// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_MATH_H_INCLUDED__ #define __IRR_MATH_H_INCLUDED__ #include "irrTypes.h" #include <math.h> #include <float.h> #include <stdlib.h> // for abs() etc. #include <limits.h> // For INT_MAX / UINT_MAX namespace irr { namespace core { //! Rounding error constant often used when comparing f32 values. const s32 ROUNDING_ERROR_S32 = 0; const s64 ROUNDING_ERROR_S64 = 0; const f32 ROUNDING_ERROR_f32 = 0.000001f; const f64 ROUNDING_ERROR_f64 = 0.00000001; #ifdef PI // make sure we don't collide with a define #undef PI #endif //! Constant for PI. const f32 PI = 3.14159265359f; //! Constant for reciprocal of PI. const f32 RECIPROCAL_PI = 1.0f/PI; //! Constant for half of PI. const f32 HALF_PI = PI/2.0f; #ifdef PI64 // make sure we don't collide with a define #undef PI64 #endif //! Constant for 64bit PI. const f64 PI64 = 3.1415926535897932384626433832795028841971693993751; //! Constant for 64bit reciprocal of PI. const f64 RECIPROCAL_PI64 = 1.0/PI64; //! 32bit Constant for converting from degrees to radians const f32 DEGTORAD = PI / 180.0f; //! 32bit constant for converting from radians to degrees (formally known as GRAD_PI) const f32 RADTODEG = 180.0f / PI; //! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2) const f64 DEGTORAD64 = PI64 / 180.0; //! 64bit constant for converting from radians to degrees const f64 RADTODEG64 = 180.0 / PI64; //! Utility function to convert a radian value to degrees /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X \param radians The radians value to convert to degrees. */ inline f32 radToDeg(f32 radians) { return RADTODEG * radians; } //! Utility function to convert a radian value to degrees /** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X \param radians The radians value to convert to degrees. */ inline f64 radToDeg(f64 radians) { return RADTODEG64 * radians; } //! Utility function to convert a degrees value to radians /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X \param degrees The degrees value to convert to radians. */ inline f32 degToRad(f32 degrees) { return DEGTORAD * degrees; } //! Utility function to convert a degrees value to radians /** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X \param degrees The degrees value to convert to radians. */ inline f64 degToRad(f64 degrees) { return DEGTORAD64 * degrees; } //! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems) template<class T> inline const T& min_(const T& a, const T& b) { return a < b ? a : b; } //! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems) template<class T> inline const T& min_(const T& a, const T& b, const T& c) { return a < b ? min_(a, c) : min_(b, c); } //! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems) template<class T> inline const T& max_(const T& a, const T& b) { return a < b ? b : a; } //! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems) template<class T> inline const T& max_(const T& a, const T& b, const T& c) { return a < b ? max_(b, c) : max_(a, c); } //! returns abs of two values. Own implementation to get rid of STL (VS6 problems) template<class T> inline T abs_(const T& a) { return a < (T)0 ? -a : a; } //! returns linear interpolation of a and b with ratio t //! \return: a if t==0, b if t==1, and the linear interpolation else template<class T> inline T lerp(const T& a, const T& b, const f32 t) { return (T)(a*(1.f-t)) + (b*t); } //! clamps a value between low and high template <class T> inline const T clamp (const T& value, const T& low, const T& high) { return min_ (max_(value,low), high); } //! swaps the content of the passed parameters // Note: We use the same trick as boost and use two template arguments to // avoid ambiguity when swapping objects of an Irrlicht type that has not // it's own swap overload. Otherwise we get conflicts with some compilers // in combination with stl. template <class T1, class T2> inline void swap(T1& a, T2& b) { T1 c(a); a = b; b = c; } template <class T> inline T roundingError(); template <> inline f32 roundingError() { return ROUNDING_ERROR_f32; } template <> inline f64 roundingError() { return ROUNDING_ERROR_f64; } template <> inline s32 roundingError() { return ROUNDING_ERROR_S32; } template <> inline u32 roundingError() { return ROUNDING_ERROR_S32; } template <> inline s64 roundingError() { return ROUNDING_ERROR_S64; } template <> inline u64 roundingError() { return ROUNDING_ERROR_S64; } template <class T> inline T relativeErrorFactor() { return 1; } template <> inline f32 relativeErrorFactor() { return 4; } template <> inline f64 relativeErrorFactor() { return 8; } //! returns if a equals b, taking possible rounding errors into account template <class T> inline bool equals(const T a, const T b, const T tolerance = roundingError<T>()) { return (a + tolerance >= b) && (a - tolerance <= b); } //! returns if a equals b, taking relative error in form of factor //! this particular function does not involve any division. template <class T> inline bool equalsRelative( const T a, const T b, const T factor = relativeErrorFactor<T>()) { //https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/ const T maxi = max_( a, b); const T mini = min_( a, b); const T maxMagnitude = max_( maxi, -mini); return (maxMagnitude*factor + maxi) == (maxMagnitude*factor + mini); // MAD Wise } union FloatIntUnion32 { FloatIntUnion32(float f1 = 0.0f) : f(f1) {} // Portable sign-extraction bool sign() const { return (i >> 31) != 0; } irr::s32 i; irr::f32 f; }; //! We compare the difference in ULP's (spacing between floating-point numbers, aka ULP=1 means there exists no float between). //\result true when numbers have a ULP <= maxUlpDiff AND have the same sign. inline bool equalsByUlp(f32 a, f32 b, int maxUlpDiff) { // Based on the ideas and code from Bruce Dawson on // http://www.altdevblogaday.com/2012/02/22/comparing-floating-point-numbers-2012-edition/ // When floats are interpreted as integers the two nearest possible float numbers differ just // by one integer number. Also works the other way round, an integer of 1 interpreted as float // is for example the smallest possible float number. const FloatIntUnion32 fa(a); const FloatIntUnion32 fb(b); // Different signs, we could maybe get difference to 0, but so close to 0 using epsilons is better. if ( fa.sign() != fb.sign() ) { // Check for equality to make sure +0==-0 if (fa.i == fb.i) return true; return false; } // Find the difference in ULPs. const int ulpsDiff = abs_(fa.i- fb.i); if (ulpsDiff <= maxUlpDiff) return true; return false; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64) { return fabs(a) <= tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32) { return fabsf(a) <= tolerance; } //! returns if a equals not zero, taking rounding errors into account inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32) { return fabsf(a) > tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const s32 a, const s32 tolerance = 0) { return ( a & 0x7ffffff ) <= tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const u32 a, const u32 tolerance = 0) { return a <= tolerance; } //! returns if a equals zero, taking rounding errors into account inline bool iszero(const s64 a, const s64 tolerance = 0) { return abs_(a) <= tolerance; } inline s32 s32_min(s32 a, s32 b) { return min_(a, b); } inline s32 s32_max(s32 a, s32 b) { return max_(a, b); } inline s32 s32_clamp (s32 value, s32 low, s32 high) { return clamp(value, low, high); } /* float IEEE-754 bit representation 0 0x00000000 1.0 0x3f800000 0.5 0x3f000000 3 0x40400000 +inf 0x7f800000 -inf 0xff800000 +NaN 0x7fc00000 or 0x7ff00000 in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits) */ typedef union { u32 u; s32 s; f32 f; } inttofloat; #define F32_AS_S32(f) (*((s32 *) &(f))) #define F32_AS_U32(f) (*((u32 *) &(f))) #define F32_AS_U32_POINTER(f) ( ((u32 *) &(f))) #define F32_VALUE_0 0x00000000 #define F32_VALUE_1 0x3f800000 //! code is taken from IceFPU //! Integer representation of a floating-point value. inline u32 IR(f32 x) {inttofloat tmp; tmp.f=x; return tmp.u;} //! Floating-point representation of an integer value. inline f32 FR(u32 x) {inttofloat tmp; tmp.u=x; return tmp.f;} inline f32 FR(s32 x) {inttofloat tmp; tmp.s=x; return tmp.f;} #define F32_LOWER_0(n) ((n) < 0.0f) #define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f) #define F32_GREATER_0(n) ((n) > 0.0f) #define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f) #define F32_EQUAL_1(n) ((n) == 1.0f) #define F32_EQUAL_0(n) ((n) == 0.0f) #define F32_A_GREATER_B(a,b) ((a) > (b)) #ifndef REALINLINE #ifdef _MSC_VER #define REALINLINE __forceinline #else #define REALINLINE inline #endif #endif // NOTE: This is not as exact as the c99/c++11 round function, especially at high numbers starting with 8388609 // (only low number which seems to go wrong is 0.49999997 which is rounded to 1) // Also negative 0.5 is rounded up not down unlike with the standard function (p.E. input -0.5 will be 0 and not -1) inline f32 round_( f32 x ) { return floorf( x + 0.5f ); } // calculate: sqrt ( x ) REALINLINE f32 squareroot(const f32 f) { return sqrtf(f); } // calculate: sqrt ( x ) REALINLINE f64 squareroot(const f64 f) { return sqrt(f); } // calculate: sqrt ( x ) REALINLINE s32 squareroot(const s32 f) { return static_cast<s32>(squareroot(static_cast<f32>(f))); } // calculate: sqrt ( x ) REALINLINE s64 squareroot(const s64 f) { return static_cast<s64>(squareroot(static_cast<f64>(f))); } // calculate: 1 / sqrt ( x ) REALINLINE f64 reciprocal_squareroot(const f64 x) { return 1.0 / sqrt(x); } // calculate: 1 / sqrtf ( x ) REALINLINE f32 reciprocal_squareroot(const f32 f) { return 1.f / sqrtf(f); } // calculate: 1 / sqrtf( x ) REALINLINE s32 reciprocal_squareroot(const s32 x) { return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x))); } // calculate: 1 / x REALINLINE f32 reciprocal( const f32 f ) { return 1.f / f; } // calculate: 1 / x REALINLINE f64 reciprocal ( const f64 f ) { return 1.0 / f; } // calculate: 1 / x, low precision allowed REALINLINE f32 reciprocal_approxim ( const f32 f ) { return 1.f / f; } REALINLINE s32 floor32(f32 x) { return (s32) floorf ( x ); } REALINLINE s32 ceil32 ( f32 x ) { return (s32) ceilf ( x ); } // NOTE: Please check round_ documentation about some inaccuracies in this compared to standard library round function. REALINLINE s32 round32(f32 x) { return (s32) round_(x); } inline f32 f32_max3(const f32 a, const f32 b, const f32 c) { return a > b ? (a > c ? a : c) : (b > c ? b : c); } inline f32 f32_min3(const f32 a, const f32 b, const f32 c) { return a < b ? (a < c ? a : c) : (b < c ? b : c); } inline f32 fract ( f32 x ) { return x - floorf ( x ); } } // end namespace core } // end namespace irr using irr::core::IR; using irr::core::FR; #endif