irrlicht/source/Irrlicht/CGeometryCreator.cpp

1278 lines
40 KiB
C++
Raw Normal View History

// Copyright (C) 2002-2012 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "CGeometryCreator.h"
#include "SMesh.h"
#include "IMesh.h"
#include "IVideoDriver.h"
#include "os.h"
namespace irr
{
namespace scene
{
IMesh* CGeometryCreator::createCubeMesh(const core::vector3df& size, ECUBE_MESH_TYPE type) const
{
SMesh* mesh = new SMesh;
const video::SColor clr(255,255,255,255);
if ( type == ECMT_1BUF_12VTX_NA )
{
SMeshBuffer* buffer = new SMeshBuffer();
// Create indices (pos, neg describes normal direction of front-face)
const u16 u[36] = { 0,2,1, 0,3,2, // NEG_Z
1,5,4, 1,2,5, // POS_X
4,6,7, 4,5,6, // POS_Z
7,3,0, 7,6,3, // NEG_X
9,5,2, 9,8,5, // POS_Y
0,11,10, 0,10,7}; // NEG_Y
buffer->Indices.set_used(36);
for (u32 i=0; i<36; ++i)
buffer->Indices[i] = u[i];
// Create vertices
buffer->Vertices.reallocate(12);
buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1,-1,-1, clr, 0, 1)); // 0
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1,-1,-1, clr, 1, 1)); // 1
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 1,-1, clr, 1, 0)); // 2
buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 1,-1, clr, 0, 0)); // 3
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1,-1, 1, clr, 0, 1)); // 4
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 1, 1, clr, 0, 0)); // 5
buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 1, 1, clr, 1, 0)); // 6
buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1,-1, 1, clr, 1, 1)); // 7
buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 1, 1, clr, 0, 1)); // 8
buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 1,-1, clr, 1, 1)); // 9
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1,-1, 1, clr, 1, 0)); // 10
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1,-1,-1, clr, 0, 0)); // 11
// Recalculate bounding box and set cube size
buffer->BoundingBox.reset(0,0,0);
for (u32 i=0; i<12; ++i)
{
buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f);
buffer->Vertices[i].Pos *= size;
buffer->Vertices[i].Normal.normalize();
buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos);
}
mesh->addMeshBuffer(buffer);
buffer->drop();
}
else if ( type == ECMT_6BUF_4VTX_NP )
{
for ( int b=0; b<6; ++b )
{
SMeshBuffer* buffer = new SMeshBuffer();
// Create indices
const u16 u[6] = { 0,2,1,0,3,2};
buffer->Indices.set_used(6);
for ( int i=0; i<6; ++i )
buffer->Indices[i] = u[i];
// Create vertices
buffer->Vertices.reallocate(4);
switch ( b )
{
case 0:
buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, 0,-1, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, 0,-1, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 0,-1, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 0,-1, clr, 0, 0));
break;
case 1:
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1, 0, 0, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1, 0, 0, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 0, 0, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 0, 0, clr, 0, 0));
break;
case 2:
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, 0, 1, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, 0, 1, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 0, 1, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 0, 1, clr, 0, 0));
break;
case 3:
buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1, 0, 0, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1, 0, 0, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 0, 0, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 0, 0, clr, 0, 0));
break;
case 4:
buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 1, 0, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 1, 0, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 1, 0, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 1, 0, clr, 0, 0));
break;
case 5:
buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, -1, 0, clr, 0, 1));
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, -1, 0, clr, 1, 1));
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, -1, 0, clr, 1, 0));
buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, -1, 0, clr, 0, 0));
break;
}
// Recalculate bounding box and set cube size
for (u32 i=0; i<4; ++i)
{
buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f);
buffer->Vertices[i].Pos *= size;
if ( i == 0 )
buffer->BoundingBox.reset(buffer->Vertices[i].Pos);
else
buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos);
}
mesh->addMeshBuffer(buffer);
buffer->drop();
}
}
else if ( type == ECMT_1BUF_24VTX_NP )
{
SMeshBuffer* buffer = new SMeshBuffer();
// Create indices (pos, neg describes normal direction of front-face)
const u16 u[36] = { 0,2,1, 0,3,2, // NEG_Z
4,7,6, 4,5,7, // POS_X
8,10,11, 8,9,10, // POS_Z
15,13,12, 15,14,13, // NEG_X
19,17,16, 19,18,17, // POS_Y
20,23,22, 20,22,21}; // NEG_Y
buffer->Indices.set_used(36);
for (u32 i=0; i<36; ++i)
buffer->Indices[i] = u[i];
// Create vertices
buffer->Vertices.reallocate(24);
buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0, 0,-1, clr, 0, 1)); // 0
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0, 0,-1, clr, 1, 1)); // 1
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 0,-1, clr, 1, 0)); // 2
buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 0,-1, clr, 0, 0)); // 3
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 1, 0, 0, clr, 1, 1)); // 4 (1)
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 1, 0, 0, clr, 1, 0)); // 5 (2)
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 1, 0, 0, clr, 0, 1)); // 6 (4)
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 1, 0, 0, clr, 0, 0)); // 7 (5)
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0, 0, 1, clr, 0, 1)); // 8 (4)
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 0, 1, clr, 0, 0)); // 9 (5)
buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 0, 1, clr, 1, 0)); // 10 (6)
buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0, 0, 1, clr, 1, 1)); // 11 (7)
buffer->Vertices.push_back(video::S3DVertex(0,0,0, -1, 0, 0, clr, 0, 1)); // 12 (0)
buffer->Vertices.push_back(video::S3DVertex(0,1,0, -1, 0, 0, clr, 0, 0)); // 13 (3)
buffer->Vertices.push_back(video::S3DVertex(0,1,1, -1, 0, 0, clr, 1, 0)); // 14 (6)
buffer->Vertices.push_back(video::S3DVertex(0,0,1, -1, 0, 0, clr, 1, 1)); // 15 (7)
buffer->Vertices.push_back(video::S3DVertex(1,1,0, 0, 1, 0, clr, 1, 0)); // 16 (2)
buffer->Vertices.push_back(video::S3DVertex(1,1,1, 0, 1, 0, clr, 0, 0)); // 17 (5)
buffer->Vertices.push_back(video::S3DVertex(0,1,1, 0, 1, 0, clr, 0, 1)); // 18 (8)
buffer->Vertices.push_back(video::S3DVertex(0,1,0, 0, 1, 0, clr, 1, 1)); // 19 (9)
buffer->Vertices.push_back(video::S3DVertex(0,0,0, 0,-1, 0, clr, 0, 1)); // 20 (0)
buffer->Vertices.push_back(video::S3DVertex(0,0,1, 0,-1, 0, clr, 1, 1)); // 21 (7)
buffer->Vertices.push_back(video::S3DVertex(1,0,1, 0,-1, 0, clr, 1, 0)); // 22 (10)
buffer->Vertices.push_back(video::S3DVertex(1,0,0, 0,-1, 0, clr, 0, 0)); // 23 (11)
// Recalculate bounding box and set cube size
buffer->BoundingBox.reset(0,0,0);
for (u32 i=0; i<24; ++i)
{
buffer->Vertices[i].Pos -= core::vector3df(0.5f, 0.5f, 0.5f);
buffer->Vertices[i].Pos *= size;
buffer->BoundingBox.addInternalPoint(buffer->Vertices[i].Pos);
}
mesh->addMeshBuffer(buffer);
buffer->drop();
}
mesh->recalculateBoundingBox();
return mesh;
}
// creates a hill plane
IMesh* CGeometryCreator::createHillPlaneMesh(
const core::dimension2d<f32>& tileSize,
const core::dimension2d<u32>& tc, video::SMaterial* material,
f32 hillHeight, const core::dimension2d<f32>& ch,
const core::dimension2d<f32>& textureRepeatCount) const
{
core::dimension2d<u32> tileCount = tc;
core::dimension2d<f32> countHills = ch;
if (countHills.Width < 0.01f)
countHills.Width = 1.f;
if (countHills.Height < 0.01f)
countHills.Height = 1.f;
// center
const core::position2d<f32> center((tileSize.Width * tileCount.Width) * 0.5f, (tileSize.Height * tileCount.Height) * 0.5f);
// texture coord step
const core::dimension2d<f32> tx(
textureRepeatCount.Width / tileCount.Width,
textureRepeatCount.Height / tileCount.Height);
// add one more point in each direction for proper tile count
++tileCount.Height;
++tileCount.Width;
SMeshBuffer* buffer = new SMeshBuffer();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
// create vertices from left-front to right-back
u32 x;
f32 sx=0.f, tsx=0.f;
for (x=0; x<tileCount.Width; ++x)
{
f32 sy=0.f, tsy=0.f;
for (u32 y=0; y<tileCount.Height; ++y)
{
vtx.Pos.set(sx - center.X, 0, sy - center.Y);
vtx.TCoords.set(tsx, 1.0f - tsy);
if (core::isnotzero(hillHeight))
vtx.Pos.Y = sinf(vtx.Pos.X * countHills.Width * core::PI / center.X) *
cosf(vtx.Pos.Z * countHills.Height * core::PI / center.Y) *
hillHeight;
buffer->Vertices.push_back(vtx);
sy += tileSize.Height;
tsy += tx.Height;
}
sx += tileSize.Width;
tsx += tx.Width;
}
// create indices
for (x=0; x<tileCount.Width-1; ++x)
{
for (u32 y=0; y<tileCount.Height-1; ++y)
{
const s32 current = x*tileCount.Height + y;
buffer->Indices.push_back(current);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + tileCount.Height);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + 1 + tileCount.Height);
buffer->Indices.push_back(current + tileCount.Height);
}
}
// recalculate normals
for (u32 i=0; i<buffer->Indices.size(); i+=3)
{
const core::vector3df normal = core::plane3d<f32>(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos).Normal;
buffer->Vertices[buffer->Indices[i+0]].Normal = normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = normal;
}
if (material)
buffer->Material = *material;
buffer->recalculateBoundingBox();
buffer->setHardwareMappingHint(EHM_STATIC);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
namespace
{
// Return the position on an exponential curve. Input from 0 to 1.
float geopos(float pos)
{
pos = core::clamp<float>(pos, 0, 1);
pos *= 5;
const float out = powf(2.5f, pos - 5);
return out;
}
}
//! Create a geoplane.
IMesh* CGeometryCreator::createGeoplaneMesh(f32 radius, u32 rows, u32 columns) const
{
using namespace core;
using namespace video;
rows = clamp<u32>(rows, 3, 2048);
columns = clamp<u32>(columns, 3, 2048);
SMeshBuffer * const mb = new SMeshBuffer();
S3DVertex v(0, 0, 0, 0, 1, 0, SColor(255, 255, 255, 255), 0, 0);
const float anglestep = (2 * PI) / columns;
mb->Vertices.reallocate((rows * columns) + 1);
mb->Indices.reallocate((((rows - 2) * columns * 2) + columns) * 3);
u32 i, j;
mb->Vertices.push_back(v);
for (j = 1; j < rows; j++)
{
const float len = radius * geopos((float) j/(rows-1));
for (i = 0; i < columns; i++)
{
const float angle = anglestep * i;
v.Pos = vector3df(len * sinf(angle), 0, len * cosf(angle));
mb->Vertices.push_back(v);
}
}
// Indices
// First the inner fan
for (i = 0; i < columns; i++)
{
mb->Indices.push_back(0);
mb->Indices.push_back(1 + i);
if (i == columns - 1)
mb->Indices.push_back(1);
else
mb->Indices.push_back(2 + i);
}
// Then the surrounding quads
for (j = 0; j < rows - 2; j++)
{
for (i = 0; i < columns; i++)
{
u32 start = ((j * columns) + i) + 1;
u32 next = start + 1;
u32 far = (((j + 1) * columns) + i) + 1;
u32 farnext = far + 1;
if (i == columns - 1)
{
next = ((j * columns)) + 1;
farnext = (((j + 1) * columns)) + 1;
}
mb->Indices.push_back(start);
mb->Indices.push_back(far);
mb->Indices.push_back(next);
mb->Indices.push_back(next);
mb->Indices.push_back(far);
mb->Indices.push_back(farnext);
}
}
// Done
SMesh * const mesh = new SMesh();
mesh->addMeshBuffer(mb);
mb->recalculateBoundingBox();
mb->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
mb->drop();
return mesh;
}
IMesh* CGeometryCreator::createTerrainMesh(video::IImage* texture,
video::IImage* heightmap, const core::dimension2d<f32>& stretchSize,
f32 maxHeight, video::IVideoDriver* driver,
const core::dimension2d<u32>& maxVtxBlockSize,
bool debugBorders) const
{
if (!texture || !heightmap)
return 0;
// debug border
const s32 borderSkip = debugBorders ? 0 : 1;
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
SMesh* mesh = new SMesh();
const u32 tm = os::Timer::getRealTime()/1000;
const core::dimension2d<u32> hMapSize= heightmap->getDimension();
const core::dimension2d<u32> tMapSize= texture->getDimension();
const core::position2d<f32> thRel(static_cast<f32>(tMapSize.Width) / hMapSize.Width, static_cast<f32>(tMapSize.Height) / hMapSize.Height);
maxHeight /= 255.0f; // height step per color value
core::position2d<u32> processed(0,0);
while (processed.Y<hMapSize.Height)
{
while(processed.X<hMapSize.Width)
{
core::dimension2d<u32> blockSize = maxVtxBlockSize;
if (processed.X + blockSize.Width > hMapSize.Width)
blockSize.Width = hMapSize.Width - processed.X;
if (processed.Y + blockSize.Height > hMapSize.Height)
blockSize.Height = hMapSize.Height - processed.Y;
SMeshBuffer* buffer = new SMeshBuffer();
buffer->setHardwareMappingHint(EHM_STATIC);
buffer->Vertices.reallocate(blockSize.getArea());
// add vertices of vertex block
u32 y;
core::vector2df pos(0.f, processed.Y*stretchSize.Height);
const core::vector2df bs(1.f/blockSize.Width, 1.f/blockSize.Height);
core::vector2df tc(0.f, 0.5f*bs.Y);
for (y=0; y<blockSize.Height; ++y)
{
pos.X=processed.X*stretchSize.Width;
tc.X=0.5f*bs.X;
for (u32 x=0; x<blockSize.Width; ++x)
{
const f32 height = heightmap->getPixel(x+processed.X, y+processed.Y).getAverage() * maxHeight;
vtx.Pos.set(pos.X, height, pos.Y);
vtx.TCoords.set(tc);
buffer->Vertices.push_back(vtx);
pos.X += stretchSize.Width;
tc.X += bs.X;
}
pos.Y += stretchSize.Height;
tc.Y += bs.Y;
}
buffer->Indices.reallocate((blockSize.Height-1)*(blockSize.Width-1)*6);
// add indices of vertex block
s32 c1 = 0;
for (y=0; y<blockSize.Height-1; ++y)
{
for (u32 x=0; x<blockSize.Width-1; ++x)
{
const s32 c = c1 + x;
buffer->Indices.push_back(c);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1 + blockSize.Width);
}
c1 += blockSize.Width;
}
// recalculate normals
for (u32 i=0; i<buffer->Indices.size(); i+=3)
{
const core::vector3df normal = core::plane3d<f32>(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos).Normal;
buffer->Vertices[buffer->Indices[i+0]].Normal = normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = normal;
}
if (buffer->Vertices.size())
{
c8 textureName[64];
// create texture for this block
video::IImage* img = driver->createImage(texture->getColorFormat(), core::dimension2d<u32>(core::floor32(blockSize.Width*thRel.X), core::floor32(blockSize.Height*thRel.Y)));
texture->copyTo(img, core::position2di(0,0), core::recti(
core::position2d<s32>(core::floor32(processed.X*thRel.X), core::floor32(processed.Y*thRel.Y)),
core::dimension2d<u32>(core::floor32(blockSize.Width*thRel.X), core::floor32(blockSize.Height*thRel.Y))), 0);
sprintf(textureName, "terrain%u_%u", tm, mesh->getMeshBufferCount());
buffer->Material.setTexture(0, driver->addTexture(textureName, img));
if (buffer->Material.getTexture(0))
{
c8 tmp[255];
sprintf(tmp, "Generated terrain texture (%ux%u): %s",
buffer->Material.getTexture(0)->getSize().Width,
buffer->Material.getTexture(0)->getSize().Height,
textureName);
os::Printer::log(tmp);
}
else
os::Printer::log("Could not create terrain texture.", textureName, ELL_ERROR);
img->drop();
}
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
// keep on processing
processed.X += maxVtxBlockSize.Width - borderSkip;
}
// keep on processing
processed.X = 0;
processed.Y += maxVtxBlockSize.Height - borderSkip;
}
mesh->recalculateBoundingBox();
return mesh;
}
/*
a cylinder, a cone and a cross
point up on (0,1.f, 0.f )
*/
IMesh* CGeometryCreator::createArrowMesh(const u32 tessellationCylinder,
const u32 tessellationCone,
const f32 height,
const f32 cylinderHeight,
const f32 width0,
const f32 width1,
const video::SColor vtxColor0,
const video::SColor vtxColor1) const
{
SMesh* mesh = (SMesh*)createCylinderMesh(width0, cylinderHeight, tessellationCylinder, vtxColor0, false);
IMesh* mesh2 = createConeMesh(width1, height-cylinderHeight, tessellationCone, vtxColor1, vtxColor0);
for (u32 i=0; i<mesh2->getMeshBufferCount(); ++i)
{
IMeshBuffer* buffer = mesh2->getMeshBuffer(i);
for (u32 j=0; j<buffer->getVertexCount(); ++j)
buffer->getPosition(j).Y += cylinderHeight;
buffer->setDirty(EBT_VERTEX);
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
}
mesh2->drop();
mesh->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
return mesh;
}
/* A sphere with proper normals and texture coords */
IMesh* CGeometryCreator::createSphereMesh(f32 radius, u32 polyCountX, u32 polyCountY) const
{
// thanks to Alfaz93 who made his code available for Irrlicht on which
// this one is based!
// we are creating the sphere mesh here.
if (polyCountX < 2)
polyCountX = 2;
if (polyCountY < 2)
polyCountY = 2;
while (polyCountX * polyCountY > 32767) // prevent u16 overflow
{
polyCountX /= 2;
polyCountY /= 2;
}
const u32 polyCountXPitch = polyCountX+1; // get to same vertex on next level
SMeshBuffer* buffer = new SMeshBuffer();
buffer->Indices.reallocate((polyCountX * polyCountY) * 6);
const video::SColor clr(255, 255,255,255);
u32 level = 0;
for (u32 p1 = 0; p1 < polyCountY-1; ++p1)
{
//main quads, top to bottom
for (u32 p2 = 0; p2 < polyCountX - 1; ++p2)
{
const u32 curr = level + p2;
buffer->Indices.push_back(curr + polyCountXPitch);
buffer->Indices.push_back(curr);
buffer->Indices.push_back(curr + 1);
buffer->Indices.push_back(curr + polyCountXPitch);
buffer->Indices.push_back(curr+1);
buffer->Indices.push_back(curr + 1 + polyCountXPitch);
}
// the connectors from front to end
buffer->Indices.push_back(level + polyCountX - 1 + polyCountXPitch);
buffer->Indices.push_back(level + polyCountX - 1);
buffer->Indices.push_back(level + polyCountX);
buffer->Indices.push_back(level + polyCountX - 1 + polyCountXPitch);
buffer->Indices.push_back(level + polyCountX);
buffer->Indices.push_back(level + polyCountX + polyCountXPitch);
level += polyCountXPitch;
}
const u32 polyCountSq = polyCountXPitch * polyCountY; // top point
const u32 polyCountSq1 = polyCountSq + 1; // bottom point
const u32 polyCountSqM1 = (polyCountY - 1) * polyCountXPitch; // last row's first vertex
for (u32 p2 = 0; p2 < polyCountX - 1; ++p2)
{
// create triangles which are at the top of the sphere
buffer->Indices.push_back(polyCountSq);
buffer->Indices.push_back(p2 + 1);
buffer->Indices.push_back(p2);
// create triangles which are at the bottom of the sphere
buffer->Indices.push_back(polyCountSqM1 + p2);
buffer->Indices.push_back(polyCountSqM1 + p2 + 1);
buffer->Indices.push_back(polyCountSq1);
}
// create final triangle which is at the top of the sphere
buffer->Indices.push_back(polyCountSq);
buffer->Indices.push_back(polyCountX);
buffer->Indices.push_back(polyCountX-1);
// create final triangle which is at the bottom of the sphere
buffer->Indices.push_back(polyCountSqM1 + polyCountX - 1);
buffer->Indices.push_back(polyCountSqM1);
buffer->Indices.push_back(polyCountSq1);
// calculate the angle which separates all points in a circle
const f64 AngleX = 2 * core::PI / polyCountX;
const f64 AngleY = core::PI / polyCountY;
u32 i=0;
f64 axz;
// we don't start at 0.
f64 ay = 0;//AngleY / 2;
buffer->Vertices.set_used((polyCountXPitch * polyCountY) + 2);
for (u32 y = 0; y < polyCountY; ++y)
{
ay += AngleY;
const f64 sinay = sin(ay);
axz = 0;
// calculate the necessary vertices without the doubled one
for (u32 xz = 0;xz < polyCountX; ++xz)
{
// calculate points position
const core::vector3df pos(static_cast<f32>(radius * cos(axz) * sinay),
static_cast<f32>(radius * cos(ay)),
static_cast<f32>(radius * sin(axz) * sinay));
// for spheres the normal is the position
core::vector3df normal(pos);
normal.normalize();
// calculate texture coordinates via sphere mapping
// tu is the same on each level, so only calculate once
f32 tu = 0.5f;
if (y==0)
{
if (normal.Y != -1.0f && normal.Y != 1.0f)
tu = static_cast<f32>(acos(core::clamp(normal.X/sinay, -1.0, 1.0)) * 0.5 *core::RECIPROCAL_PI64);
if (normal.Z < 0.0f)
tu=1-tu;
}
else
tu = buffer->Vertices[i-polyCountXPitch].TCoords.X;
buffer->Vertices[i] = video::S3DVertex(pos.X, pos.Y, pos.Z,
normal.X, normal.Y, normal.Z,
clr, tu,
static_cast<f32>(ay*core::RECIPROCAL_PI64));
++i;
axz += AngleX;
}
// This is the doubled vertex on the initial position
buffer->Vertices[i] = video::S3DVertex(buffer->Vertices[i-polyCountX]);
buffer->Vertices[i].TCoords.X=1.0f;
++i;
}
// the vertex at the top of the sphere
buffer->Vertices[i] = video::S3DVertex(0.0f,radius,0.0f, 0.0f,1.0f,0.0f, clr, 0.5f, 0.0f);
// the vertex at the bottom of the sphere
++i;
buffer->Vertices[i] = video::S3DVertex(0.0f,-radius,0.0f, 0.0f,-1.0f,0.0f, clr, 0.5f, 1.0f);
// recalculate bounding box
buffer->BoundingBox.reset(buffer->Vertices[i].Pos);
buffer->BoundingBox.addInternalPoint(buffer->Vertices[i-1].Pos);
buffer->BoundingBox.addInternalPoint(radius,0.0f,0.0f);
buffer->BoundingBox.addInternalPoint(-radius,0.0f,0.0f);
buffer->BoundingBox.addInternalPoint(0.0f,0.0f,radius);
buffer->BoundingBox.addInternalPoint(0.0f,0.0f,-radius);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
buffer->drop();
mesh->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
return mesh;
}
/* A cylinder with proper normals and texture coords */
IMesh* CGeometryCreator::createCylinderMesh(f32 radius, f32 length,
u32 tessellation, const video::SColor& color,
bool closeTop, f32 oblique, u32 normalType) const
{
SMeshBuffer* buffer = new SMeshBuffer();
const f32 recTessellation = core::reciprocal((f32)tessellation);
const f32 recTessellationHalf = recTessellation * 0.5f;
const f32 angleStep = (core::PI * 2.f ) * recTessellation;
const f32 angleStepHalf = angleStep*0.5f;
u32 i;
video::S3DVertex v;
v.Color = color;
buffer->Vertices.reallocate(tessellation*4+4+(closeTop?2:1));
buffer->Indices.reallocate((tessellation*2+1)*(closeTop?12:9));
f32 tcx = 0.f;
for ( i = 0; i <= tessellation; ++i )
{
const f32 angle = angleStep * i;
v.Pos.X = radius * cosf(angle);
v.Pos.Y = 0.f;
v.Pos.Z = radius * sinf(angle);
switch (normalType)
{
case 0: v.Normal = v.Pos; break;
case 1: v.Normal = v.Pos; break;
}
v.Normal.normalize();
v.TCoords.X=tcx;
v.TCoords.Y=0.f;
buffer->Vertices.push_back(v);
v.Pos.X += oblique;
v.Pos.Y = length;
switch (normalType)
{
case 0: v.Normal = v.Pos; break;
case 1: v.Normal = core::vector3df(v.Pos.X-oblique, 0, v.Pos.Z); break;
}
v.Normal.normalize();
v.TCoords.Y=1.f;
buffer->Vertices.push_back(v);
v.Pos.X = radius * cosf(angle + angleStepHalf);
v.Pos.Y = 0.f;
v.Pos.Z = radius * sinf(angle + angleStepHalf);
switch (normalType)
{
case 0: v.Normal = v.Pos; break;
case 1: v.Normal = v.Pos; break;
}
v.Normal.normalize();
v.TCoords.X=tcx+recTessellationHalf;
v.TCoords.Y=0.f;
buffer->Vertices.push_back(v);
v.Pos.X += oblique;
v.Pos.Y = length;
switch (normalType)
{
case 0: v.Normal = v.Pos; break;
case 1: v.Normal = core::vector3df(v.Pos.X-oblique, 0, v.Pos.Z); break;
}
v.Normal.normalize();
v.TCoords.Y=1.f;
buffer->Vertices.push_back(v);
tcx += recTessellation;
}
// indices for the main hull part
const u32 nonWrappedSize = tessellation* 4;
for (i=0; i != nonWrappedSize; i += 2)
{
buffer->Indices.push_back(i + 2);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(i + 2);
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(i + 3);
}
// two closing quads between end and start
buffer->Indices.push_back(0);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(0);
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(1);
// close down
v.Pos.X = 0.f;
v.Pos.Y = 0.f;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = -1.f;
v.Normal.Z = 0.f;
v.TCoords.X = 1.f;
v.TCoords.Y = 1.f;
buffer->Vertices.push_back(v);
u32 index = buffer->Vertices.size() - 1;
for ( i = 0; i != nonWrappedSize; i += 2 )
{
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(i + 2);
}
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(0);
if (closeTop)
{
// close top
v.Pos.X = oblique;
v.Pos.Y = length;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = 1.f;
v.Normal.Z = 0.f;
v.TCoords.X = 0.f;
v.TCoords.Y = 0.f;
buffer->Vertices.push_back(v);
index = buffer->Vertices.size() - 1;
for ( i = 0; i != nonWrappedSize; i += 2 )
{
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 3);
}
buffer->Indices.push_back(i + 1);
buffer->Indices.push_back(index);
buffer->Indices.push_back(1);
}
buffer->recalculateBoundingBox();
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
/* A cone with proper normals and texture coords */
IMesh* CGeometryCreator::createConeMesh(f32 radius, f32 length, u32 tessellation,
const video::SColor& colorTop,
const video::SColor& colorBottom,
f32 oblique) const
{
SMeshBuffer* buffer = new SMeshBuffer();
const f32 angleStep = (core::PI * 2.f ) / tessellation;
const f32 angleStepHalf = angleStep*0.5f;
video::S3DVertex v;
u32 i;
v.Color = colorTop;
for ( i = 0; i != tessellation; ++i )
{
f32 angle = angleStep * f32(i);
v.Pos.X = radius * cosf(angle);
v.Pos.Y = 0.f;
v.Pos.Z = radius * sinf(angle);
v.Normal = v.Pos;
v.Normal.normalize();
buffer->Vertices.push_back(v);
angle += angleStepHalf;
v.Pos.X = radius * cosf(angle);
v.Pos.Y = 0.f;
v.Pos.Z = radius * sinf(angle);
v.Normal = v.Pos;
v.Normal.normalize();
buffer->Vertices.push_back(v);
}
const u32 nonWrappedSize = buffer->Vertices.size() - 1;
// close top
v.Pos.X = oblique;
v.Pos.Y = length;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = 1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back(v);
u32 index = buffer->Vertices.size() - 1;
for ( i = 0; i != nonWrappedSize; i += 1 )
{
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 1);
}
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(index);
buffer->Indices.push_back(0);
// close down
v.Color = colorBottom;
v.Pos.X = 0.f;
v.Pos.Y = 0.f;
v.Pos.Z = 0.f;
v.Normal.X = 0.f;
v.Normal.Y = -1.f;
v.Normal.Z = 0.f;
buffer->Vertices.push_back(v);
index = buffer->Vertices.size() - 1;
for ( i = 0; i != nonWrappedSize; i += 1 )
{
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(i + 1);
}
buffer->Indices.push_back(index);
buffer->Indices.push_back(i + 0);
buffer->Indices.push_back(0);
buffer->recalculateBoundingBox();
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
buffer->drop();
mesh->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
return mesh;
}
irr::scene::IMesh* CGeometryCreator::createTorusMesh(irr::f32 majorRadius, irr::f32 minorRadius, irr::u32 majorSegments, irr::u32 minorSegments, f32 angleStart, f32 angleEnd, int capEnds) const
{
if ( majorRadius == 0.f || minorRadius == 0.f )
return 0;
if ( majorSegments < 3 )
majorSegments = 3;
if ( minorSegments < 3 )
minorSegments = 3;
// Note: first/last vertices of major and minor lines are on same position, but not shared to allow for independent uv's.
// prevent 16-bit vertex buffer overflow
const u32 numCapVertices = (capEnds & 1 ? 1 : 0) + (capEnds & 2 ? 1 : 0);
u32 numVertices = (majorSegments+1)*(minorSegments+1)+numCapVertices;
while (numVertices > 65536)
{
if ( majorSegments > 2*minorSegments )
majorSegments /= 2;
else if ( minorSegments > 2*majorSegments )
minorSegments /= 2;
else
{
majorSegments /= 2;
minorSegments /= 2;
}
numVertices = (majorSegments+1)*(minorSegments+1)+numCapVertices;
}
const u32 majorLines = majorSegments+1;
const u32 minorLines = minorSegments+1;
const video::SColor color(255,255,255,255);
SMeshBuffer* buffer = new SMeshBuffer();
buffer->Indices.reallocate(majorSegments*minorSegments*6);
buffer->Vertices.reallocate(numVertices);
if ( angleStart > angleEnd )
core::swap(angleStart, angleEnd);
const f32 radStart = angleStart * core::DEGTORAD;
const f32 radEnd = angleEnd * core::DEGTORAD;
const f32 radMajor = radEnd-radStart;
const f32 radStepMajor = radMajor / majorSegments;
const f32 TWO_PI = 2.f*core::PI;
const f32 radStepMinor = TWO_PI / minorSegments;
// vertices
for ( irr::u32 major = 0; major < majorLines; ++major)
{
const f32 radMajor = radStart + major*radStepMajor;
const f32 cosMajor = cosf(radMajor);
const f32 sinMajor = sinf(radMajor);
// points of major circle
const core::vector3df pm(majorRadius*cosMajor, 0.f, majorRadius * sinMajor);
for ( irr::u32 minor = 0; minor < minorLines; ++minor)
{
const f32 radMinor = minor*radStepMinor;
const f32 cosMinor = cosf(radMinor);
const core::vector3df n(cosMinor * cosMajor, sinf(radMinor), cosMinor * sinMajor);
const core::vector2df uv(radMajor/TWO_PI, radMinor/TWO_PI);
buffer->Vertices.push_back( video::S3DVertex(pm+n*minorRadius, n, color, uv) );
}
}
// indices
for ( irr::u32 major = 0; major < majorSegments; ++major)
{
for ( irr::u32 minor = 0; minor < minorSegments; ++minor)
{
const irr::u16 i = major*minorLines+minor;
buffer->Indices.push_back(i+1);
buffer->Indices.push_back(i+minorLines);
buffer->Indices.push_back(i);
buffer->Indices.push_back(i+1);
buffer->Indices.push_back(i+minorLines+1);
buffer->Indices.push_back(i+minorLines);
}
}
// add start caps
if ( capEnds & 1 )
{
const core::vector3df p(cosf(radStart), 0.f, sinf(radStart));
const core::vector3df n( p.crossProduct(core::vector3df(0,-1,0)) );
const core::vector2df uv(radStart/TWO_PI, 0.5f);
buffer->Vertices.push_back( video::S3DVertex(p*majorRadius, n, color, uv) );
const irr::u16 i=buffer->Vertices.size()-1;
for ( irr::u32 minor = 0; minor < minorSegments; ++minor)
{
buffer->Indices.push_back(minor+1);
buffer->Indices.push_back(minor);
buffer->Indices.push_back(i);
}
}
// add end caps
if ( capEnds & 2 )
{
const core::vector3df p(cosf(radEnd), 0.f, sinf(radEnd));
const core::vector3df n( p.crossProduct(core::vector3df(0,1,0)) );
const core::vector2df uv(radEnd/TWO_PI, 0.5f);
buffer->Vertices.push_back( video::S3DVertex(p*majorRadius, n, color, uv) );
const irr::u16 i=buffer->Vertices.size()-1;
const irr::u16 k=i-numCapVertices;
for ( irr::u32 minor = 0; minor < minorSegments; ++minor)
{
buffer->Indices.push_back(k-minor-1);
buffer->Indices.push_back(k-minor);
buffer->Indices.push_back(i);
}
}
// recalculate bounding box
buffer->BoundingBox.MaxEdge.X = core::abs_(majorRadius)+core::abs_(minorRadius);
buffer->BoundingBox.MaxEdge.Z = buffer->BoundingBox.MaxEdge.X;
buffer->BoundingBox.MaxEdge.Y = core::abs_(minorRadius);
buffer->BoundingBox.MinEdge = buffer->BoundingBox.MaxEdge*-1.f;
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
buffer->drop();
mesh->setHardwareMappingHint(EHM_STATIC);
mesh->recalculateBoundingBox();
return mesh;
}
void CGeometryCreator::addToBuffer(const video::S3DVertex& v, SMeshBuffer* Buffer) const
{
const s32 tnidx = Buffer->Vertices.linear_reverse_search(v);
const bool alreadyIn = (tnidx != -1);
u16 nidx = (u16)tnidx;
if (!alreadyIn)
{
nidx = (u16)Buffer->Vertices.size();
Buffer->Indices.push_back(nidx);
Buffer->Vertices.push_back(v);
}
else
Buffer->Indices.push_back(nidx);
}
IMesh* CGeometryCreator::createVolumeLightMesh(
const u32 subdivideU, const u32 subdivideV,
const video::SColor footColor, const video::SColor tailColor,
const f32 lpDistance, const core::vector3df& lightDim) const
{
SMeshBuffer* Buffer = new SMeshBuffer();
Buffer->setHardwareMappingHint(EHM_STATIC);
const core::vector3df lightPoint(0, -(lpDistance*lightDim.Y), 0);
const f32 ax = lightDim.X * 0.5f; // X Axis
const f32 az = lightDim.Z * 0.5f; // Z Axis
Buffer->Vertices.clear();
Buffer->Vertices.reallocate(6+12*(subdivideU+subdivideV));
Buffer->Indices.clear();
Buffer->Indices.reallocate(6+12*(subdivideU+subdivideV));
//draw the bottom foot.. the glowing region
addToBuffer(video::S3DVertex(-ax, 0, az, 0,0,0, footColor, 0, 1),Buffer);
addToBuffer(video::S3DVertex( ax, 0, az, 0,0,0, footColor, 1, 1),Buffer);
addToBuffer(video::S3DVertex( ax, 0,-az, 0,0,0, footColor, 1, 0),Buffer);
addToBuffer(video::S3DVertex( ax, 0,-az, 0,0,0, footColor, 1, 0),Buffer);
addToBuffer(video::S3DVertex(-ax, 0,-az, 0,0,0, footColor, 0, 0),Buffer);
addToBuffer(video::S3DVertex(-ax, 0, az, 0,0,0, footColor, 0, 1),Buffer);
f32 tu = 0.f;
const f32 tuStep = 1.f/subdivideU;
f32 bx = -ax;
const f32 bxStep = lightDim.X * tuStep;
// Slices in X/U space
for (u32 i = 0; i <= subdivideU; ++i)
{
// These are the two endpoints for a slice at the foot
core::vector3df end1(bx, 0.0f, -az);
core::vector3df end2(bx, 0.0f, az);
end1 -= lightPoint; // get a vector from point to lightsource
end1.normalize(); // normalize vector
end1 *= lightDim.Y; // multiply it out by shootlength
end1.X += bx; // Add the original point location to the vector
end1.Z -= az;
// Do it again for the other point.
end2 -= lightPoint;
end2.normalize();
end2 *= lightDim.Y;
end2.X += bx;
end2.Z += az;
addToBuffer(video::S3DVertex(bx , 0, az, 0,0,0, footColor, tu, 1),Buffer);
addToBuffer(video::S3DVertex(bx , 0, -az, 0,0,0, footColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, tu, 1),Buffer);
addToBuffer(video::S3DVertex(bx , 0, -az, 0,0,0, footColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(end1.X , end1.Y, end1.Z, 0,0,0, tailColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, tu, 1),Buffer);
//back side
addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, tu, 1),Buffer);
addToBuffer(video::S3DVertex(-bx , 0, -az, 0,0,0, footColor, tu, 1),Buffer);
addToBuffer(video::S3DVertex(-bx , 0, az, 0,0,0, footColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(-bx , 0, az, 0,0,0, footColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(-end1.X , end1.Y, -end1.Z, 0,0,0, tailColor, tu, 0),Buffer);
addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, tu, 1),Buffer);
tu += tuStep;
bx += bxStep;
}
f32 tv = 0.f;
const f32 tvStep = 1.f/subdivideV;
f32 bz = -az;
const f32 bzStep = lightDim.Z * tvStep;
// Slices in Z/V space
for(u32 i = 0; i <= subdivideV; ++i)
{
// These are the two endpoints for a slice at the foot
core::vector3df end1(-ax, 0.0f, bz);
core::vector3df end2(ax, 0.0f, bz);
end1 -= lightPoint; // get a vector from point to lightsource
end1.normalize(); // normalize vector
end1 *= lightDim.Y; // multiply it out by shootlength
end1.X -= ax; // Add the original point location to the vector
end1.Z += bz;
// Do it again for the other point.
end2 -= lightPoint;
end2.normalize();
end2 *= lightDim.Y;
end2.X += ax;
end2.Z += bz;
addToBuffer(video::S3DVertex(-ax , 0, bz, 0,0,0, footColor, 0, tv),Buffer);
addToBuffer(video::S3DVertex(ax , 0, bz, 0,0,0, footColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(end2.X , end2.Y, end2.Z, 0,0,0, tailColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(end1.X , end1.Y, end1.Z, 0,0,0, tailColor, 0, tv),Buffer);
addToBuffer(video::S3DVertex(-ax , 0, bz, 0,0,0, footColor, 0, tv),Buffer);
//back side
addToBuffer(video::S3DVertex(ax , 0, -bz, 0,0,0, footColor, 0, tv),Buffer);
addToBuffer(video::S3DVertex(-ax , 0, -bz, 0,0,0, footColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(-end2.X , end2.Y, -end2.Z, 0,0,0, tailColor, 1, tv),Buffer);
addToBuffer(video::S3DVertex(-end1.X , end1.Y, -end1.Z, 0,0,0, tailColor, 0, tv),Buffer);
addToBuffer(video::S3DVertex(ax , 0, -bz, 0,0,0, footColor, 0, tv),Buffer);
tv += tvStep;
bz += bzStep;
}
Buffer->recalculateBoundingBox();
Buffer->Material.MaterialType = video::EMT_ONETEXTURE_BLEND;
Buffer->Material.MaterialTypeParam = pack_textureBlendFunc( video::EBF_SRC_COLOR, video::EBF_SRC_ALPHA, video::EMFN_MODULATE_1X );
Buffer->Material.Lighting = false;
Buffer->Material.ZWriteEnable = video::EZW_OFF;
Buffer->setDirty(EBT_VERTEX_AND_INDEX);
Buffer->recalculateBoundingBox();
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(Buffer);
Buffer->drop();
mesh->recalculateBoundingBox();
return mesh;
}
} // end namespace scene
} // end namespace irr