRESS] == 2)
{ {
esp_err_t result = bme680_get_data(BME680_DEV_HANDLE, &bmeData);
if (result != ESP_OK) presentDevices |= BME680_PRESENT_BIT;
if (BME680_DEV_HANDLE)
{ {
ESP_LOGE(TAG_BME, "bme680 device read failed (%s)", esp_err_to_name(result)); esp_err_t result = bme680_get_data(BME680_DEV_HANDLE, &bmeData);
if (result != ESP_OK)
{
ESP_LOGE(TAG_BME, "bme680 device read failed (%s)", esp_err_to_name(result));
}
else
{
bmeData.barometric_pressure = bmeData.barometric_pressure / 100;
ESP_LOGI(TAG_BME, "dewpoint temperature:%.2f °C", bmeData.dewpoint_temperature);
ESP_LOGI(TAG_BME, "air temperature: %.2f °C", bmeData.air_temperature);
ESP_LOGI(TAG_BME, "relative humidity: %.2f %%", bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "barometric pressure: %.2f hPa", bmeData.barometric_pressure);
ccs811_set_env_data(bmeData.air_temperature, bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "gas resistance: %.2f kOhms", bmeData.gas_resistance / 1000);
ESP_LOGI(TAG_BME, "iaq score: %u (%s)", bmeData.iaq_score, bme680_air_quality_to_string(bmeData.iaq_score));
}
} }
else else
{ {
bmeData.barometric_pressure = bmeData.barometric_pressure / 100; bme680b_init();
ESP_LOGI(TAG_BME, "dewpoint temperature:%.2f °C", bmeData.dewpoint_temperature);
ESP_LOGI(TAG_BME, "air temperature: %.2f °C", bmeData.air_temperature);
ESP_LOGI(TAG_BME, "relative humidity: %.2f %%", bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "barometric pressure: %.2f hPa", bmeData.barometric_pressure);
ccs811_set_env_data(bmeData.air_temperature, bmeData.relative_humidity);
ESP_LOGI(TAG_BME, "gas resistance: %.2f kOhms", bmeData.gas_resistance / 1000);
ESP_LOGI(TAG_BME, "iaq score: %u (%s)", bmeData.iaq_score, bme680_air_quality_to_string(bmeData.iaq_score));
} }
} }
else
if (foundDevices[CCS811_ADDRESS] == 2)
{ {
bme680b_init(); presentDevices |= CCS811_PRESENT_BIT;
ccs811_get_data(&eCO2, &tvoc, &currentCCS, &rawData);
ESP_LOGI(TAG_CCS, "eCO₂: %d ppm, TVOC: %d ppb", eCO2, tvoc);
ESP_LOGI(TAG_CCS, "Current: %d μA, Raw voltage: %d V", currentCCS, rawData);
} }
ccs811_get_data(&eCO2, &tvoc, &currentCCS, &rawData); if (foundDevices[MPU9250_ADDRESS] == 2)
ESP_LOGI(TAG_CCS, "eCO₂: %d ppm, TVOC: %d ppb", eCO2, tvoc);
ESP_LOGI(TAG_CCS, "Current: %d μA, Raw voltage: %d V", currentCCS, rawData);
if (mpu9250_read_sensor_data(MPU9250_DEV_HANDLE, accel, gyro, &temp, magnet) == ESP_OK)
{ {
mpu9250_convert_data(accel, gyro, temp, magnet, accel_f, gyro_f, &temp_f, magnet_f);
ESP_LOGI(TAG_MPU, "Accel: X=%.2f g, Y=%.2f g, Z=%.2f g", accel_f[0], accel_f[1], accel_f[2]); presentDevices |= MPU9250_PRESENT_BIT;
ESP_LOGI(TAG_MPU, "Gyro: X=%.2f°/s, Y=%.2f°/s, Z=%.2f°/s", gyro_f[0], gyro_f[1], gyro_f[2]); if (mpu9250_read_sensor_data(MPU9250_DEV_HANDLE, accel, gyro, &temp, magnet) == ESP_OK)
ESP_LOGI(TAG_MPU, "Magnet: X=%.2fμT, Y=%.2fμT, Z=%.2fμT", magnet_f[0], magnet_f[1], magnet_f[2]); {
ESP_LOGI(TAG_MPU, "Temperature: %.2f °C", temp_f); mpu9250_convert_data(accel, gyro, temp, magnet, accel_f, gyro_f, &temp_f, magnet_f);
}
else ESP_LOGI(TAG_MPU, "Accel: X=%.2f g, Y=%.2f g, Z=%.2f g", accel_f[0], accel_f[1], accel_f[2]);
{ ESP_LOGI(TAG_MPU, "Gyro: X=%.2f°/s, Y=%.2f°/s, Z=%.2f°/s", gyro_f[0], gyro_f[1], gyro_f[2]);
ESP_LOGE(TAG_MPU, "Failed to read sensor data"); ESP_LOGI(TAG_MPU, "Magnet: X=%.2fμT, Y=%.2fμT, Z=%.2fμT", magnet_f[0], magnet_f[1], magnet_f[2]);
ESP_LOGI(TAG_MPU, "Temperature: %.2f °C", temp_f);
}
else
{
ESP_LOGE(TAG_MPU, "Failed to read sensor data");
}
} }
ina260_readParams(&volts, &current, &power); if (foundDevices[INA260_ADDRESS] == 2)
ina260_printParams(volts, current, power);
float VREFVoltage = 2.5;
// mics_adc_data_t ADCData;
// memset(&ADCData, 0, sizeof(ADCData));
mics_adc_data_t ADCData = mcp3550_read_all(VREFVoltage);
log_mics_adc_values(&ADCData);
//int32_t nh3val = mcp3550_read(MCP_CS_ADC_NH3);
//ESP_LOGI(TAG_BME, "MICS NH3: %ld -> %fV", nh3val, mcp3550_to_voltage(nh3val, VREFVoltage));
//gpio_set_level(BLINK_GPIO, s_led_state);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CS_ADC_UVC, s_led_state);
/* Toggle the LED state */
s_led_state = !s_led_state;
end_time = esp_timer_get_time();
elapsed = end_time - start_time;
if (elapsed < interval_us)
{ {
vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
presentDevices |= INA260_PRESENT_BIT;
ina260_readParams(&volts, &current, &power);
ina260_printParams(volts, current, power);
} }
if (packetReadiness == 0) {
if (foundDevices[MCP23018_ADDRESS] == 2)
{
presentDevices |= MCP23018_PRESENT_BIT;
float VREFVoltage = 2.5;
ADCData = mcp3550_read_all(VREFVoltage);
log_mics_adc_values(&ADCData);
}
if (packetReadiness == 0)
{
memset(&telemetryPacket, 0, sizeof(telemetryPacket)); memset(&telemetryPacket, 0, sizeof(telemetryPacket));
telemetryPacket.accelerationX = accel[0]; telemetryPacket.accelerationX = accel[0];
telemetryPacket.accelerationY = accel[1]; telemetryPacket.accelerationY = accel[1];
@@ -221,7 +279,6 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.current = current; telemetryPacket.current = current;
telemetryPacket.power = power; telemetryPacket.power = power;
telemetryPacket.temperature = bmeData.raw_data.temperature; telemetryPacket.temperature = bmeData.raw_data.temperature;
telemetryPacket.humidity = bmeData.raw_data.humidity; telemetryPacket.humidity = bmeData.raw_data.humidity;
telemetryPacket.pressure = bmeData.raw_data.pressure; telemetryPacket.pressure = bmeData.raw_data.pressure;
@@ -244,7 +301,7 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.NO2 = ADCData.raw_no2; telemetryPacket.NO2 = ADCData.raw_no2;
telemetryPacket.UVC = ADCData.raw_uvc; telemetryPacket.UVC = ADCData.raw_uvc;
//TODO MOVE THIS TO A BETTER PLACE FOR SYNC // TODO MOVE THIS TO A BETTER PLACE FOR SYNC
telemetryPacket.time_seconds = gpsDataOut.time_seconds; telemetryPacket.time_seconds = gpsDataOut.time_seconds;
telemetryPacket.latitude_centi_degrees = gpsDataOut.latitude_centi_degrees; telemetryPacket.latitude_centi_degrees = gpsDataOut.latitude_centi_degrees;
telemetryPacket.longitude_centi_degrees = gpsDataOut.longitude_centi_degrees; telemetryPacket.longitude_centi_degrees = gpsDataOut.longitude_centi_degrees;
@@ -263,11 +320,20 @@ void i2c_sensors_task(void *pvParameters)
telemetryPacket.currentServoA = servoState.currentServoA; telemetryPacket.currentServoA = servoState.currentServoA;
telemetryPacket.currentServoB = servoState.currentServoB; telemetryPacket.currentServoB = servoState.currentServoB;
telemetryPacket.presentDevices = presentDevices;
telemetryPacket.telemetryIndex = telemetryIndex++; telemetryPacket.telemetryIndex = telemetryIndex++;
} }
packetReadiness = 1; packetReadiness = 1;
s_led_state = !s_led_state;
end_time = esp_timer_get_time();
elapsed = end_time - start_time;
if (elapsed < interval_us)
{
vTaskDelay(pdMS_TO_TICKS((interval_us - elapsed) / 1000));
}
} }
// //
// free resources // free resources

View File

@@ -18,9 +18,17 @@
#include "../hw/mpu9250.h" #include "../hw/mpu9250.h"
#include "esp_log.h" #include "esp_log.h"
#define LOW_POWER_MODE 0
#define HIGH_POWER_MODE 1
extern uint8_t powerMode;
extern uint8_t foundDevices[128];
extern uint8_t prevDevices[128]; extern uint8_t foundDevices[5];
extern uint8_t prevDevices[5];
void init_connected();
void update_devices();
void setPowerMode(uint8_t powerModeIn);
void i2c_sensors_task(void *pvParameters); void i2c_sensors_task(void *pvParameters);

View File

@@ -8,11 +8,17 @@
#define ESP_RXD0 GPIO_NUM_44 #define ESP_RXD0 GPIO_NUM_44
#define ESP_TXD0 GPIO_NUM_43 #define ESP_TXD0 GPIO_NUM_43
#define MCP23018_ADDRESS 0x20 #define BME680_ADDRESS 0x76
#define INA260_ADDRESS 0x40
#define CCS811_ADDRESS 0x5A #define CCS811_ADDRESS 0x5A
#define MPU9250_ADDRESS 0x68 #define MPU9250_ADDRESS 0x68
#define BME680_ADDRESS 0x76 #define INA260_ADDRESS 0x40
#define MCP23018_ADDRESS 0x20
#define BME680_PRESENT_BIT (1 << 0)
#define CCS811_PRESENT_BIT (1 << 1)
#define MPU9250_PRESENT_BIT (1 << 2)
#define INA260_PRESENT_BIT (1 << 3)
#define MCP23018_PRESENT_BIT (1 << 4)
#define ESP_CONNECTOR_P1 MCP3550_MISO_GPIO #define ESP_CONNECTOR_P1 MCP3550_MISO_GPIO
#define ESP_CONNECTOR_P2 MCP3550_MOSI_GPIO #define ESP_CONNECTOR_P2 MCP3550_MOSI_GPIO

View File

@@ -33,10 +33,6 @@ esp_err_t ccs811_init()
{ {
esp_err_t ret =i2c_master_bus_add_device(i2c0_bus_hdl, &CCS811_DEV_CFG, &CCS811_DEV_HANDLE); esp_err_t ret =i2c_master_bus_add_device(i2c0_bus_hdl, &CCS811_DEV_CFG, &CCS811_DEV_HANDLE);
if (ret != ESP_OK) {return ret;} if (ret != ESP_OK) {return ret;}
ret = mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_WAKE, 0);
if (ret != ESP_OK) {return ret;}
ret = mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_CCS811_POWER, 1);
if (ret != ESP_OK) {return ret;}
vTaskDelay(10 / portTICK_PERIOD_MS); vTaskDelay(10 / portTICK_PERIOD_MS);
uint8_t reset_seq[4] = {0x11, 0xE5, 0x72, 0x8A}; uint8_t reset_seq[4] = {0x11, 0xE5, 0x72, 0x8A};
ret = i2c_write_register(CCS811_DEV_HANDLE, CCS811_REG_SW_RESET, reset_seq, sizeof(reset_seq)); // Reset ret = i2c_write_register(CCS811_DEV_HANDLE, CCS811_REG_SW_RESET, reset_seq, sizeof(reset_seq)); // Reset

View File

@@ -16,9 +16,6 @@ uint8_t gpiob_state = 0x00; // All LOW initially
esp_err_t mcp23018_set_pin(i2c_master_dev_handle_t dev_handle, uint8_t pin, uint8_t value) esp_err_t mcp23018_set_pin(i2c_master_dev_handle_t dev_handle, uint8_t pin, uint8_t value)
{ {
// while(foundDevices[MCP23018_ADDRESS] != 2) {
// vTaskDelay(1);
// }
esp_err_t ret = ESP_FAIL; esp_err_t ret = ESP_FAIL;
if (pin < 8) if (pin < 8)
{ {

View File

@@ -19,18 +19,17 @@ spi_device_handle_t mcp3550_handle;
void mcp3550_spi_init() void mcp3550_spi_init()
{ {
spi_device_interface_config_t devcfg = { // spi_device_interface_config_t devcfg = {
.clock_speed_hz = 100000, // .clock_speed_hz = 100000,
.mode = 0, // .mode = 0,
.spics_io_num = -1, // We handle CS manually // .spics_io_num = -1, // We handle CS manually
.queue_size = 1, // .queue_size = 1,
}; // };
ESP_ERROR_CHECK(spi_bus_add_device(SPI2_HOST, &devcfg, &mcp3550_handle)); // ESP_ERROR_CHECK(spi_bus_add_device(SPI2_HOST, &devcfg, &mcp3550_handle));
// Set MISO pin for input (needed for polling) // Set MISO pin for input (needed for polling)
gpio_set_direction(MCP3550_MISO_GPIO, GPIO_MODE_INPUT); gpio_set_direction(MCP3550_MISO_GPIO, GPIO_MODE_INPUT);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_MICS_POWER, 1); // CS HIGH
} }

View File

@@ -38,15 +38,15 @@ void app_main(void)
/* instantiate i2c master bus 0 */ /* instantiate i2c master bus 0 */
ESP_ERROR_CHECK(i2c_new_master_bus(&i2c0_bus_cfg, &i2c0_bus_hdl)); ESP_ERROR_CHECK(i2c_new_master_bus(&i2c0_bus_cfg, &i2c0_bus_hdl));
spi_bus_config_t MCPBusCfg = { // spi_bus_config_t MCPBusCfg = {
.mosi_io_num = -1, // .mosi_io_num = -1,
.miso_io_num = MCP3550_MISO_GPIO, // .miso_io_num = MCP3550_MISO_GPIO,
.sclk_io_num = MCP3550_SCK_GPIO, // .sclk_io_num = MCP3550_SCK_GPIO,
.quadwp_io_num = -1, // .quadwp_io_num = -1,
.quadhd_io_num = -1, // .quadhd_io_num = -1,
.max_transfer_sz = 4, // .max_transfer_sz = 4,
}; // };
ESP_ERROR_CHECK(spi_bus_initialize(SPI2_HOST, &MCPBusCfg, SPI_DMA_DISABLED)); // ESP_ERROR_CHECK(spi_bus_initialize(SPI2_HOST, &MCPBusCfg, SPI_DMA_DISABLED));
spi_bus_config_t HighSpeedBusCfg = { spi_bus_config_t HighSpeedBusCfg = {
// CONNECTED to LoRa and SD card // CONNECTED to LoRa and SD card
@@ -61,7 +61,6 @@ void app_main(void)
/* scan i2c devices on i2c master bus 0 and print results */ /* scan i2c devices on i2c master bus 0 and print results */
ESP_ERROR_CHECK(i2c_master_bus_detect_devices(i2c0_bus_hdl)); ESP_ERROR_CHECK(i2c_master_bus_detect_devices(i2c0_bus_hdl));
mcp23018_init();
void servoControllerInit(); void servoControllerInit();