mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-15 01:47:32 +01:00
813 lines
23 KiB
C
813 lines
23 KiB
C
|
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
||
|
// This file is part of the "Irrlicht Engine".
|
||
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
||
|
|
||
|
#ifndef __COLOR_H_INCLUDED__
|
||
|
#define __COLOR_H_INCLUDED__
|
||
|
|
||
|
#include "irrTypes.h"
|
||
|
#include "irrMath.h"
|
||
|
|
||
|
namespace irr
|
||
|
{
|
||
|
namespace video
|
||
|
{
|
||
|
//! An enum for the color format of textures used by the Irrlicht Engine.
|
||
|
/** A color format specifies how color information is stored.
|
||
|
NOTE: Byte order in memory is usually flipped (it's probably correct in bitmap files, but flipped on reading).
|
||
|
So for example ECF_A8R8G8B8 is BGRA in memory same as in DX9's D3DFMT_A8R8G8B8 format.
|
||
|
*/
|
||
|
enum ECOLOR_FORMAT
|
||
|
{
|
||
|
//! 16 bit color format used by the software driver.
|
||
|
/** It is thus preferred by all other irrlicht engine video drivers.
|
||
|
There are 5 bits for every color component, and a single bit is left
|
||
|
for alpha information. */
|
||
|
ECF_A1R5G5B5 = 0,
|
||
|
|
||
|
//! Standard 16 bit color format.
|
||
|
ECF_R5G6B5,
|
||
|
|
||
|
//! 24 bit color, no alpha channel, but 8 bit for red, green and blue.
|
||
|
//! Warning: 24 bit formats tend to be badly supported. Depending on driver it's usually converted to another
|
||
|
// format or even not working at all. It's mostly better to use 16-bit or 32-bit formats.
|
||
|
ECF_R8G8B8,
|
||
|
|
||
|
//! Default 32 bit color format. 8 bits are used for every component: red, green, blue and alpha.
|
||
|
//! Warning: This tends to be BGRA in memory (it's ARGB on file, but with usual big-endian memory it's flipped)
|
||
|
ECF_A8R8G8B8,
|
||
|
|
||
|
/** Compressed image formats. **/
|
||
|
|
||
|
//! DXT1 color format.
|
||
|
ECF_DXT1,
|
||
|
|
||
|
//! DXT2 color format.
|
||
|
ECF_DXT2,
|
||
|
|
||
|
//! DXT3 color format.
|
||
|
ECF_DXT3,
|
||
|
|
||
|
//! DXT4 color format.
|
||
|
ECF_DXT4,
|
||
|
|
||
|
//! DXT5 color format.
|
||
|
ECF_DXT5,
|
||
|
|
||
|
//! PVRTC RGB 2bpp.
|
||
|
ECF_PVRTC_RGB2,
|
||
|
|
||
|
//! PVRTC ARGB 2bpp.
|
||
|
ECF_PVRTC_ARGB2,
|
||
|
|
||
|
//! PVRTC RGB 4bpp.
|
||
|
ECF_PVRTC_RGB4,
|
||
|
|
||
|
//! PVRTC ARGB 4bpp.
|
||
|
ECF_PVRTC_ARGB4,
|
||
|
|
||
|
//! PVRTC2 ARGB 2bpp.
|
||
|
ECF_PVRTC2_ARGB2,
|
||
|
|
||
|
//! PVRTC2 ARGB 4bpp.
|
||
|
ECF_PVRTC2_ARGB4,
|
||
|
|
||
|
//! ETC1 RGB.
|
||
|
ECF_ETC1,
|
||
|
|
||
|
//! ETC2 RGB.
|
||
|
ECF_ETC2_RGB,
|
||
|
|
||
|
//! ETC2 ARGB.
|
||
|
ECF_ETC2_ARGB,
|
||
|
|
||
|
/** The following formats may only be used for render target textures. */
|
||
|
|
||
|
/** Floating point formats. */
|
||
|
|
||
|
//! 16 bit format using 16 bits for the red channel.
|
||
|
ECF_R16F,
|
||
|
|
||
|
//! 32 bit format using 16 bits for the red and green channels.
|
||
|
ECF_G16R16F,
|
||
|
|
||
|
//! 64 bit format using 16 bits for the red, green, blue and alpha channels.
|
||
|
ECF_A16B16G16R16F,
|
||
|
|
||
|
//! 32 bit format using 32 bits for the red channel.
|
||
|
ECF_R32F,
|
||
|
|
||
|
//! 64 bit format using 32 bits for the red and green channels.
|
||
|
ECF_G32R32F,
|
||
|
|
||
|
//! 128 bit format using 32 bits for the red, green, blue and alpha channels.
|
||
|
ECF_A32B32G32R32F,
|
||
|
|
||
|
/** Unsigned normalized integer formats. */
|
||
|
|
||
|
//! 8 bit format using 8 bits for the red channel.
|
||
|
ECF_R8,
|
||
|
|
||
|
//! 16 bit format using 8 bits for the red and green channels.
|
||
|
ECF_R8G8,
|
||
|
|
||
|
//! 16 bit format using 16 bits for the red channel.
|
||
|
ECF_R16,
|
||
|
|
||
|
//! 32 bit format using 16 bits for the red and green channels.
|
||
|
ECF_R16G16,
|
||
|
|
||
|
/** Depth and stencil formats. */
|
||
|
|
||
|
//! 16 bit format using 16 bits for depth.
|
||
|
ECF_D16,
|
||
|
|
||
|
//! 32 bit format using 32 bits for depth.
|
||
|
ECF_D32,
|
||
|
|
||
|
//! 32 bit format using 24 bits for depth and 8 bits for stencil.
|
||
|
ECF_D24S8,
|
||
|
|
||
|
//! Unknown color format:
|
||
|
ECF_UNKNOWN
|
||
|
};
|
||
|
|
||
|
//! Names for ECOLOR_FORMAT types
|
||
|
const c8* const ColorFormatNames[ECF_UNKNOWN+2] =
|
||
|
{
|
||
|
"A1R5G5B5",
|
||
|
"R5G6B5",
|
||
|
"R8G8B8",
|
||
|
"A8R8G8B8",
|
||
|
"DXT1",
|
||
|
"DXT2",
|
||
|
"DXT3",
|
||
|
"DXT4",
|
||
|
"DXT5",
|
||
|
"PVRTC_RGB2",
|
||
|
"PVRTC_ARGB2",
|
||
|
"PVRTC_RGB4",
|
||
|
"PVRTC_ARGB4",
|
||
|
"PVRTC2_ARGB2",
|
||
|
"PVRTC2_ARGB4",
|
||
|
"ETC1",
|
||
|
"ETC2_RGB",
|
||
|
"ETC2_ARGB",
|
||
|
"R16F",
|
||
|
"G16R16F",
|
||
|
"A16B16G16R16F",
|
||
|
"R32F",
|
||
|
"G32R32F",
|
||
|
"A32B32G32R32F",
|
||
|
"R8",
|
||
|
"R8G8",
|
||
|
"R16",
|
||
|
"R16G16",
|
||
|
"D16",
|
||
|
"D32",
|
||
|
"D24S8",
|
||
|
"UNKNOWN",
|
||
|
0
|
||
|
};
|
||
|
|
||
|
|
||
|
//! Creates a 16 bit A1R5G5B5 color
|
||
|
inline u16 RGBA16(u32 r, u32 g, u32 b, u32 a=0xFF)
|
||
|
{
|
||
|
return (u16)((a & 0x80) << 8 |
|
||
|
(r & 0xF8) << 7 |
|
||
|
(g & 0xF8) << 2 |
|
||
|
(b & 0xF8) >> 3);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Creates a 16 bit A1R5G5B5 color
|
||
|
inline u16 RGB16(u32 r, u32 g, u32 b)
|
||
|
{
|
||
|
return RGBA16(r,g,b);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Creates a 16bit A1R5G5B5 color, based on 16bit input values
|
||
|
inline u16 RGB16from16(u16 r, u16 g, u16 b)
|
||
|
{
|
||
|
return (0x8000 |
|
||
|
(r & 0x1F) << 10 |
|
||
|
(g & 0x1F) << 5 |
|
||
|
(b & 0x1F));
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Converts a 32bit (X8R8G8B8) color to a 16bit A1R5G5B5 color
|
||
|
inline u16 X8R8G8B8toA1R5G5B5(u32 color)
|
||
|
{
|
||
|
return (u16)(0x8000 |
|
||
|
( color & 0x00F80000) >> 9 |
|
||
|
( color & 0x0000F800) >> 6 |
|
||
|
( color & 0x000000F8) >> 3);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Converts a 32bit (A8R8G8B8) color to a 16bit A1R5G5B5 color
|
||
|
inline u16 A8R8G8B8toA1R5G5B5(u32 color)
|
||
|
{
|
||
|
return (u16)(( color & 0x80000000) >> 16|
|
||
|
( color & 0x00F80000) >> 9 |
|
||
|
( color & 0x0000F800) >> 6 |
|
||
|
( color & 0x000000F8) >> 3);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Converts a 32bit (A8R8G8B8) color to a 16bit R5G6B5 color
|
||
|
inline u16 A8R8G8B8toR5G6B5(u32 color)
|
||
|
{
|
||
|
return (u16)(( color & 0x00F80000) >> 8 |
|
||
|
( color & 0x0000FC00) >> 5 |
|
||
|
( color & 0x000000F8) >> 3);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Convert A8R8G8B8 Color from A1R5G5B5 color
|
||
|
/** build a nicer 32bit Color by extending dest lower bits with source high bits. */
|
||
|
inline u32 A1R5G5B5toA8R8G8B8(u16 color)
|
||
|
{
|
||
|
return ( (( -( (s32) color & 0x00008000 ) >> (s32) 31 ) & 0xFF000000 ) |
|
||
|
(( color & 0x00007C00 ) << 9) | (( color & 0x00007000 ) << 4) |
|
||
|
(( color & 0x000003E0 ) << 6) | (( color & 0x00000380 ) << 1) |
|
||
|
(( color & 0x0000001F ) << 3) | (( color & 0x0000001C ) >> 2)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns A8R8G8B8 Color from R5G6B5 color
|
||
|
inline u32 R5G6B5toA8R8G8B8(u16 color)
|
||
|
{
|
||
|
return 0xFF000000 |
|
||
|
((color & 0xF800) << 8)|
|
||
|
((color & 0x07E0) << 5)|
|
||
|
((color & 0x001F) << 3);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns A1R5G5B5 Color from R5G6B5 color
|
||
|
inline u16 R5G6B5toA1R5G5B5(u16 color)
|
||
|
{
|
||
|
return 0x8000 | (((color & 0xFFC0) >> 1) | (color & 0x1F));
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns R5G6B5 Color from A1R5G5B5 color
|
||
|
inline u16 A1R5G5B5toR5G6B5(u16 color)
|
||
|
{
|
||
|
return (((color & 0x7FE0) << 1) | (color & 0x1F));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//! Returns the alpha component from A1R5G5B5 color
|
||
|
/** In Irrlicht, alpha refers to opacity.
|
||
|
\return The alpha value of the color. 0 is transparent, 1 is opaque. */
|
||
|
inline u32 getAlpha(u16 color)
|
||
|
{
|
||
|
return ((color >> 15)&0x1);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns the red component from A1R5G5B5 color.
|
||
|
/** Shift left by 3 to get 8 bit value. */
|
||
|
inline u32 getRed(u16 color)
|
||
|
{
|
||
|
return ((color >> 10)&0x1F);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns the green component from A1R5G5B5 color
|
||
|
/** Shift left by 3 to get 8 bit value. */
|
||
|
inline u32 getGreen(u16 color)
|
||
|
{
|
||
|
return ((color >> 5)&0x1F);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns the blue component from A1R5G5B5 color
|
||
|
/** Shift left by 3 to get 8 bit value. */
|
||
|
inline u32 getBlue(u16 color)
|
||
|
{
|
||
|
return (color & 0x1F);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Returns the average from a 16 bit A1R5G5B5 color
|
||
|
inline s32 getAverage(s16 color)
|
||
|
{
|
||
|
return ((getRed(color)<<3) + (getGreen(color)<<3) + (getBlue(color)<<3)) / 3;
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Class representing a 32 bit ARGB color.
|
||
|
/** The color values for alpha, red, green, and blue are
|
||
|
stored in a single u32. So all four values may be between 0 and 255.
|
||
|
Alpha in Irrlicht is opacity, so 0 is fully transparent, 255 is fully opaque (solid).
|
||
|
This class is used by most parts of the Irrlicht Engine
|
||
|
to specify a color. Another way is using the class SColorf, which
|
||
|
stores the color values in 4 floats.
|
||
|
This class must consist of only one u32 and must not use virtual functions.
|
||
|
*/
|
||
|
class SColor
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
//! Constructor of the Color. Does nothing.
|
||
|
/** The color value is not initialized to save time. */
|
||
|
SColor() {}
|
||
|
|
||
|
//! Constructs the color from 4 values representing the alpha, red, green and blue component.
|
||
|
/** Must be values between 0 and 255. */
|
||
|
SColor (u32 a, u32 r, u32 g, u32 b)
|
||
|
: color(((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff)) {}
|
||
|
|
||
|
//! Constructs the color from a 32 bit value. Could be another color.
|
||
|
SColor(u32 clr)
|
||
|
: color(clr) {}
|
||
|
|
||
|
//! Returns the alpha component of the color.
|
||
|
/** The alpha component defines how opaque a color is.
|
||
|
\return The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
|
||
|
u32 getAlpha() const { return color>>24; }
|
||
|
|
||
|
//! Returns the red component of the color.
|
||
|
/** \return Value between 0 and 255, specifying how red the color is.
|
||
|
0 means no red, 255 means full red. */
|
||
|
u32 getRed() const { return (color>>16) & 0xff; }
|
||
|
|
||
|
//! Returns the green component of the color.
|
||
|
/** \return Value between 0 and 255, specifying how green the color is.
|
||
|
0 means no green, 255 means full green. */
|
||
|
u32 getGreen() const { return (color>>8) & 0xff; }
|
||
|
|
||
|
//! Returns the blue component of the color.
|
||
|
/** \return Value between 0 and 255, specifying how blue the color is.
|
||
|
0 means no blue, 255 means full blue. */
|
||
|
u32 getBlue() const { return color & 0xff; }
|
||
|
|
||
|
//! Get lightness of the color in the range [0,255]
|
||
|
f32 getLightness() const
|
||
|
{
|
||
|
return 0.5f*(core::max_(core::max_(getRed(),getGreen()),getBlue())+core::min_(core::min_(getRed(),getGreen()),getBlue()));
|
||
|
}
|
||
|
|
||
|
//! Get luminance of the color in the range [0,255].
|
||
|
f32 getLuminance() const
|
||
|
{
|
||
|
return 0.3f*getRed() + 0.59f*getGreen() + 0.11f*getBlue();
|
||
|
}
|
||
|
|
||
|
//! Get average intensity of the color in the range [0,255].
|
||
|
u32 getAverage() const
|
||
|
{
|
||
|
return ( getRed() + getGreen() + getBlue() ) / 3;
|
||
|
}
|
||
|
|
||
|
//! Sets the alpha component of the Color.
|
||
|
/** The alpha component defines how transparent a color should be.
|
||
|
\param a The alpha value of the color. 0 is fully transparent, 255 is fully opaque. */
|
||
|
void setAlpha(u32 a) { color = ((a & 0xff)<<24) | (color & 0x00ffffff); }
|
||
|
|
||
|
//! Sets the red component of the Color.
|
||
|
/** \param r: Has to be a value between 0 and 255.
|
||
|
0 means no red, 255 means full red. */
|
||
|
void setRed(u32 r) { color = ((r & 0xff)<<16) | (color & 0xff00ffff); }
|
||
|
|
||
|
//! Sets the green component of the Color.
|
||
|
/** \param g: Has to be a value between 0 and 255.
|
||
|
0 means no green, 255 means full green. */
|
||
|
void setGreen(u32 g) { color = ((g & 0xff)<<8) | (color & 0xffff00ff); }
|
||
|
|
||
|
//! Sets the blue component of the Color.
|
||
|
/** \param b: Has to be a value between 0 and 255.
|
||
|
0 means no blue, 255 means full blue. */
|
||
|
void setBlue(u32 b) { color = (b & 0xff) | (color & 0xffffff00); }
|
||
|
|
||
|
//! Calculates a 16 bit A1R5G5B5 value of this color.
|
||
|
/** \return 16 bit A1R5G5B5 value of this color. */
|
||
|
u16 toA1R5G5B5() const { return A8R8G8B8toA1R5G5B5(color); }
|
||
|
|
||
|
//! Converts color to OpenGL color format
|
||
|
/** From ARGB to RGBA in 4 byte components for endian aware
|
||
|
passing to OpenGL
|
||
|
\param dest: address where the 4x8 bit OpenGL color is stored. */
|
||
|
void toOpenGLColor(u8* dest) const
|
||
|
{
|
||
|
*dest = (u8)getRed();
|
||
|
*++dest = (u8)getGreen();
|
||
|
*++dest = (u8)getBlue();
|
||
|
*++dest = (u8)getAlpha();
|
||
|
}
|
||
|
|
||
|
//! Sets all four components of the color at once.
|
||
|
/** Constructs the color from 4 values representing the alpha,
|
||
|
red, green and blue components of the color. Must be values
|
||
|
between 0 and 255.
|
||
|
\param a: Alpha component of the color. The alpha component
|
||
|
defines how transparent a color should be. Has to be a value
|
||
|
between 0 and 255. 255 means not transparent (opaque), 0 means
|
||
|
fully transparent.
|
||
|
\param r: Sets the red component of the Color. Has to be a
|
||
|
value between 0 and 255. 0 means no red, 255 means full red.
|
||
|
\param g: Sets the green component of the Color. Has to be a
|
||
|
value between 0 and 255. 0 means no green, 255 means full
|
||
|
green.
|
||
|
\param b: Sets the blue component of the Color. Has to be a
|
||
|
value between 0 and 255. 0 means no blue, 255 means full blue. */
|
||
|
void set(u32 a, u32 r, u32 g, u32 b)
|
||
|
{
|
||
|
color = (((a & 0xff)<<24) | ((r & 0xff)<<16) | ((g & 0xff)<<8) | (b & 0xff));
|
||
|
}
|
||
|
void set(u32 col) { color = col; }
|
||
|
|
||
|
//! Compares the color to another color.
|
||
|
/** \return True if the colors are the same, and false if not. */
|
||
|
bool operator==(const SColor& other) const { return other.color == color; }
|
||
|
|
||
|
//! Compares the color to another color.
|
||
|
/** \return True if the colors are different, and false if they are the same. */
|
||
|
bool operator!=(const SColor& other) const { return other.color != color; }
|
||
|
|
||
|
//! comparison operator
|
||
|
/** \return True if this color is smaller than the other one */
|
||
|
bool operator<(const SColor& other) const { return (color < other.color); }
|
||
|
|
||
|
//! Adds two colors, result is clamped to 0..255 values
|
||
|
/** \param other Color to add to this color
|
||
|
\return Addition of the two colors, clamped to 0..255 values */
|
||
|
SColor operator+(const SColor& other) const
|
||
|
{
|
||
|
return SColor(core::min_(getAlpha() + other.getAlpha(), 255u),
|
||
|
core::min_(getRed() + other.getRed(), 255u),
|
||
|
core::min_(getGreen() + other.getGreen(), 255u),
|
||
|
core::min_(getBlue() + other.getBlue(), 255u));
|
||
|
}
|
||
|
|
||
|
//! Interpolates the color with a f32 value to another color
|
||
|
/** \param other: Other color
|
||
|
\param d: value between 0.0f and 1.0f. d=0 returns other, d=1 returns this, values between interpolate.
|
||
|
\return Interpolated color. */
|
||
|
SColor getInterpolated(const SColor &other, f32 d) const
|
||
|
{
|
||
|
d = core::clamp(d, 0.f, 1.f);
|
||
|
const f32 inv = 1.0f - d;
|
||
|
return SColor((u32)core::round32(other.getAlpha()*inv + getAlpha()*d),
|
||
|
(u32)core::round32(other.getRed()*inv + getRed()*d),
|
||
|
(u32)core::round32(other.getGreen()*inv + getGreen()*d),
|
||
|
(u32)core::round32(other.getBlue()*inv + getBlue()*d));
|
||
|
}
|
||
|
|
||
|
//! Returns interpolated color. ( quadratic )
|
||
|
/** \param c1: first color to interpolate with
|
||
|
\param c2: second color to interpolate with
|
||
|
\param d: value between 0.0f and 1.0f. */
|
||
|
SColor getInterpolated_quadratic(const SColor& c1, const SColor& c2, f32 d) const
|
||
|
{
|
||
|
// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
|
||
|
d = core::clamp(d, 0.f, 1.f);
|
||
|
const f32 inv = 1.f - d;
|
||
|
const f32 mul0 = inv * inv;
|
||
|
const f32 mul1 = 2.f * d * inv;
|
||
|
const f32 mul2 = d * d;
|
||
|
|
||
|
return SColor(
|
||
|
core::clamp( core::floor32(
|
||
|
getAlpha() * mul0 + c1.getAlpha() * mul1 + c2.getAlpha() * mul2 ), 0, 255 ),
|
||
|
core::clamp( core::floor32(
|
||
|
getRed() * mul0 + c1.getRed() * mul1 + c2.getRed() * mul2 ), 0, 255 ),
|
||
|
core::clamp ( core::floor32(
|
||
|
getGreen() * mul0 + c1.getGreen() * mul1 + c2.getGreen() * mul2 ), 0, 255 ),
|
||
|
core::clamp ( core::floor32(
|
||
|
getBlue() * mul0 + c1.getBlue() * mul1 + c2.getBlue() * mul2 ), 0, 255 ));
|
||
|
}
|
||
|
|
||
|
//! set the color by expecting data in the given format
|
||
|
/** \param data: must point to valid memory containing color information in the given format
|
||
|
\param format: tells the format in which data is available
|
||
|
*/
|
||
|
void setData(const void *data, ECOLOR_FORMAT format)
|
||
|
{
|
||
|
switch (format)
|
||
|
{
|
||
|
case ECF_A1R5G5B5:
|
||
|
color = A1R5G5B5toA8R8G8B8(*(u16*)data);
|
||
|
break;
|
||
|
case ECF_R5G6B5:
|
||
|
color = R5G6B5toA8R8G8B8(*(u16*)data);
|
||
|
break;
|
||
|
case ECF_A8R8G8B8:
|
||
|
color = *(u32*)data;
|
||
|
break;
|
||
|
case ECF_R8G8B8:
|
||
|
{
|
||
|
const u8* p = (u8*)data;
|
||
|
set(255, p[0],p[1],p[2]);
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
color = 0xffffffff;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! Write the color to data in the defined format
|
||
|
/** \param data: target to write the color. Must contain sufficiently large memory to receive the number of bytes neede for format
|
||
|
\param format: tells the format used to write the color into data
|
||
|
*/
|
||
|
void getData(void *data, ECOLOR_FORMAT format) const
|
||
|
{
|
||
|
switch(format)
|
||
|
{
|
||
|
case ECF_A1R5G5B5:
|
||
|
{
|
||
|
u16 * dest = (u16*)data;
|
||
|
*dest = video::A8R8G8B8toA1R5G5B5( color );
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case ECF_R5G6B5:
|
||
|
{
|
||
|
u16 * dest = (u16*)data;
|
||
|
*dest = video::A8R8G8B8toR5G6B5( color );
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case ECF_R8G8B8:
|
||
|
{
|
||
|
u8* dest = (u8*)data;
|
||
|
dest[0] = (u8)getRed();
|
||
|
dest[1] = (u8)getGreen();
|
||
|
dest[2] = (u8)getBlue();
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case ECF_A8R8G8B8:
|
||
|
{
|
||
|
u32 * dest = (u32*)data;
|
||
|
*dest = color;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! color in A8R8G8B8 Format
|
||
|
u32 color;
|
||
|
};
|
||
|
|
||
|
|
||
|
//! Class representing a color with four floats.
|
||
|
/** The color values for red, green, blue
|
||
|
and alpha are each stored in a 32 bit floating point variable.
|
||
|
So all four values may be between 0.0f and 1.0f.
|
||
|
Another, faster way to define colors is using the class SColor, which
|
||
|
stores the color values in a single 32 bit integer.
|
||
|
*/
|
||
|
class SColorf
|
||
|
{
|
||
|
public:
|
||
|
//! Default constructor for SColorf.
|
||
|
/** Sets red, green and blue to 0.0f and alpha to 1.0f. */
|
||
|
SColorf() : r(0.0f), g(0.0f), b(0.0f), a(1.0f) {}
|
||
|
|
||
|
//! Constructs a color from up to four color values: red, green, blue, and alpha.
|
||
|
/** \param r: Red color component. Should be a value between
|
||
|
0.0f meaning no red and 1.0f, meaning full red.
|
||
|
\param g: Green color component. Should be a value between 0.0f
|
||
|
meaning no green and 1.0f, meaning full green.
|
||
|
\param b: Blue color component. Should be a value between 0.0f
|
||
|
meaning no blue and 1.0f, meaning full blue.
|
||
|
\param a: Alpha color component of the color. The alpha
|
||
|
component defines how transparent a color should be. Has to be
|
||
|
a value between 0.0f and 1.0f, 1.0f means not transparent
|
||
|
(opaque), 0.0f means fully transparent. */
|
||
|
SColorf(f32 r, f32 g, f32 b, f32 a = 1.0f) : r(r), g(g), b(b), a(a) {}
|
||
|
|
||
|
//! Constructs a color from 32 bit Color.
|
||
|
/** \param c: 32 bit color from which this SColorf class is
|
||
|
constructed from. */
|
||
|
SColorf(SColor c)
|
||
|
{
|
||
|
const f32 inv = 1.0f / 255.0f;
|
||
|
r = c.getRed() * inv;
|
||
|
g = c.getGreen() * inv;
|
||
|
b = c.getBlue() * inv;
|
||
|
a = c.getAlpha() * inv;
|
||
|
}
|
||
|
|
||
|
//! Converts this color to a SColor without floats.
|
||
|
SColor toSColor() const
|
||
|
{
|
||
|
return SColor((u32)core::round32(a*255.0f), (u32)core::round32(r*255.0f), (u32)core::round32(g*255.0f), (u32)core::round32(b*255.0f));
|
||
|
}
|
||
|
|
||
|
//! Sets three color components to new values at once.
|
||
|
/** \param rr: Red color component. Should be a value between 0.0f meaning
|
||
|
no red (=black) and 1.0f, meaning full red.
|
||
|
\param gg: Green color component. Should be a value between 0.0f meaning
|
||
|
no green (=black) and 1.0f, meaning full green.
|
||
|
\param bb: Blue color component. Should be a value between 0.0f meaning
|
||
|
no blue (=black) and 1.0f, meaning full blue. */
|
||
|
void set(f32 rr, f32 gg, f32 bb) {r = rr; g =gg; b = bb; }
|
||
|
|
||
|
//! Sets all four color components to new values at once.
|
||
|
/** \param aa: Alpha component. Should be a value between 0.0f meaning
|
||
|
fully transparent and 1.0f, meaning opaque.
|
||
|
\param rr: Red color component. Should be a value between 0.0f meaning
|
||
|
no red and 1.0f, meaning full red.
|
||
|
\param gg: Green color component. Should be a value between 0.0f meaning
|
||
|
no green and 1.0f, meaning full green.
|
||
|
\param bb: Blue color component. Should be a value between 0.0f meaning
|
||
|
no blue and 1.0f, meaning full blue. */
|
||
|
void set(f32 aa, f32 rr, f32 gg, f32 bb) {a = aa; r = rr; g =gg; b = bb; }
|
||
|
|
||
|
//! Interpolates the color with a f32 value to another color
|
||
|
/** \param other: Other color
|
||
|
\param d: value between 0.0f and 1.0f
|
||
|
\return Interpolated color. */
|
||
|
SColorf getInterpolated(const SColorf &other, f32 d) const
|
||
|
{
|
||
|
d = core::clamp(d, 0.f, 1.f);
|
||
|
const f32 inv = 1.0f - d;
|
||
|
return SColorf(other.r*inv + r*d,
|
||
|
other.g*inv + g*d, other.b*inv + b*d, other.a*inv + a*d);
|
||
|
}
|
||
|
|
||
|
//! Returns interpolated color. ( quadratic )
|
||
|
/** \param c1: first color to interpolate with
|
||
|
\param c2: second color to interpolate with
|
||
|
\param d: value between 0.0f and 1.0f. */
|
||
|
inline SColorf getInterpolated_quadratic(const SColorf& c1, const SColorf& c2,
|
||
|
f32 d) const
|
||
|
{
|
||
|
d = core::clamp(d, 0.f, 1.f);
|
||
|
// this*(1-d)*(1-d) + 2 * c1 * (1-d) + c2 * d * d;
|
||
|
const f32 inv = 1.f - d;
|
||
|
const f32 mul0 = inv * inv;
|
||
|
const f32 mul1 = 2.f * d * inv;
|
||
|
const f32 mul2 = d * d;
|
||
|
|
||
|
return SColorf (r * mul0 + c1.r * mul1 + c2.r * mul2,
|
||
|
g * mul0 + c1.g * mul1 + c2.g * mul2,
|
||
|
b * mul0 + c1.b * mul1 + c2.b * mul2,
|
||
|
a * mul0 + c1.a * mul1 + c2.a * mul2);
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Sets a color component by index. R=0, G=1, B=2, A=3
|
||
|
void setColorComponentValue(s32 index, f32 value)
|
||
|
{
|
||
|
switch(index)
|
||
|
{
|
||
|
case 0: r = value; break;
|
||
|
case 1: g = value; break;
|
||
|
case 2: b = value; break;
|
||
|
case 3: a = value; break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! Returns the alpha component of the color in the range 0.0 (transparent) to 1.0 (opaque)
|
||
|
f32 getAlpha() const { return a; }
|
||
|
|
||
|
//! Returns the red component of the color in the range 0.0 to 1.0
|
||
|
f32 getRed() const { return r; }
|
||
|
|
||
|
//! Returns the green component of the color in the range 0.0 to 1.0
|
||
|
f32 getGreen() const { return g; }
|
||
|
|
||
|
//! Returns the blue component of the color in the range 0.0 to 1.0
|
||
|
f32 getBlue() const { return b; }
|
||
|
|
||
|
//! red color component
|
||
|
f32 r;
|
||
|
|
||
|
//! green color component
|
||
|
f32 g;
|
||
|
|
||
|
//! blue component
|
||
|
f32 b;
|
||
|
|
||
|
//! alpha color component
|
||
|
f32 a;
|
||
|
};
|
||
|
|
||
|
|
||
|
//! Class representing a color in HSL format
|
||
|
/** The color values for hue, saturation, luminance
|
||
|
are stored in 32bit floating point variables. Hue is in range [0,360],
|
||
|
Luminance and Saturation are in percent [0,100]
|
||
|
*/
|
||
|
class SColorHSL
|
||
|
{
|
||
|
public:
|
||
|
SColorHSL ( f32 h = 0.f, f32 s = 0.f, f32 l = 0.f )
|
||
|
: Hue ( h ), Saturation ( s ), Luminance ( l ) {}
|
||
|
|
||
|
void fromRGB(const SColorf &color);
|
||
|
void toRGB(SColorf &color) const;
|
||
|
|
||
|
f32 Hue;
|
||
|
f32 Saturation;
|
||
|
f32 Luminance;
|
||
|
|
||
|
private:
|
||
|
inline f32 toRGB1(f32 rm1, f32 rm2, f32 rh) const;
|
||
|
|
||
|
};
|
||
|
|
||
|
inline void SColorHSL::fromRGB(const SColorf &color)
|
||
|
{
|
||
|
const f32 maxVal = core::max_(color.getRed(), color.getGreen(), color.getBlue());
|
||
|
const f32 minVal = (f32)core::min_(color.getRed(), color.getGreen(), color.getBlue());
|
||
|
Luminance = (maxVal+minVal)*50;
|
||
|
if (core::equals(maxVal, minVal))
|
||
|
{
|
||
|
Hue=0.f;
|
||
|
Saturation=0.f;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const f32 delta = maxVal-minVal;
|
||
|
if ( Luminance <= 50 )
|
||
|
{
|
||
|
Saturation = (delta)/(maxVal+minVal);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Saturation = (delta)/(2-maxVal-minVal);
|
||
|
}
|
||
|
Saturation *= 100;
|
||
|
|
||
|
if (core::equals(maxVal, color.getRed()))
|
||
|
Hue = (color.getGreen()-color.getBlue())/delta;
|
||
|
else if (core::equals(maxVal, color.getGreen()))
|
||
|
Hue = 2+((color.getBlue()-color.getRed())/delta);
|
||
|
else // blue is max
|
||
|
Hue = 4+((color.getRed()-color.getGreen())/delta);
|
||
|
|
||
|
Hue *= 60.0f;
|
||
|
while ( Hue < 0.f )
|
||
|
Hue += 360;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void SColorHSL::toRGB(SColorf &color) const
|
||
|
{
|
||
|
const f32 l = Luminance/100;
|
||
|
if (core::iszero(Saturation)) // grey
|
||
|
{
|
||
|
color.set(l, l, l);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
f32 rm2;
|
||
|
|
||
|
if ( Luminance <= 50 )
|
||
|
{
|
||
|
rm2 = l + l * (Saturation/100);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rm2 = l + (1 - l) * (Saturation/100);
|
||
|
}
|
||
|
|
||
|
const f32 rm1 = 2.0f * l - rm2;
|
||
|
|
||
|
const f32 h = Hue / 360.0f;
|
||
|
color.set( toRGB1(rm1, rm2, h + 1.f/3.f),
|
||
|
toRGB1(rm1, rm2, h),
|
||
|
toRGB1(rm1, rm2, h - 1.f/3.f)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
// algorithm from Foley/Van-Dam
|
||
|
inline f32 SColorHSL::toRGB1(f32 rm1, f32 rm2, f32 rh) const
|
||
|
{
|
||
|
if (rh<0)
|
||
|
rh += 1;
|
||
|
if (rh>1)
|
||
|
rh -= 1;
|
||
|
|
||
|
if (rh < 1.f/6.f)
|
||
|
rm1 = rm1 + (rm2 - rm1) * rh*6.f;
|
||
|
else if (rh < 0.5f)
|
||
|
rm1 = rm2;
|
||
|
else if (rh < 2.f/3.f)
|
||
|
rm1 = rm1 + (rm2 - rm1) * ((2.f/3.f)-rh)*6.f;
|
||
|
|
||
|
return rm1;
|
||
|
}
|
||
|
|
||
|
} // end namespace video
|
||
|
} // end namespace irr
|
||
|
|
||
|
#endif
|