Simplify example 27 slightly.

Also use tab instead of spaces (as usual in Irrlicht)


git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6408 dfc29bdd-3216-0410-991c-e03cc46cb475
This commit is contained in:
cutealien 2022-06-20 19:57:35 +00:00
parent d70d96031b
commit 338af5c0ea

@ -36,39 +36,35 @@ shader. Therefore, we set texture size in OnSetConstants callback using
setVertexShaderConstant function.
*/
IrrlichtDevice* device = 0;
video::ITexture* rt = 0;
class QuadShaderCallBack : public video::IShaderConstantSetCallBack
{
public:
QuadShaderCallBack() : FirstUpdate(true), TextureSizeID(-1), TextureSamplerID(-1)
{ }
virtual void OnSetConstants(video::IMaterialRendererServices* services,
s32 userData)
{
core::dimension2d<u32> size = rt->getSize();
// get texture size array
f32 textureSize[] =
{
(f32)size.Width, (f32)size.Height
};
virtual void OnSetConstants(video::IMaterialRendererServices* services,
s32 userData)
{
if ( FirstUpdate )
{
FirstUpdate = false;
TextureSizeID = services->getVertexShaderConstantID("TextureSize");
TextureSamplerID = services->getPixelShaderConstantID("TextureSampler");
}
// set texture size to vertex shader
services->setVertexShaderConstant(TextureSizeID, reinterpret_cast<f32*>(textureSize), 2);
// get texture size array (for our simple example HLSL just needs that to calculate pixel centers)
core::dimension2d<u32> size = services->getVideoDriver()->getCurrentRenderTargetSize();
f32 textureSize[2];
textureSize[0] = (f32)size.Width;
textureSize[1] = (f32)size.Height;
// set texture for an OpenGL driver
s32 textureLayer = 0;
services->setPixelShaderConstant(TextureSamplerID, &textureLayer, 1);
}
// set texture size to vertex shader
services->setVertexShaderConstant(TextureSizeID, textureSize, 2);
// set texture for an OpenGL driver
s32 textureLayer = 0;
services->setPixelShaderConstant(TextureSamplerID, &textureLayer, 1);
}
private:
bool FirstUpdate;
@ -80,102 +76,88 @@ class ScreenQuad : public IReferenceCounted
{
public:
ScreenQuad(video::IVideoDriver* driver)
: Driver(driver)
{
// --------------------------------> u
// |[1](-1, 1)----------[2](1, 1)
// | | ( 0, 0) / | (1, 0)
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// |[0](-1, -1)---------[3](1, -1)
// | ( 0, 1) (1, 1)
// V
// v
ScreenQuad(video::IVideoDriver* driver)
: Driver(driver)
{
// --------------------------------> u
// |[1](-1, 1)----------[2](1, 1)
// | | ( 0, 0) / | (1, 0)
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// | | / |
// |[0](-1, -1)---------[3](1, -1)
// | ( 0, 1) (1, 1)
// V
// v
/*
A screen quad is composed of two adjacent triangles with 4 vertices.
Vertex [0], [1] and [2] create the first triangle and Vertex [0],
[2] and [3] create the second one. To map texture on the quad, UV
coordinates are assigned to the vertices. The origin of UV coordinate
locates on the top-left corner. And the value of UVs range from 0 to 1.
*/
/*
A screen quad is composed of two adjacent triangles with 4 vertices.
Vertex [0], [1] and [2] create the first triangle and Vertex [0],
[2] and [3] create the second one. To map texture on the quad, UV
coordinates are assigned to the vertices. The origin of UV coordinate
locates on the top-left corner. And the value of UVs range from 0 to 1.
*/
// define vertices array
// define vertices array
Vertices[0] = irr::video::S3DVertex(-1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 1.0f);
Vertices[1] = irr::video::S3DVertex(-1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 0.0f);
Vertices[2] = irr::video::S3DVertex( 1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 0.0f);
Vertices[3] = irr::video::S3DVertex( 1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 1.0f);
Vertices[0] = irr::video::S3DVertex(-1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 1.0f);
Vertices[1] = irr::video::S3DVertex(-1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 0.0f);
Vertices[2] = irr::video::S3DVertex( 1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 0.0f);
Vertices[3] = irr::video::S3DVertex( 1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 1.0f);
// define indices for triangles
// define indices for triangles
Indices[0] = 0;
Indices[1] = 1;
Indices[2] = 2;
Indices[3] = 0;
Indices[4] = 2;
Indices[5] = 3;
Indices[0] = 0;
Indices[1] = 1;
Indices[2] = 2;
Indices[3] = 0;
Indices[4] = 2;
Indices[5] = 3;
// turn off lighting as default
Material.setFlag(video::EMF_LIGHTING, false);
// turn off lighting as default
Material.setFlag(video::EMF_LIGHTING, false);
// set texture warp settings to clamp to edge pixel
for (u32 i = 0; i < video::MATERIAL_MAX_TEXTURES; i++)
{
Material.TextureLayer[i].TextureWrapU = video::ETC_CLAMP_TO_EDGE;
Material.TextureLayer[i].TextureWrapV = video::ETC_CLAMP_TO_EDGE;
}
}
// set texture warp settings to clamp to edge pixel
for (u32 i = 0; i < video::MATERIAL_MAX_TEXTURES; i++)
{
Material.TextureLayer[i].TextureWrapU = video::ETC_CLAMP_TO_EDGE;
Material.TextureLayer[i].TextureWrapV = video::ETC_CLAMP_TO_EDGE;
}
}
virtual ~ScreenQuad() {}
virtual ~ScreenQuad() {}
//! render the screen quad
virtual void render()
{
// set the material of screen quad
Driver->setMaterial(Material);
//! render the screen quad
virtual void render()
{
// set the material of screen quad
Driver->setMaterial(Material);
// set matrices to fit the quad to full viewport
Driver->setTransform(video::ETS_WORLD, core::IdentityMatrix);
Driver->setTransform(video::ETS_VIEW, core::IdentityMatrix);
Driver->setTransform(video::ETS_PROJECTION, core::IdentityMatrix);
// set world matrix to fit the quad to full viewport (we only use ETS_WORLD in the shader, so view, projection currently don't matter)
Driver->setTransform(video::ETS_WORLD, core::IdentityMatrix);
// draw screen quad
Driver->drawVertexPrimitiveList(Vertices, 4, Indices, 2);
}
// draw screen quad
Driver->drawVertexPrimitiveList(Vertices, 4, Indices, 2);
}
//! sets a flag of material to a new value
virtual void setMaterialFlag(video::E_MATERIAL_FLAG flag, bool newvalue)
{
Material.setFlag(flag, newvalue);
}
//! sets the texture of the specified layer in material to the new texture.
void setMaterialTexture(u32 textureLayer, video::ITexture* texture)
{
Material.setTexture(textureLayer, texture);
}
//! sets the material type to a new material type.
virtual void setMaterialType(video::E_MATERIAL_TYPE newType)
{
Material.MaterialType = newType;
}
//! Access the material
virtual video::SMaterial& getMaterial()
{
return Material;
}
private:
video::IVideoDriver *Driver;
video::S3DVertex Vertices[4];
u16 Indices[6];
video::SMaterial Material;
video::IVideoDriver *Driver;
video::S3DVertex Vertices[4];
u16 Indices[6];
video::SMaterial Material;
};
/*
@ -184,233 +166,234 @@ according to the driver type.
*/
int main()
{
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// ask user for driver
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
if (driverType==video::EDT_COUNT)
return 1;
// create device
device = createDevice(driverType, core::dimension2d<u32>(640, 480));
// create device
IrrlichtDevice* device = createDevice(driverType, core::dimension2d<u32>(640, 480));
if (device == 0)
return 1; // could not create selected driver.
if (device == 0)
return 1; // could not create selected driver.
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
video::IVideoDriver* driver = device->getVideoDriver();
scene::ISceneManager* smgr = device->getSceneManager();
/*
In this example, high level post processing shaders are loaded for both
Direct3D and OpenGL drivers.
File pp_d3d9.hlsl is for Direct3D 9, and pp_opengl.frag/pp_opengl.vert
are for OpenGL.
*/
/*
In this example, high level post processing shaders are loaded for both
Direct3D and OpenGL drivers.
File pp_d3d9.hlsl is for Direct3D 9, and pp_opengl.frag/pp_opengl.vert
are for OpenGL.
*/
const io::path mediaPath = getExampleMediaPath();
io::path vsFileName; // filename for the vertex shader
io::path psFileName; // filename for the pixel shader
io::path vsFileName; // filename for the vertex shader
io::path psFileName; // filename for the pixel shader
switch(driverType)
{
case video::EDT_DIRECT3D9:
psFileName = mediaPath + "pp_d3d9.hlsl";
vsFileName = psFileName; // both shaders are in the same file
break;
switch(driverType)
{
case video::EDT_DIRECT3D9:
psFileName = mediaPath + "pp_d3d9.hlsl";
vsFileName = psFileName; // both shaders are in the same file
break;
case video::EDT_OPENGL:
case video::EDT_BURNINGSVIDEO:
psFileName = mediaPath + "pp_opengl.frag";
vsFileName = mediaPath + "pp_opengl.vert";
break;
}
case video::EDT_OPENGL:
case video::EDT_BURNINGSVIDEO:
psFileName = mediaPath + "pp_opengl.frag";
vsFileName = mediaPath + "pp_opengl.vert";
break;
}
/*
Check for hardware capability of executing the corresponding shaders
on selected renderer. This is not necessary though.
*/
/*
Check for hardware capability of executing the corresponding shaders
on selected renderer. This is not necessary though.
*/
if (!driver->queryFeature(video::EVDF_PIXEL_SHADER_1_1) &&
!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1))
{
device->getLogger()->log("WARNING: Pixel shaders disabled "\
"because of missing driver/hardware support.");
psFileName = "";
}
if (!driver->queryFeature(video::EVDF_PIXEL_SHADER_1_1) &&
!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1))
{
device->getLogger()->log("WARNING: Pixel shaders disabled "\
"because of missing driver/hardware support.");
psFileName = "";
}
if (!driver->queryFeature(video::EVDF_VERTEX_SHADER_1_1) &&
!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
{
device->getLogger()->log("WARNING: Vertex shaders disabled "\
"because of missing driver/hardware support.");
vsFileName = "";
}
if (!driver->queryFeature(video::EVDF_VERTEX_SHADER_1_1) &&
!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
{
device->getLogger()->log("WARNING: Vertex shaders disabled "\
"because of missing driver/hardware support.");
vsFileName = "";
}
/*
An animated mesh is loaded to be displayed. As in most examples,
we'll take the fairy md2 model.
*/
/*
An animated mesh is loaded to be displayed. As in most examples,
we'll take the fairy md2 model.
*/
// load and display animated fairy mesh
// load and display animated fairy mesh
scene::IAnimatedMeshSceneNode* fairy = smgr->addAnimatedMeshSceneNode(
smgr->getMesh(mediaPath + "faerie.md2"));
scene::IAnimatedMeshSceneNode* fairy = smgr->addAnimatedMeshSceneNode(
smgr->getMesh(mediaPath + "faerie.md2"));
if (fairy)
{
fairy->setMaterialTexture(0,
driver->getTexture(mediaPath + "faerie2.bmp")); // set diffuse texture
fairy->setMaterialFlag(video::EMF_LIGHTING, false); // disable dynamic lighting
fairy->setPosition(core::vector3df(-10,0,-100));
fairy->setMD2Animation ( scene::EMAT_STAND );
}
if (fairy)
{
fairy->setMaterialTexture(0,
driver->getTexture(mediaPath + "faerie2.bmp")); // set diffuse texture
fairy->setMaterialFlag(video::EMF_LIGHTING, false); // disable dynamic lighting
fairy->setPosition(core::vector3df(-10,0,-100));
fairy->setMD2Animation ( scene::EMAT_STAND );
}
// add scene camera
smgr->addCameraSceneNode(0, core::vector3df(10,10,-80),
core::vector3df(-10,10,-100));
// add scene camera
smgr->addCameraSceneNode(0, core::vector3df(10,10,-80),
core::vector3df(-10,10,-100));
/*
We create a render target texture (RTT) with the same size as frame buffer.
Instead of rendering the scene directly to the frame buffer, we firstly
render it to this RTT. Post processing is then applied based on this RTT.
RTT size needs not to be the same with frame buffer though. However in this
example, we expect the result of rendering to RTT to be consistent with the
result of rendering directly to the frame buffer. Therefore, the size of
RTT keeps the same with frame buffer.
*/
/*
We create a render target texture (RTT) with the same size as frame buffer.
Instead of rendering the scene directly to the frame buffer, we firstly
render it to this RTT. Post processing is then applied based on this RTT.
RTT size needs not to be the same with frame buffer though. However in this
example, we expect the result of rendering to RTT to be consistent with the
result of rendering directly to the frame buffer. Therefore, the size of
RTT keeps the same with frame buffer.
*/
// create render target
// create render target
video::ITexture* rt = 0;
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET))
{
rt = driver->addRenderTargetTexture(core::dimension2d<u32>(640, 480), "RTT1");
}
else
{
device->getLogger()->log("Your hardware or this renderer is not able to use the "\
"render to texture feature. RTT Disabled.");
}
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET))
{
rt = driver->addRenderTargetTexture(core::dimension2d<u32>(640, 480), "RTT1");
}
else
{
device->getLogger()->log("Your hardware or this renderer is not able to use the "\
"render to texture feature. RTT Disabled.");
}
/*
Post processing is achieved by rendering a screen quad with this RTT (with
previously rendered result) as a texture on the quad. A screen quad is
geometry of flat plane composed of two adjacent triangles covering the
entire area of viewport. In this pass of rendering, RTT works just like
a normal texture and is drawn on the quad during rendering. We can then
take control of this rendering process by applying various shader-defined
materials to the quad. In other words, we can achieve different effect by
writing different shaders.
This process is called post processing because it normally does not rely
on scene geometry. The inputs of this process are just textures, or in
other words, just images. With the help of screen quad, we can draw these
images on the screen with different effects. For example, we can adjust
contrast, make grayscale, add noise, do more fancy effect such as blur,
bloom, ghost, or just like in this example, we invert the color to produce
negative image.
Note that post processing is not limited to use only one texture. It can
take multiple textures as shader inputs to provide desired result. In
addition, post processing can also be chained to produce compound result.
*/
/*
Post processing is achieved by rendering a screen quad with this RTT (with
previously rendered result) as a texture on the quad. A screen quad is
geometry of flat plane composed of two adjacent triangles covering the
entire area of viewport. In this pass of rendering, RTT works just like
a normal texture and is drawn on the quad during rendering. We can then
take control of this rendering process by applying various shader-defined
materials to the quad. In other words, we can achieve different effect by
writing different shaders.
This process is called post processing because it normally does not rely
on scene geometry. The inputs of this process are just textures, or in
other words, just images. With the help of screen quad, we can draw these
images on the screen with different effects. For example, we can adjust
contrast, make grayscale, add noise, do more fancy effect such as blur,
bloom, ghost, or just like in this example, we invert the color to produce
negative image.
Note that post processing is not limited to use only one texture. It can
take multiple textures as shader inputs to provide desired result. In
addition, post processing can also be chained to produce compound result.
*/
// we create a screen quad
ScreenQuad *screenQuad = new ScreenQuad(driver);
video::SMaterial& screenQuadMaterial = screenQuad->getMaterial();
// we create a screen quad
ScreenQuad *screenQuad = new ScreenQuad(driver);
// turn off mip maps and bilinear filter since we do not want interpolated results
screenQuadMaterial.setFlag(video::EMF_USE_MIP_MAPS, false);
screenQuadMaterial.setFlag(video::EMF_BILINEAR_FILTER, false);
// turn off mip maps and bilinear filter since we do not want interpolated result
screenQuad->setMaterialFlag(video::EMF_USE_MIP_MAPS, false);
screenQuad->setMaterialFlag(video::EMF_BILINEAR_FILTER, false);
// set quad texture to RTT we just create
screenQuadMaterial.setTexture(0, rt);
// set quad texture to RTT we just create
screenQuad->setMaterialTexture(0, rt);
/*
Let's create material for the quad. Like in other example, we create material
using IGPUProgrammingServices and call addShaderMaterialFromFiles, which
returns a material type identifier.
*/
/*
Let's create material for the quad. Like in other example, we create material
using IGPUProgrammingServices and call addShaderMaterialFromFiles, which
returns a material type identifier.
*/
// create materials
// create materials
video::IGPUProgrammingServices* gpu = driver->getGPUProgrammingServices();
s32 ppMaterialType = 0;
video::IGPUProgrammingServices* gpu = driver->getGPUProgrammingServices();
s32 ppMaterialType = 0;
if (gpu)
{
// We write a QuadShaderCallBack class that implements OnSetConstants
// callback of IShaderConstantSetCallBack class at the beginning of
// this tutorial. We set shader constants in this callback.
if (gpu)
{
// We write a QuadShaderCallBack class that implements OnSetConstants
// callback of IShaderConstantSetCallBack class at the beginning of
// this tutorial. We set shader constants in this callback.
// create an instance of callback class
// create an instance of callback class
QuadShaderCallBack* mc = new QuadShaderCallBack();
QuadShaderCallBack* mc = new QuadShaderCallBack();
// create material from post processing shaders
// create material from post processing shaders
ppMaterialType = gpu->addHighLevelShaderMaterialFromFiles(
vsFileName, "vertexMain", video::EVST_VS_1_1,
psFileName, "pixelMain", video::EPST_PS_1_1, mc);
ppMaterialType = gpu->addHighLevelShaderMaterialFromFiles(
vsFileName, "vertexMain", video::EVST_VS_1_1,
psFileName, "pixelMain", video::EPST_PS_1_1, mc);
mc->drop();
}
mc->drop();
}
// set post processing material type to the quad
screenQuadMaterial.MaterialType = (video::E_MATERIAL_TYPE)ppMaterialType;
// set post processing material type to the quad
screenQuad->setMaterialType((video::E_MATERIAL_TYPE)ppMaterialType);
/*
Now draw everything. That's all.
*/
/*
Now draw everything. That's all.
*/
int lastFPS = -1;
int lastFPS = -1;
while(device->run())
{
if (device->isWindowActive())
{
driver->beginScene(true, true, video::SColor(255,0,0,0));
while(device->run())
{
if (device->isWindowActive())
{
driver->beginScene(true, true, video::SColor(255,0,0,0));
if (rt)
{
// draw scene into render target
if (rt)
{
// draw scene into render target
// set render target to RTT
driver->setRenderTarget(rt, true, true, video::SColor(255,0,0,0));
// set render target to RTT
driver->setRenderTarget(rt, true, true, video::SColor(255,0,0,0));
// draw scene to RTT just like normal rendering
smgr->drawAll();
// draw scene to RTT just like normal rendering
smgr->drawAll();
// after rendering to RTT, we change render target back
driver->setRenderTarget(0, true, true, video::SColor(255,0,0,0));
// after rendering to RTT, we change render target back
driver->setRenderTarget(0, true, true, video::SColor(255,0,0,0));
// render screen quad to apply post processing
screenQuad->render();
}
else
{
// draw scene normally
smgr->drawAll();
}
// render screen quad to apply post processing
screenQuad->render();
}
else
{
// draw scene normally
smgr->drawAll();
}
driver->endScene();
driver->endScene();
int fps = driver->getFPS();
int fps = driver->getFPS();
if (lastFPS != fps)
{
core::stringw str = L"Irrlicht Engine - Post processing example [";
str += driver->getName();
str += "] FPS:";
str += fps;
if (lastFPS != fps)
{
core::stringw str = L"Irrlicht Engine - Post processing example [";
str += driver->getName();
str += "] FPS:";
str += fps;
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
}
device->setWindowCaption(str.c_str());
lastFPS = fps;
}
}
}
// do not forget to manually drop the screen quad
// do not forget to manually drop the screen quad
screenQuad->drop();
screenQuad->drop();
device->drop();
device->drop();
return 0;
return 0;
}
/*