Files
EmbeddedESP/main/hw/sx1262.c

968 lines
23 KiB
C

#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "../components/sensors.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <driver/spi_master.h>
#include <driver/gpio.h>
#include "esp_log.h"
#include "buscfg.h"
#include "sx1262.h"
#define TAG "SX1262"
#define HOST_ID SPI3_HOST
static spi_device_handle_t SpiHandle;
// Global Stuff
static uint8_t PacketParams[6];
static bool txActive;
static int txLost = 0;
static bool debugPrint;
static int SX126x_SPI_SELECT;
static int SX126x_BUSY;
// Arduino compatible macros
#define delayMicroseconds(us) esp_rom_delay_us(us)
#define delay(ms) esp_rom_delay_us(ms*1000)
void LoRaErrorDefault(int error)
{
if (debugPrint) {
ESP_LOGE(TAG, "LoRaErrorDefault=%d", error);
}
while (true) {
vTaskDelay(1);
}
}
__attribute__ ((weak, alias ("LoRaErrorDefault"))) void LoRaError(int error);
void LoRaInit(void)
{
ESP_LOGI(TAG, "HSPI_MISO_GPIO=%d", HSPI_MISO_GPIO);
ESP_LOGI(TAG, "HSPI_MOSI_GPIO=%d", HSPI_MOSI_GPIO);
ESP_LOGI(TAG, "HSPI_SCK_GPIO=%d", HSPI_SCK_GPIO);
ESP_LOGI(TAG, "HSPI_LORA_CS=%d", HSPI_LORA_CS);
ESP_LOGI(TAG, "LORA_BUSY=%d", LORA_BUSY);
SX126x_SPI_SELECT = HSPI_LORA_CS;
SX126x_BUSY = LORA_BUSY;
txActive = false;
debugPrint = false;
gpio_reset_pin(SX126x_SPI_SELECT);
gpio_set_direction(SX126x_SPI_SELECT, GPIO_MODE_OUTPUT);
gpio_set_level(SX126x_SPI_SELECT, 1);
gpio_reset_pin(SX126x_BUSY);
gpio_set_direction(SX126x_BUSY, GPIO_MODE_INPUT);
spi_bus_config_t spi_bus_config = {
.sclk_io_num = HSPI_SCK_GPIO,
.mosi_io_num = HSPI_MOSI_GPIO,
.miso_io_num = HSPI_MISO_GPIO,
.quadwp_io_num = -1,
.quadhd_io_num = -1
};
esp_err_t ret;
spi_device_interface_config_t devcfg = {
.clock_speed_hz = 9000000,
.mode = 0,
.spics_io_num = HSPI_LORA_CS,
.queue_size = 7,
.flags = 0,
.pre_cb = NULL
};
//spi_device_handle_t handle;
ret = spi_bus_add_device( HOST_ID, &devcfg, &SpiHandle);
ESP_LOGI(TAG, "spi_bus_add_device=%d",ret);
assert(ret==ESP_OK);
}
void spi_write_byte(uint8_t* Dataout, size_t DataLength )
{
spi_transaction_t SPITransaction;
if ( DataLength > 0 ) {
memset( &SPITransaction, 0, sizeof( spi_transaction_t ) );
SPITransaction.length = DataLength * 8;
SPITransaction.tx_buffer = Dataout;
SPITransaction.rx_buffer = NULL;
spi_device_transmit( SpiHandle, &SPITransaction );
}
return;
}
void spi_read_byte(uint8_t* Datain, uint8_t* Dataout, size_t DataLength )
{
spi_transaction_t SPITransaction;
if ( DataLength > 0 ) {
memset( &SPITransaction, 0, sizeof( spi_transaction_t ) );
SPITransaction.length = DataLength * 8;
SPITransaction.tx_buffer = Dataout;
SPITransaction.rx_buffer = Datain;
spi_device_transmit( SpiHandle, &SPITransaction );
}
return;
}
uint8_t spi_transfer(uint8_t address)
{
uint8_t datain[1];
uint8_t dataout[1];
dataout[0] = address;
//spi_write_byte(dataout, 1 );
spi_read_byte(datain, dataout, 1 );
return datain[0];
}
int16_t LoRaBegin(uint32_t frequencyInHz, int8_t txPowerInDbm, float tcxoVoltage, bool useRegulatorLDO)
{
if ( txPowerInDbm > 22 )
txPowerInDbm = 22;
if ( txPowerInDbm < -3 )
txPowerInDbm = -3;
Reset();
uint8_t wk[2];
ReadRegister(SX126X_REG_LORA_SYNC_WORD_MSB, wk, 2); // 0x0740
uint16_t syncWord = (wk[0] << 8) + wk[1];
ESP_LOGI(TAG, "syncWord=0x%x", syncWord);
if (syncWord != SX126X_SYNC_WORD_PUBLIC && syncWord != SX126X_SYNC_WORD_PRIVATE) {
ESP_LOGE(TAG, "SX126x error, maybe no SPI connection");
return ERR_INVALID_MODE;
}
ESP_LOGI(TAG, "SX126x installed");
SetStandby(SX126X_STANDBY_RC);
SetDio2AsRfSwitchCtrl(true);
ESP_LOGI(TAG, "tcxoVoltage=%f", tcxoVoltage);
// set TCXO control, if requested
if(tcxoVoltage > 0.0) {
SetDio3AsTcxoCtrl(tcxoVoltage, RADIO_TCXO_SETUP_TIME); // Configure the radio to use a TCXO controlled by DIO3
}
Calibrate( SX126X_CALIBRATE_IMAGE_ON
| SX126X_CALIBRATE_ADC_BULK_P_ON
| SX126X_CALIBRATE_ADC_BULK_N_ON
| SX126X_CALIBRATE_ADC_PULSE_ON
| SX126X_CALIBRATE_PLL_ON
| SX126X_CALIBRATE_RC13M_ON
| SX126X_CALIBRATE_RC64K_ON
);
ESP_LOGI(TAG, "useRegulatorLDO=%d", useRegulatorLDO);
if (useRegulatorLDO) {
SetRegulatorMode(SX126X_REGULATOR_LDO); // set regulator mode: LDO
} else {
SetRegulatorMode(SX126X_REGULATOR_DC_DC); // set regulator mode: DC-DC
}
SetBufferBaseAddress(0, 0);
#if 0
// SX1261_TRANCEIVER
SetPaConfig(0x06, 0x00, 0x01, 0x01); // PA Optimal Settings +15 dBm
// SX1262_TRANCEIVER
SetPaConfig(0x04, 0x07, 0x00, 0x01); // PA Optimal Settings +22 dBm
// SX1268_TRANCEIVER
SetPaConfig(0x04, 0x07, 0x00, 0x01); // PA Optimal Settings +22 dBm
#endif
SetPaConfig(0x04, 0x07, 0x00, 0x01); // PA Optimal Settings +22 dBm
SetOvercurrentProtection(60.0); // current max 60mA for the whole device
SetPowerConfig(txPowerInDbm, SX126X_PA_RAMP_200U); //0 fuer Empfaenger
SetRfFrequency(frequencyInHz);
return ERR_NONE;
}
void FixInvertedIQ(uint8_t iqConfig)
{
// fixes IQ configuration for inverted IQ
// see SX1262/SX1268 datasheet, chapter 15 Known Limitations, section 15.4 for details
// When exchanging LoRa packets with inverted IQ polarity, some packet losses may be observed for longer packets.
// Workaround: Bit 2 at address 0x0736 must be set to:
// “0” when using inverted IQ polarity (see the SetPacketParam(...) command)
// “1” when using standard IQ polarity
// read current IQ configuration
uint8_t iqConfigCurrent = 0;
ReadRegister(SX126X_REG_IQ_POLARITY_SETUP, &iqConfigCurrent, 1); // 0x0736
// set correct IQ configuration
//if(iqConfig == SX126X_LORA_IQ_STANDARD) {
if(iqConfig == SX126X_LORA_IQ_INVERTED) {
iqConfigCurrent &= 0xFB; // using inverted IQ polarity
} else {
iqConfigCurrent |= 0x04; // using standard IQ polarity
}
// update with the new value
WriteRegister(SX126X_REG_IQ_POLARITY_SETUP, &iqConfigCurrent, 1); // 0x0736
}
void LoRaConfig(uint8_t spreadingFactor, uint8_t bandwidth, uint8_t codingRate, uint16_t preambleLength, uint8_t payloadLen, bool crcOn, bool invertIrq)
{
SetStopRxTimerOnPreambleDetect(false);
SetLoRaSymbNumTimeout(0);
SetPacketType(SX126X_PACKET_TYPE_LORA); // SX126x.ModulationParams.PacketType : MODEM_LORA
uint8_t ldro = 0; // LowDataRateOptimize OFF
SetModulationParams(spreadingFactor, bandwidth, codingRate, ldro);
PacketParams[0] = (preambleLength >> 8) & 0xFF;
PacketParams[1] = preambleLength;
if ( payloadLen )
{
PacketParams[2] = 0x01; // Fixed length packet (implicit header)
PacketParams[3] = payloadLen;
}
else
{
PacketParams[2] = 0x00; // Variable length packet (explicit header)
PacketParams[3] = 0xFF;
}
if ( crcOn )
PacketParams[4] = SX126X_LORA_CRC_ON;
else
PacketParams[4] = SX126X_LORA_CRC_OFF;
if ( invertIrq )
PacketParams[5] = 0x01; // Inverted LoRa I and Q signals setup
else
PacketParams[5] = 0x00; // Standard LoRa I and Q signals setup
// fixes IQ configuration for inverted IQ
FixInvertedIQ(PacketParams[5]);
WriteCommand(SX126X_CMD_SET_PACKET_PARAMS, PacketParams, 6); // 0x8C
// Do not use DIO interruptst
SetDioIrqParams(SX126X_IRQ_ALL, //all interrupts enabled
SX126X_IRQ_NONE, //interrupts on DIO1
SX126X_IRQ_NONE, //interrupts on DIO2
SX126X_IRQ_NONE //interrupts on DIO3
);
ESP_LOGI(TAG, "Almost done setting LoRa");
// Receive state no receive timeoout
SetRx(0xFFFFFF);
}
void LoRaDebugPrint(bool enable)
{
debugPrint = enable;
}
uint8_t LoRaReceive(uint8_t *pData, int16_t len)
{
uint8_t rxLen = 0;
uint16_t irqRegs = GetIrqStatus();
//uint8_t status = GetStatus();
if( irqRegs & SX126X_IRQ_RX_DONE )
{
//ClearIrqStatus(SX126X_IRQ_RX_DONE);
ClearIrqStatus(SX126X_IRQ_ALL);
rxLen = ReadBuffer(pData, len);
}
return rxLen;
}
bool LoRaSend(uint8_t *pData, int16_t len, uint8_t mode)
{
uint16_t irqStatus;
bool rv = false;
if ( txActive == false )
{
txActive = true;
if (PacketParams[2] == 0x00) { // Variable length packet (explicit header)
PacketParams[3] = len;
}
WriteCommand(SX126X_CMD_SET_PACKET_PARAMS, PacketParams, 6); // 0x8C
//ClearIrqStatus(SX126X_IRQ_TX_DONE | SX126X_IRQ_TIMEOUT);
ClearIrqStatus(SX126X_IRQ_ALL);
WriteBuffer(pData, len);
SetTx(500);
if ( mode & SX126x_TXMODE_SYNC )
{
irqStatus = GetIrqStatus();
while ( (!(irqStatus & SX126X_IRQ_TX_DONE)) && (!(irqStatus & SX126X_IRQ_TIMEOUT)) )
{
delay(1);
irqStatus = GetIrqStatus();
}
if (debugPrint) {
ESP_LOGI(TAG, "irqStatus=0x%x", irqStatus);
if (irqStatus & SX126X_IRQ_TX_DONE) {
ESP_LOGI(TAG, "SX126X_IRQ_TX_DONE");
}
if (irqStatus & SX126X_IRQ_TIMEOUT) {
ESP_LOGI(TAG, "SX126X_IRQ_TIMEOUT");
}
}
txActive = false;
SetRx(0xFFFFFF);
if ( irqStatus & SX126X_IRQ_TX_DONE) {
rv = true;
}
}
else
{
rv = true;
}
}
if (debugPrint) {
ESP_LOGI(TAG, "Send rv=0x%x", rv);
}
if (rv == false) txLost++;
return rv;
}
bool ReceiveMode(void)
{
uint16_t irq;
bool rv = false;
if ( txActive == false )
{
rv = true;
}
else
{
irq = GetIrqStatus();
if ( irq & (SX126X_IRQ_TX_DONE | SX126X_IRQ_TIMEOUT) )
{
SetRx(0xFFFFFF);
txActive = false;
rv = true;
}
}
return rv;
}
void GetPacketStatus(int8_t *rssiPacket, int8_t *snrPacket)
{
uint8_t buf[4];
ReadCommand( SX126X_CMD_GET_PACKET_STATUS, buf, 4 ); // 0x14
*rssiPacket = (buf[3] >> 1) * -1;
( buf[2] < 128 ) ? ( *snrPacket = buf[2] >> 2 ) : ( *snrPacket = ( ( buf[2] - 256 ) >> 2 ) );
}
void SetTxPower(int8_t txPowerInDbm)
{
SetPowerConfig(txPowerInDbm, SX126X_PA_RAMP_200U);
}
void Reset(void)
{
delay(10);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_LORA_RST, 0);
delay(20);
mcp23018_set_pin(MCP23018_DEV_HANDLE, MCP_LORA_RST, 1);
delay(10);
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "Reset", true);
}
void Wakeup(void)
{
GetStatus();
}
void SetStandby(uint8_t mode)
{
uint8_t data = mode;
WriteCommand(SX126X_CMD_SET_STANDBY, &data, 1); // 0x80
}
uint8_t GetStatus(void)
{
uint8_t rv;
ReadCommand(SX126X_CMD_GET_STATUS, &rv, 1); // 0xC0
return rv;
}
void SetDio3AsTcxoCtrl(float voltage, uint32_t delay)
{
uint8_t buf[4];
//buf[0] = tcxoVoltage & 0x07;
if(fabs(voltage - 1.6) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_1_6;
} else if(fabs(voltage - 1.7) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_1_7;
} else if(fabs(voltage - 1.8) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_1_8;
} else if(fabs(voltage - 2.2) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_2_2;
} else if(fabs(voltage - 2.4) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_2_4;
} else if(fabs(voltage - 2.7) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_2_7;
} else if(fabs(voltage - 3.0) <= 0.001) {
buf[0] = SX126X_DIO3_OUTPUT_3_0;
} else {
buf[0] = SX126X_DIO3_OUTPUT_3_3;
}
uint32_t delayValue = (float)delay / 15.625;
buf[1] = ( uint8_t )( ( delayValue >> 16 ) & 0xFF );
buf[2] = ( uint8_t )( ( delayValue >> 8 ) & 0xFF );
buf[3] = ( uint8_t )( delayValue & 0xFF );
WriteCommand(SX126X_CMD_SET_DIO3_AS_TCXO_CTRL, buf, 4); // 0x97
}
void Calibrate(uint8_t calibParam)
{
uint8_t data = calibParam;
WriteCommand(SX126X_CMD_CALIBRATE, &data, 1); // 0x89
}
void SetDio2AsRfSwitchCtrl(uint8_t enable)
{
uint8_t data = enable;
WriteCommand(SX126X_CMD_SET_DIO2_AS_RF_SWITCH_CTRL, &data, 1); // 0x9D
}
void SetRfFrequency(uint32_t frequency)
{
uint8_t buf[4];
uint32_t freq = 0;
CalibrateImage(frequency);
freq = (uint32_t)((double)frequency / (double)FREQ_STEP);
buf[0] = (uint8_t)((freq >> 24) & 0xFF);
buf[1] = (uint8_t)((freq >> 16) & 0xFF);
buf[2] = (uint8_t)((freq >> 8) & 0xFF);
buf[3] = (uint8_t)(freq & 0xFF);
WriteCommand(SX126X_CMD_SET_RF_FREQUENCY, buf, 4); // 0x86
}
void CalibrateImage(uint32_t frequency)
{
uint8_t calFreq[2];
if( frequency> 900000000 )
{
calFreq[0] = 0xE1;
calFreq[1] = 0xE9;
}
else if( frequency > 850000000 )
{
calFreq[0] = 0xD7;
calFreq[1] = 0xDB;
}
else if( frequency > 770000000 )
{
calFreq[0] = 0xC1;
calFreq[1] = 0xC5;
}
else if( frequency > 460000000 )
{
calFreq[0] = 0x75;
calFreq[1] = 0x81;
}
else if( frequency > 425000000 )
{
calFreq[0] = 0x6B;
calFreq[1] = 0x6F;
}
WriteCommand(SX126X_CMD_CALIBRATE_IMAGE, calFreq, 2); // 0x98
}
void SetRegulatorMode(uint8_t mode)
{
uint8_t data = mode;
WriteCommand(SX126X_CMD_SET_REGULATOR_MODE, &data, 1); // 0x96
}
void SetBufferBaseAddress(uint8_t txBaseAddress, uint8_t rxBaseAddress)
{
uint8_t buf[2];
buf[0] = txBaseAddress;
buf[1] = rxBaseAddress;
WriteCommand(SX126X_CMD_SET_BUFFER_BASE_ADDRESS, buf, 2); // 0x8F
}
void SetPowerConfig(int8_t power, uint8_t rampTime)
{
uint8_t buf[2];
if( power > 22 )
{
power = 22;
}
else if( power < -3 )
{
power = -3;
}
buf[0] = power;
buf[1] = ( uint8_t )rampTime;
WriteCommand(SX126X_CMD_SET_TX_PARAMS, buf, 2); // 0x8E
}
void SetPaConfig(uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut)
{
uint8_t buf[4];
buf[0] = paDutyCycle;
buf[1] = hpMax;
buf[2] = deviceSel;
buf[3] = paLut;
WriteCommand(SX126X_CMD_SET_PA_CONFIG, buf, 4); // 0x95
}
void SetOvercurrentProtection(float currentLimit)
{
if((currentLimit >= 0.0) && (currentLimit <= 140.0)) {
uint8_t buf[1];
buf[0] = (uint8_t)(currentLimit / 2.5);
WriteRegister(SX126X_REG_OCP_CONFIGURATION, buf, 1); // 0x08E7
}
}
void SetSyncWord(int16_t sync) {
uint8_t buf[2];
buf[0] = (uint8_t)((sync >> 8) & 0x00FF);
buf[1] = (uint8_t)(sync & 0x00FF);
WriteRegister(SX126X_REG_LORA_SYNC_WORD_MSB, buf, 2); // 0x0740
}
void SetDioIrqParams
( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
{
uint8_t buf[8];
buf[0] = (uint8_t)((irqMask >> 8) & 0x00FF);
buf[1] = (uint8_t)(irqMask & 0x00FF);
buf[2] = (uint8_t)((dio1Mask >> 8) & 0x00FF);
buf[3] = (uint8_t)(dio1Mask & 0x00FF);
buf[4] = (uint8_t)((dio2Mask >> 8) & 0x00FF);
buf[5] = (uint8_t)(dio2Mask & 0x00FF);
buf[6] = (uint8_t)((dio3Mask >> 8) & 0x00FF);
buf[7] = (uint8_t)(dio3Mask & 0x00FF);
WriteCommand(SX126X_CMD_SET_DIO_IRQ_PARAMS, buf, 8); // 0x08
}
void SetStopRxTimerOnPreambleDetect(bool enable)
{
ESP_LOGI(TAG, "SetStopRxTimerOnPreambleDetect enable=%d", enable);
//uint8_t data = (uint8_t)enable;
uint8_t data = 0;
if (enable) data = 1;
WriteCommand(SX126X_CMD_STOP_TIMER_ON_PREAMBLE, &data, 1); // 0x9F
}
void SetLoRaSymbNumTimeout(uint8_t SymbNum)
{
uint8_t data = SymbNum;
WriteCommand(SX126X_CMD_SET_LORA_SYMB_NUM_TIMEOUT, &data, 1); // 0xA0
}
void SetPacketType(uint8_t packetType)
{
uint8_t data = packetType;
WriteCommand(SX126X_CMD_SET_PACKET_TYPE, &data, 1); // 0x01
}
void SetModulationParams(uint8_t spreadingFactor, uint8_t bandwidth, uint8_t codingRate, uint8_t lowDataRateOptimize)
{
uint8_t data[4];
//currently only LoRa supported
data[0] = spreadingFactor;
data[1] = bandwidth;
data[2] = codingRate;
data[3] = lowDataRateOptimize;
WriteCommand(SX126X_CMD_SET_MODULATION_PARAMS, data, 4); // 0x8B
}
void SetCadParams(uint8_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, uint8_t cadExitMode, uint32_t cadTimeout)
{
uint8_t data[7];
data[0] = cadSymbolNum;
data[1] = cadDetPeak;
data[2] = cadDetMin;
data[3] = cadExitMode;
data[4] = (uint8_t)((cadTimeout >> 16) & 0xFF);
data[5] = (uint8_t)((cadTimeout >> 8) & 0xFF);
data[6] = (uint8_t)(cadTimeout & 0xFF);
WriteCommand(SX126X_CMD_SET_CAD_PARAMS, data, 7); // 0x88
}
void SetCad()
{
uint8_t data = 0;
WriteCommand(SX126X_CMD_SET_CAD, &data, 0); // 0xC5
}
uint16_t GetIrqStatus( void )
{
uint8_t data[3];
ReadCommand(SX126X_CMD_GET_IRQ_STATUS, data, 3); // 0x12
return (data[1] << 8) | data[2];
}
void ClearIrqStatus(uint16_t irq)
{
uint8_t buf[2];
buf[0] = (uint8_t)(((uint16_t)irq >> 8) & 0x00FF);
buf[1] = (uint8_t)((uint16_t)irq & 0x00FF);
WriteCommand(SX126X_CMD_CLEAR_IRQ_STATUS, buf, 2); // 0x02
}
void SetRx(uint32_t timeout)
{
if (debugPrint) {
ESP_LOGI(TAG, "----- SetRx timeout=%"PRIu32, timeout);
}
SetStandby(SX126X_STANDBY_RC);
uint8_t buf[3];
buf[0] = (uint8_t)((timeout >> 16) & 0xFF);
buf[1] = (uint8_t)((timeout >> 8) & 0xFF);
buf[2] = (uint8_t)(timeout & 0xFF);
WriteCommand(SX126X_CMD_SET_RX, buf, 3); // 0x82
for(int retry=0;retry<10;retry++) {
if ((GetStatus() & 0x70) == 0x50) break;
delay(1);
}
if ((GetStatus() & 0x70) != 0x50) {
ESP_LOGE(TAG, "SetRx Illegal Status");
LoRaError(ERR_INVALID_SETRX_STATE);
}
}
void SetTx(uint32_t timeoutInMs)
{
if (debugPrint) {
ESP_LOGI(TAG, "----- SetTx timeoutInMs=%"PRIu32, timeoutInMs);
}
SetStandby(SX126X_STANDBY_RC);
uint8_t buf[3];
uint32_t tout = timeoutInMs;
if (timeoutInMs != 0) {
uint32_t timeoutInUs = timeoutInMs * 1000;
tout = (uint32_t)(timeoutInUs / 0.015625);
}
if (debugPrint) {
ESP_LOGI(TAG, "SetTx timeoutInMs=%"PRIu32" tout=%"PRIu32, timeoutInMs, tout);
}
buf[0] = (uint8_t)((tout >> 16) & 0xFF);
buf[1] = (uint8_t)((tout >> 8) & 0xFF);
buf[2] = (uint8_t )(tout & 0xFF);
WriteCommand(SX126X_CMD_SET_TX, buf, 3); // 0x83
for(int retry=0;retry<10;retry++) {
if ((GetStatus() & 0x70) == 0x60) break;
vTaskDelay(1);
}
if ((GetStatus() & 0x70) != 0x60) {
ESP_LOGE(TAG, "SetTx Illegal Status");
LoRaError(ERR_INVALID_SETTX_STATE);
}
}
int GetPacketLost()
{
return txLost;
}
uint8_t GetRssiInst()
{
uint8_t buf[2];
ReadCommand( SX126X_CMD_GET_RSSI_INST, buf, 2 ); // 0x15
return buf[1];
}
void GetRxBufferStatus(uint8_t *payloadLength, uint8_t *rxStartBufferPointer)
{
uint8_t buf[3];
ReadCommand( SX126X_CMD_GET_RX_BUFFER_STATUS, buf, 3 ); // 0x13
*payloadLength = buf[1];
*rxStartBufferPointer = buf[2];
}
void WaitForIdleBegin(unsigned long timeout, char *text) {
// ensure BUSY is low (state meachine ready)
bool stop = false;
for (int retry=0;retry<10;retry++) {
if (retry == 9) stop = true;
bool ret = WaitForIdle(BUSY_WAIT, text, stop);
if (ret == true) break;
ESP_LOGW(TAG, "WaitForIdle fail retry=%d", retry);
vTaskDelay(1);
}
}
bool WaitForIdle(unsigned long timeout, char *text, bool stop)
{
bool ret = true;
TickType_t start = xTaskGetTickCount();
delayMicroseconds(1);
while(xTaskGetTickCount() - start < (timeout/portTICK_PERIOD_MS)) {
if (gpio_get_level(SX126x_BUSY) == 0) break;
delayMicroseconds(1);
}
if (gpio_get_level(SX126x_BUSY)) {
if (stop) {
ESP_LOGE(TAG, "WaitForIdle Timeout text=%s timeout=%lu start=%"PRIu32, text, timeout, start);
LoRaError(ERR_IDLE_TIMEOUT);
} else {
ESP_LOGW(TAG, "WaitForIdle Timeout text=%s timeout=%lu start=%"PRIu32, text, timeout, start);
ret = false;
}
}
return ret;
}
uint8_t ReadBuffer(uint8_t *rxData, int16_t rxDataLen)
{
uint8_t offset = 0;
uint8_t payloadLength = 0;
GetRxBufferStatus(&payloadLength, &offset);
if( payloadLength > rxDataLen )
{
ESP_LOGW(TAG, "ReadBuffer rxDataLen too small. payloadLength=%d rxDataLen=%d", payloadLength, rxDataLen);
return 0;
}
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "start ReadBuffer", true);
// start transfer
uint8_t *buf;
buf = malloc(payloadLength+3);
if (buf != NULL) {
buf[0] = SX126X_CMD_READ_BUFFER; // 0x1E
buf[1] = offset; // offset in rx fifo
buf[2] = SX126X_CMD_NOP;
memset(&buf[3], SX126X_CMD_NOP, payloadLength);
spi_read_byte(buf, buf, payloadLength+3);
memcpy(rxData, &buf[3], payloadLength);
free(buf);
} else {
ESP_LOGE(TAG, "ReadBuffer malloc fail");
payloadLength = 0;
}
// wait for BUSY to go low
WaitForIdle(BUSY_WAIT, "end ReadBuffer", false);
return payloadLength;
}
void WriteBuffer(uint8_t *txData, int16_t txDataLen)
{
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "start WriteBuffer", true);
// start transfer
uint8_t *buf;
buf = malloc(txDataLen+2);
if (buf != NULL) {
buf[0] = SX126X_CMD_WRITE_BUFFER; // 0x0E
buf[1] = 0; // offset in tx fifo
memcpy(&buf[2], txData, txDataLen);
spi_write_byte(buf, txDataLen+2);
free(buf);
} else {
ESP_LOGE(TAG, "WriteBuffer malloc fail");
}
// wait for BUSY to go low
WaitForIdle(BUSY_WAIT, "end WriteBuffer", false);
}
void WriteRegister(uint16_t reg, uint8_t* data, uint8_t numBytes) {
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "start WriteRegister", true);
if(debugPrint) {
ESP_LOGI(TAG, "WriteRegister: REG=0x%02x", reg);
for(uint8_t n = 0; n < numBytes; n++) {
ESP_LOGI(TAG, "DataOut:%02x ", data[n]);
}
}
// start transfer
uint8_t buf[16];
buf[0] = SX126X_CMD_WRITE_REGISTER;
buf[1] = (reg & 0xFF00) >> 8;
buf[2] = reg & 0xff;
memcpy(&buf[3], data, numBytes);
spi_write_byte(buf, 3 + numBytes);
// wait for BUSY to go low
WaitForIdle(BUSY_WAIT, "end WriteRegister", false);
}
void ReadRegister(uint16_t reg, uint8_t* data, uint8_t numBytes) {
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "start ReadRegister", true);
if(debugPrint) {
ESP_LOGI(TAG, "ReadRegister: REG=0x%02x", reg);
}
// start transfer
uint8_t buf[16];
memset(buf, SX126X_CMD_NOP, sizeof(buf));
buf[0] = SX126X_CMD_READ_REGISTER;
buf[1] = (reg & 0xFF00) >> 8;
buf[2] = reg & 0xff;
spi_read_byte(buf, buf, 4 + numBytes);
memcpy(data, &buf[4], numBytes);
if(debugPrint) {
for(uint8_t n = 0; n < numBytes; n++) {
ESP_LOGI(TAG, "DataIn:%02x ", data[n]);
}
}
// wait for BUSY to go low
WaitForIdle(BUSY_WAIT, "end ReadRegister", false);
}
// WriteCommand with retry
void WriteCommand(uint8_t cmd, uint8_t* data, uint8_t numBytes) {
uint8_t status;
for (int retry=1; retry<10; retry++) {
status = WriteCommand2(cmd, data, numBytes);
ESP_LOGD(TAG, "status=%02x", status);
if (status == 0) break;
ESP_LOGW(TAG, "WriteCommand2 status=%02x retry=%d", status, retry);
}
if (status != 0) {
ESP_LOGE(TAG, "SPI Transaction error:0x%02x", status);
LoRaError(ERR_SPI_TRANSACTION);
}
}
uint8_t WriteCommand2(uint8_t cmd, uint8_t* data, uint8_t numBytes) {
// ensure BUSY is low (state meachine ready)
WaitForIdle(BUSY_WAIT, "start WriteCommand2", true);
if(debugPrint) {
ESP_LOGI(TAG, "WriteCommand: CMD=0x%02x", cmd);
}
// start transfer
uint8_t buf[16];
buf[0] = cmd;
memcpy(&buf[1], data, numBytes);
spi_read_byte(buf, buf, numBytes + 1);
uint8_t status = 0;
uint8_t cmd_status = buf[1] & 0xe;
switch(cmd_status){
case SX126X_STATUS_CMD_TIMEOUT:
case SX126X_STATUS_CMD_INVALID:
case SX126X_STATUS_CMD_FAILED:
status = cmd_status;
break;
case 0:
case 7:
status = SX126X_STATUS_SPI_FAILED;
break;
// default: break; // success
}
// wait for BUSY to go low
WaitForIdle(BUSY_WAIT, "end WriteCommand2", false);
return status;
}
void ReadCommand(uint8_t cmd, uint8_t* data, uint8_t numBytes) {
// ensure BUSY is low (state meachine ready)
WaitForIdleBegin(BUSY_WAIT, "start ReadCommand");
if(debugPrint) {
ESP_LOGI(TAG, "ReadCommand: CMD=0x%02x", cmd);
}
// start transfer
uint8_t buf[16];
memset(buf, SX126X_CMD_NOP, sizeof(buf));
buf[0] = cmd;
spi_read_byte(buf, buf, 1 + numBytes);
if (data != NULL && numBytes)
memcpy(data, &buf[1], numBytes);
// wait for BUSY to go low
vTaskDelay(1);
WaitForIdle(BUSY_WAIT, "end ReadCommand", false);
}