irrlicht/source/Irrlicht/CParticleMeshEmitter.cpp

196 lines
5.6 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CParticleMeshEmitter.h"
#include "IrrCompileConfig.h"
#ifdef _IRR_COMPILE_WITH_PARTICLES_
#include "os.h"
#include "IMeshBuffer.h"
namespace irr
{
namespace scene
{
//! constructor
CParticleMeshEmitter::CParticleMeshEmitter(
IMesh* mesh, bool useNormalDirection,
const core::vector3df& direction, f32 normalDirectionModifier,
s32 mbNumber, bool everyMeshVertex,
u32 minParticlesPerSecond, u32 maxParticlesPerSecond,
const video::SColor& minStartColor, const video::SColor& maxStartColor,
u32 lifeTimeMin, u32 lifeTimeMax, s32 maxAngleDegrees,
const core::dimension2df& minStartSize,
const core::dimension2df& maxStartSize )
: Mesh(0), TotalVertices(0), MBCount(0), MBNumber(mbNumber),
NormalDirectionModifier(normalDirectionModifier), Direction(direction),
MaxStartSize(maxStartSize), MinStartSize(minStartSize),
MinParticlesPerSecond(minParticlesPerSecond), MaxParticlesPerSecond(maxParticlesPerSecond),
MinStartColor(minStartColor), MaxStartColor(maxStartColor),
MinLifeTime(lifeTimeMin), MaxLifeTime(lifeTimeMax),
Time(0), MaxAngleDegrees(maxAngleDegrees),
EveryMeshVertex(everyMeshVertex), UseNormalDirection(useNormalDirection)
{
#ifdef _DEBUG
setDebugName("CParticleMeshEmitter");
#endif
setMesh(mesh);
}
//! Prepares an array with new particles to emitt into the system
//! and returns how much new particles there are.
s32 CParticleMeshEmitter::emitt(u32 now, u32 timeSinceLastCall, SParticle*& outArray)
{
Time += timeSinceLastCall;
const u32 pps = (MaxParticlesPerSecond - MinParticlesPerSecond);
const f32 perSecond = pps ? ((f32)MinParticlesPerSecond + os::Randomizer::frand() * pps) : MinParticlesPerSecond;
const f32 everyWhatMillisecond = 1000.0f / perSecond;
if(Time > everyWhatMillisecond)
{
Particles.set_used(0);
u32 amount = (u32)((Time / everyWhatMillisecond) + 0.5f);
Time = 0;
SParticle p;
if(amount > MaxParticlesPerSecond * 2)
amount = MaxParticlesPerSecond * 2;
for(u32 i=0; i<amount; ++i)
{
if( EveryMeshVertex )
{
for( u32 j=0; j<Mesh->getMeshBufferCount(); ++j )
{
for( u32 k=0; k<Mesh->getMeshBuffer(j)->getVertexCount(); ++k )
{
p.pos = Mesh->getMeshBuffer(j)->getPosition(k);
if( UseNormalDirection )
p.vector = Mesh->getMeshBuffer(j)->getNormal(k) /
NormalDirectionModifier;
else
p.vector = Direction;
p.startTime = now;
if( MaxAngleDegrees )
{
core::vector3df tgt = p.vector;
tgt.rotateXYBy(os::Randomizer::frand() * MaxAngleDegrees);
tgt.rotateYZBy(os::Randomizer::frand() * MaxAngleDegrees);
tgt.rotateXZBy(os::Randomizer::frand() * MaxAngleDegrees);
p.vector = tgt;
}
p.endTime = now + MinLifeTime;
if (MaxLifeTime != MinLifeTime)
p.endTime += os::Randomizer::rand() % (MaxLifeTime - MinLifeTime);
if (MinStartColor==MaxStartColor)
p.color=MinStartColor;
else
p.color = MinStartColor.getInterpolated(MaxStartColor, os::Randomizer::frand());
p.startColor = p.color;
p.startVector = p.vector;
if (MinStartSize==MaxStartSize)
p.startSize = MinStartSize;
else
p.startSize = MinStartSize.getInterpolated(MaxStartSize, os::Randomizer::frand());
p.size = p.startSize;
Particles.push_back(p);
}
}
}
else
{
const s32 randomMB = (MBNumber < 0) ? (os::Randomizer::rand() % MBCount) : MBNumber;
u32 vertexNumber = Mesh->getMeshBuffer(randomMB)->getVertexCount();
if (!vertexNumber)
continue;
vertexNumber = os::Randomizer::rand() % vertexNumber;
p.pos = Mesh->getMeshBuffer(randomMB)->getPosition(vertexNumber);
if( UseNormalDirection )
p.vector = Mesh->getMeshBuffer(randomMB)->getNormal(vertexNumber) /
NormalDirectionModifier;
else
p.vector = Direction;
p.startTime = now;
if( MaxAngleDegrees )
{
core::vector3df tgt = Direction;
tgt.rotateXYBy(os::Randomizer::frand() * MaxAngleDegrees);
tgt.rotateYZBy(os::Randomizer::frand() * MaxAngleDegrees);
tgt.rotateXZBy(os::Randomizer::frand() * MaxAngleDegrees);
p.vector = tgt;
}
p.endTime = now + MinLifeTime;
if (MaxLifeTime != MinLifeTime)
p.endTime += os::Randomizer::rand() % (MaxLifeTime - MinLifeTime);
if (MinStartColor==MaxStartColor)
p.color=MinStartColor;
else
p.color = MinStartColor.getInterpolated(MaxStartColor, os::Randomizer::frand());
p.startColor = p.color;
p.startVector = p.vector;
if (MinStartSize==MaxStartSize)
p.startSize = MinStartSize;
else
p.startSize = MinStartSize.getInterpolated(MaxStartSize, os::Randomizer::frand());
p.size = p.startSize;
Particles.push_back(p);
}
}
outArray = Particles.pointer();
return Particles.size();
}
return 0;
}
//! Set Mesh to emit particles from
void CParticleMeshEmitter::setMesh(IMesh* mesh)
{
Mesh = mesh;
TotalVertices = 0;
MBCount = 0;
VertexPerMeshBufferList.clear();
if ( !Mesh )
return;
MBCount = Mesh->getMeshBufferCount();
VertexPerMeshBufferList.reallocate(MBCount);
for( u32 i = 0; i < MBCount; ++i )
{
VertexPerMeshBufferList.push_back( Mesh->getMeshBuffer(i)->getVertexCount() );
TotalVertices += Mesh->getMeshBuffer(i)->getVertexCount();
}
}
} // end namespace scene
} // end namespace irr
#endif // _IRR_COMPILE_WITH_PARTICLES_