// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #define _IRR_DONT_DO_MEMORY_DEBUGGING_HERE #include "CD3D9Driver.h" #ifdef _IRR_COMPILE_WITH_DIRECT3D_9_ #include "os.h" #include "S3DVertex.h" #include "CD3D9Texture.h" #include "CD3D9RenderTarget.h" #include "CD3D9MaterialRenderer.h" #include "CD3D9ShaderMaterialRenderer.h" #include "CD3D9NormalMapRenderer.h" #include "CD3D9ParallaxMapRenderer.h" #include "CD3D9HLSLMaterialRenderer.h" #include "SIrrCreationParameters.h" namespace irr { namespace video { namespace { inline DWORD F2DW( FLOAT f ) { return *((DWORD*)&f); } } //! constructor CD3D9Driver::CD3D9Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io) : CNullDriver(io, params.WindowSize), BridgeCalls(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(false), D3DLibrary(0), pID3D(0), pID3DDevice(0), BackBufferSurface(0), DepthStencilSurface(0), WindowId(0), SceneSourceRect(0), LastVertexType((video::E_VERTEX_TYPE)-1), VendorID(0), MaxTextureUnits(0), MaxFixedPipelineTextureUnits(0), MaxUserClipPlanes(0), MaxLightDistance(0.f), LastSetLight(-1), ColorFormat(ECF_A8R8G8B8), DeviceLost(false), DriverWasReset(true), OcclusionQuerySupport(false), AlphaToCoverageSupport(false), Params(params) { #ifdef _DEBUG setDebugName("CD3D9Driver"); #endif printVersion(); for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i) { CurrentTexture[i] = 0; LastTextureMipMapsAvailable[i] = false; } MaxLightDistance = sqrtf(FLT_MAX); // create sphere map matrix SphereMapMatrixD3D9._11 = 0.5f; SphereMapMatrixD3D9._12 = 0.0f; SphereMapMatrixD3D9._13 = 0.0f; SphereMapMatrixD3D9._14 = 0.0f; SphereMapMatrixD3D9._21 = 0.0f; SphereMapMatrixD3D9._22 =-0.5f; SphereMapMatrixD3D9._23 = 0.0f; SphereMapMatrixD3D9._24 = 0.0f; SphereMapMatrixD3D9._31 = 0.0f; SphereMapMatrixD3D9._32 = 0.0f; SphereMapMatrixD3D9._33 = 1.0f; SphereMapMatrixD3D9._34 = 0.0f; SphereMapMatrixD3D9._41 = 0.5f; SphereMapMatrixD3D9._42 = 0.5f; SphereMapMatrixD3D9._43 = 0.0f; SphereMapMatrixD3D9._44 = 1.0f; core::matrix4 mat; UnitMatrixD3D9 = *(D3DMATRIX*)((void*)mat.pointer()); // init direct 3d is done in the factory function } //! destructor CD3D9Driver::~CD3D9Driver() { deleteMaterialRenders(); deleteAllTextures(); removeAllOcclusionQueries(); removeAllHardwareBuffers(); if (DepthStencilSurface) DepthStencilSurface->Release(); delete BridgeCalls; // drop d3d9 if (pID3DDevice) pID3DDevice->Release(); if (pID3D) pID3D->Release(); } void CD3D9Driver::createMaterialRenderers() { // create D3D9 material renderers addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SOLID_2_LAYER(pID3DDevice, this)); // add the same renderer for all lightmap types CD3D9MaterialRenderer_LIGHTMAP* lmr = new CD3D9MaterialRenderer_LIGHTMAP(pID3DDevice, this); addMaterialRenderer(lmr); // for EMT_LIGHTMAP: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4: lmr->drop(); // add remaining fixed function pipeline material renderers addAndDropMaterialRenderer(new CD3D9MaterialRenderer_DETAIL_MAP(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_SPHERE_MAP(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_REFLECTION_2_LAYER(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ADD_COLOR(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(pID3DDevice, this)); addAndDropMaterialRenderer(new CD3D9MaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(pID3DDevice, this)); // add normal map renderers s32 tmp = 0; video::IMaterialRenderer* renderer = 0; renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new CD3D9NormalMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add parallax map renderers renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new CD3D9ParallaxMapRenderer(pID3DDevice, this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add basic 1 texture blending addAndDropMaterialRenderer(new CD3D9MaterialRenderer_ONETEXTURE_BLEND(pID3DDevice, this)); } //! initialises the Direct3D API bool CD3D9Driver::initDriver(HWND hwnd, bool pureSoftware) { if (!pID3D) { D3DLibrary = LoadLibrary( __TEXT("d3d9.dll") ); if (!D3DLibrary) { os::Printer::log("Error, could not load d3d9.dll.", ELL_ERROR); return false; } typedef IDirect3D9 * (__stdcall *D3DCREATETYPE)(UINT); D3DCREATETYPE d3dCreate = (D3DCREATETYPE) GetProcAddress(D3DLibrary, "Direct3DCreate9"); if (!d3dCreate) { os::Printer::log("Error, could not get proc adress of Direct3DCreate9.", ELL_ERROR); return false; } //just like pID3D = Direct3DCreate9(D3D_SDK_VERSION); pID3D = (*d3dCreate)(D3D_SDK_VERSION); if (!pID3D) { os::Printer::log("Error initializing D3D.", ELL_ERROR); return false; } } // print device information D3DADAPTER_IDENTIFIER9 dai; if (!FAILED(pID3D->GetAdapterIdentifier(Params.DisplayAdapter, 0, &dai))) { char tmp[512]; s32 Product = HIWORD(dai.DriverVersion.HighPart); s32 Version = LOWORD(dai.DriverVersion.HighPart); s32 SubVersion = HIWORD(dai.DriverVersion.LowPart); s32 Build = LOWORD(dai.DriverVersion.LowPart); sprintf(tmp, "%s %s %d.%d.%d.%d", dai.Description, dai.Driver, Product, Version, SubVersion, Build); os::Printer::log(tmp, ELL_INFORMATION); // Assign vendor name based on vendor id. VendorID= static_cast<u16>(dai.VendorId); switch(dai.VendorId) { case 0x1002 : VendorName = "ATI Technologies Inc."; break; case 0x10DE : VendorName = "NVIDIA Corporation"; break; case 0x102B : VendorName = "Matrox Electronic Systems Ltd."; break; case 0x121A : VendorName = "3dfx Interactive Inc"; break; case 0x5333 : VendorName = "S3 Graphics Co., Ltd."; break; case 0x8086 : VendorName = "Intel Corporation"; break; default: VendorName = "Unknown VendorId: ";VendorName += (u32)dai.VendorId; break; } } D3DDISPLAYMODE d3ddm; if (FAILED(pID3D->GetAdapterDisplayMode(Params.DisplayAdapter, &d3ddm))) { os::Printer::log("Error: Could not get Adapter Display mode.", ELL_ERROR); return false; } ZeroMemory(&present, sizeof(present)); present.BackBufferCount = 1; present.EnableAutoDepthStencil = TRUE; if (Params.Vsync) present.PresentationInterval = D3DPRESENT_INTERVAL_ONE; else present.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE; if (Params.Fullscreen) { present.BackBufferWidth = Params.WindowSize.Width; present.BackBufferHeight = Params.WindowSize.Height; // request 32bit mode if user specified 32 bit, added by Thomas Stuefe if (Params.Bits == 32) present.BackBufferFormat = D3DFMT_X8R8G8B8; else present.BackBufferFormat = D3DFMT_R5G6B5; present.SwapEffect = D3DSWAPEFFECT_FLIP; present.Windowed = FALSE; present.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT; } else { present.BackBufferFormat = d3ddm.Format; present.SwapEffect = D3DSWAPEFFECT_DISCARD; present.Windowed = TRUE; } UINT adapter = Params.DisplayAdapter; D3DDEVTYPE devtype = D3DDEVTYPE_HAL; #ifndef _IRR_D3D_NO_SHADER_DEBUGGING devtype = D3DDEVTYPE_REF; #elif defined(_IRR_USE_NVIDIA_PERFHUD_) for (UINT adapter_i = 0; adapter_i < pID3D->GetAdapterCount(); ++adapter_i) { D3DADAPTER_IDENTIFIER9 identifier; pID3D->GetAdapterIdentifier(adapter_i,0,&identifier); if (strstr(identifier.Description,"PerfHUD") != 0) { adapter = adapter_i; devtype = D3DDEVTYPE_REF; break; } } #endif // enable anti alias if possible and desired if (Params.AntiAlias > 0) { if (Params.AntiAlias > 32) Params.AntiAlias = 32; DWORD qualityLevels = 0; while(Params.AntiAlias > 0) { if(SUCCEEDED(pID3D->CheckDeviceMultiSampleType(adapter, devtype, present.BackBufferFormat, !Params.Fullscreen, (D3DMULTISAMPLE_TYPE)Params.AntiAlias, &qualityLevels))) { present.MultiSampleType = (D3DMULTISAMPLE_TYPE)Params.AntiAlias; present.MultiSampleQuality = qualityLevels-1; present.SwapEffect = D3DSWAPEFFECT_DISCARD; break; } --Params.AntiAlias; } if (Params.AntiAlias==0) { os::Printer::log("Anti aliasing disabled because hardware/driver lacks necessary caps.", ELL_WARNING); } } // check stencil buffer compatibility if (Params.Stencilbuffer) { present.AutoDepthStencilFormat = D3DFMT_D24S8; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { present.AutoDepthStencilFormat = D3DFMT_D24X4S4; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { present.AutoDepthStencilFormat = D3DFMT_D15S1; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { os::Printer::log("Device does not support stencilbuffer, disabling stencil buffer.", ELL_WARNING); Params.Stencilbuffer = false; } } } else if(FAILED(pID3D->CheckDepthStencilMatch(adapter, devtype, present.BackBufferFormat, present.BackBufferFormat, present.AutoDepthStencilFormat))) { os::Printer::log("Depth-stencil format is not compatible with display format, disabling stencil buffer.", ELL_WARNING); Params.Stencilbuffer = false; } } // do not use else here to cope with flag change in previous block if (!Params.Stencilbuffer) { present.AutoDepthStencilFormat = D3DFMT_D32; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { present.AutoDepthStencilFormat = D3DFMT_D24X8; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { present.AutoDepthStencilFormat = D3DFMT_D16; if(FAILED(pID3D->CheckDeviceFormat(adapter, devtype, present.BackBufferFormat, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, present.AutoDepthStencilFormat))) { os::Printer::log("Device does not support required depth buffer.", ELL_WARNING); return false; } } } } // create device DWORD fpuPrecision = Params.HighPrecisionFPU ? D3DCREATE_FPU_PRESERVE : 0; DWORD multithreaded = Params.DriverMultithreaded ? D3DCREATE_MULTITHREADED : 0; if (pureSoftware) { if (FAILED(pID3D->CreateDevice(Params.DisplayAdapter, D3DDEVTYPE_REF, hwnd, fpuPrecision | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice))) os::Printer::log("Was not able to create Direct3D9 software device.", ELL_ERROR); } else { HRESULT hr = pID3D->CreateDevice(adapter, devtype, hwnd, fpuPrecision | multithreaded | D3DCREATE_HARDWARE_VERTEXPROCESSING, &present, &pID3DDevice); if(FAILED(hr)) hr = pID3D->CreateDevice(adapter, devtype, hwnd, fpuPrecision | multithreaded | D3DCREATE_MIXED_VERTEXPROCESSING , &present, &pID3DDevice); if(FAILED(hr)) hr = pID3D->CreateDevice(adapter, devtype, hwnd, fpuPrecision | multithreaded | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &present, &pID3DDevice); if (FAILED(hr)) os::Printer::log("Was not able to create Direct3D9 device.", ELL_ERROR); } if (!pID3DDevice) { os::Printer::log("Was not able to create DIRECT3D9 device.", ELL_ERROR); return false; } // get caps pID3DDevice->GetDeviceCaps(&Caps); os::Printer::log("Currently available Video Memory (kB)", core::stringc(pID3DDevice->GetAvailableTextureMem()/1024).c_str()); // disable stencilbuffer if necessary if (Params.Stencilbuffer && (!(Caps.StencilCaps & D3DSTENCILCAPS_DECRSAT) || !(Caps.StencilCaps & D3DSTENCILCAPS_INCRSAT) || !(Caps.StencilCaps & D3DSTENCILCAPS_KEEP))) { os::Printer::log("Device not able to use stencil buffer, disabling stencil buffer.", ELL_WARNING); Params.Stencilbuffer = false; } if (!BridgeCalls) BridgeCalls = new CD3D9CallBridge(pID3DDevice, this); // set default vertex shader setVertexShader(EVT_STANDARD); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // set exposed data ExposedData.D3D9.D3D9 = pID3D; ExposedData.D3D9.D3DDev9 = pID3DDevice; ExposedData.D3D9.HWnd = hwnd; ResetRenderStates = true; // create materials createMaterialRenderers(); MaxFixedPipelineTextureUnits = (u32)Caps.MaxSimultaneousTextures; DriverAttributes->setAttribute("MaxSupportedTextures", (s32)MaxFixedPipelineTextureUnits); u32 maxTextureSamplers = (Caps.PixelShaderVersion >= D3DPS_VERSION(2, 0)) ? 16 : (Caps.PixelShaderVersion >= D3DPS_VERSION(1, 4)) ? 6 : (Caps.PixelShaderVersion >= D3DPS_VERSION(1, 0)) ? 4 : 0; MaxTextureUnits = core::max_(MaxFixedPipelineTextureUnits, maxTextureSamplers); MaxTextureUnits = core::min_(MaxTextureUnits, MATERIAL_MAX_TEXTURES); MaxTextureUnits = core::min_(MaxTextureUnits, MATERIAL_MAX_TEXTURES_USED); MaxUserClipPlanes = (u32)Caps.MaxUserClipPlanes; OcclusionQuerySupport=(pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, NULL) == S_OK); if (VendorID==0x10DE)//NVidia AlphaToCoverageSupport = (pID3D->CheckDeviceFormat(adapter, D3DDEVTYPE_HAL, D3DFMT_X8R8G8B8, 0,D3DRTYPE_SURFACE, (D3DFORMAT)MAKEFOURCC('A', 'T', 'O', 'C')) == S_OK); else if (VendorID==0x1002)//ATI AlphaToCoverageSupport = true; // TODO: Check unknown #if 0 AlphaToCoverageSupport = (pID3D->CheckDeviceFormat(adapter, D3DDEVTYPE_HAL, D3DFMT_X8R8G8B8, 0,D3DRTYPE_SURFACE, (D3DFORMAT)MAKEFOURCC('A','2','M','1')) == S_OK); #endif DriverAttributes->setAttribute("MaxTextures", (s32)MaxTextureUnits); DriverAttributes->setAttribute("MaxLights", (s32)Caps.MaxActiveLights); DriverAttributes->setAttribute("MaxAnisotropy", (s32)Caps.MaxAnisotropy); DriverAttributes->setAttribute("MaxUserClipPlanes", (s32)Caps.MaxUserClipPlanes); DriverAttributes->setAttribute("MaxMultipleRenderTargets", (s32)Caps.NumSimultaneousRTs); DriverAttributes->setAttribute("MaxIndices", (s32)Caps.MaxVertexIndex); DriverAttributes->setAttribute("MaxTextureSize", (s32)core::min_(Caps.MaxTextureHeight,Caps.MaxTextureWidth)); DriverAttributes->setAttribute("MaxTextureLODBias", 16); DriverAttributes->setAttribute("Version", 901); DriverAttributes->setAttribute("ShaderLanguageVersion", (s32)(((0x00ff00 & Caps.VertexShaderVersion)>>8)*100 + (Caps.VertexShaderVersion&0xff))); DriverAttributes->setAttribute("AntiAlias", Params.AntiAlias); // set the renderstates setRenderStates3DMode(); // store the screen's depth buffer descriptor if (!SUCCEEDED(pID3DDevice->GetDepthStencilSurface(&DepthStencilSurface))) { os::Printer::log("Was not able to get main depth buffer.", ELL_ERROR); return false; } D3DColorFormat = D3DFMT_A8R8G8B8; IDirect3DSurface9* bb = 0; if (SUCCEEDED(pID3DDevice->GetBackBuffer(0, 0, D3DBACKBUFFER_TYPE_MONO, &bb))) { D3DSURFACE_DESC desc; bb->GetDesc(&desc); D3DColorFormat = desc.Format; if (D3DColorFormat == D3DFMT_X8R8G8B8) D3DColorFormat = D3DFMT_A8R8G8B8; bb->Release(); } ColorFormat = getColorFormatFromD3DFormat(D3DColorFormat); ActiveRenderTarget.set_used((u32)Caps.NumSimultaneousRTs); for (u32 i = 0; i < ActiveRenderTarget.size(); ++i) ActiveRenderTarget[i] = false; // so far so good. return true; } bool CD3D9Driver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect<s32>* sourceRect) { CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); WindowId = (HWND)videoData.D3D9.HWnd; SceneSourceRect = sourceRect; if (!pID3DDevice) return false; HRESULT hr; if (DeviceLost) { if ( !retrieveDevice(1) ) return false; } clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); hr = pID3DDevice->BeginScene(); if (FAILED(hr)) { os::Printer::log("DIRECT3D9 begin scene failed.", ELL_WARNING); return false; } return true; } bool CD3D9Driver::endScene() { CNullDriver::endScene(); DriverWasReset=false; HRESULT hr = pID3DDevice->EndScene(); if (FAILED(hr)) { os::Printer::log("DIRECT3D9 end scene failed.", ELL_WARNING); return false; } RECT* srcRct = 0; RECT sourceRectData; if ( SceneSourceRect ) { srcRct = &sourceRectData; sourceRectData.left = SceneSourceRect->UpperLeftCorner.X; sourceRectData.top = SceneSourceRect->UpperLeftCorner.Y; sourceRectData.right = SceneSourceRect->LowerRightCorner.X; sourceRectData.bottom = SceneSourceRect->LowerRightCorner.Y; } IDirect3DSwapChain9* swChain; hr = pID3DDevice->GetSwapChain(0, &swChain); DWORD flags = (Params.HandleSRGB && (Caps.Caps3&D3DCAPS3_LINEAR_TO_SRGB_PRESENTATION))?D3DPRESENT_LINEAR_CONTENT:0; hr = swChain->Present(srcRct, NULL, WindowId, NULL, flags); swChain->Release(); if (SUCCEEDED(hr)) return true; if (hr == D3DERR_DEVICELOST) { DeviceLost = true; os::Printer::log("Present failed", "DIRECT3D9 device lost.", ELL_WARNING); } #ifdef D3DERR_DEVICEREMOVED else if (hr == D3DERR_DEVICEREMOVED) { os::Printer::log("Present failed", "Device removed.", ELL_WARNING); } #endif else if (hr == D3DERR_INVALIDCALL) { os::Printer::log("Present failed", "Invalid Call", ELL_WARNING); } else os::Printer::log("DIRECT3D9 present failed.", ELL_WARNING); return false; } //! queries the features of the driver, returns true if feature is available bool CD3D9Driver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { if (!FeatureEnabled[feature]) return false; switch (feature) { case EVDF_MULTITEXTURE: case EVDF_BILINEAR_FILTER: return true; case EVDF_RENDER_TO_TARGET: return Caps.NumSimultaneousRTs > 0; case EVDF_HARDWARE_TL: return (Caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT) != 0; case EVDF_MIP_MAP: return (Caps.TextureCaps & D3DPTEXTURECAPS_MIPMAP) != 0; case EVDF_MIP_MAP_AUTO_UPDATE: return (Caps.Caps2 & D3DCAPS2_CANAUTOGENMIPMAP) != 0; case EVDF_STENCIL_BUFFER: return Params.Stencilbuffer && Caps.StencilCaps; case EVDF_VERTEX_SHADER_1_1: return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1); case EVDF_VERTEX_SHADER_2_0: return Caps.VertexShaderVersion >= D3DVS_VERSION(2,0); case EVDF_VERTEX_SHADER_3_0: return Caps.VertexShaderVersion >= D3DVS_VERSION(3,0); case EVDF_PIXEL_SHADER_1_1: return Caps.PixelShaderVersion >= D3DPS_VERSION(1,1); case EVDF_PIXEL_SHADER_1_2: return Caps.PixelShaderVersion >= D3DPS_VERSION(1,2); case EVDF_PIXEL_SHADER_1_3: return Caps.PixelShaderVersion >= D3DPS_VERSION(1,3); case EVDF_PIXEL_SHADER_1_4: return Caps.PixelShaderVersion >= D3DPS_VERSION(1,4); case EVDF_PIXEL_SHADER_2_0: return Caps.PixelShaderVersion >= D3DPS_VERSION(2,0); case EVDF_PIXEL_SHADER_3_0: return Caps.PixelShaderVersion >= D3DPS_VERSION(3,0); case EVDF_HLSL: return Caps.VertexShaderVersion >= D3DVS_VERSION(1,1); case EVDF_TEXTURE_NSQUARE: return (Caps.TextureCaps & D3DPTEXTURECAPS_SQUAREONLY) == 0; case EVDF_TEXTURE_NPOT: return (Caps.TextureCaps & D3DPTEXTURECAPS_POW2) == 0; case EVDF_COLOR_MASK: return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_COLORWRITEENABLE) != 0; case EVDF_MULTIPLE_RENDER_TARGETS: return Caps.NumSimultaneousRTs > 1; case EVDF_MRT_COLOR_MASK: return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_INDEPENDENTWRITEMASKS) != 0; case EVDF_MRT_BLEND: return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_MRTPOSTPIXELSHADERBLENDING) != 0; case EVDF_OCCLUSION_QUERY: return OcclusionQuerySupport; case EVDF_POLYGON_OFFSET: return (Caps.RasterCaps & (D3DPRASTERCAPS_DEPTHBIAS|D3DPRASTERCAPS_SLOPESCALEDEPTHBIAS)) != 0; case EVDF_BLEND_OPERATIONS: return true; case EVDF_BLEND_SEPARATE: return (Caps.PrimitiveMiscCaps & D3DPMISCCAPS_SEPARATEALPHABLEND) != 0; case EVDF_TEXTURE_MATRIX: return true; case EVDF_TEXTURE_COMPRESSED_DXT: return true; case EVDF_TEXTURE_CUBEMAP: return true; default: return false; }; } //! sets transformation void CD3D9Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Transformation3DChanged = true; switch(state) { case ETS_VIEW: pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)mat.pointer())); break; case ETS_WORLD: pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)mat.pointer())); break; case ETS_PROJECTION: pID3DDevice->SetTransform( D3DTS_PROJECTION, (D3DMATRIX*)((void*)mat.pointer())); break; case ETS_COUNT: return; default: { const s32 stage = state - ETS_TEXTURE_0; if ( stage < static_cast<s32>(MaxTextureUnits) && stage < static_cast<s32>(MaxFixedPipelineTextureUnits)) // texture transforms for shader pipeline have to be passed by user { if (mat.isIdentity()) pID3DDevice->SetTextureStageState(stage, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE); else { pID3DDevice->SetTextureStageState(stage, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2); pID3DDevice->SetTransform((D3DTRANSFORMSTATETYPE)(D3DTS_TEXTURE0 + stage), (D3DMATRIX*)((void*)mat.pointer())); } } } break; } Matrices[state] = mat; } //! sets the current Texture bool CD3D9Driver::setActiveTexture(u32 stage, const video::ITexture* texture) { if (CurrentTexture[stage] == texture) return true; if (texture && texture->getDriverType() != EDT_DIRECT3D9) { os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } CurrentTexture[stage] = texture; if (!texture) { pID3DDevice->SetTexture(stage, 0); pID3DDevice->SetTextureStageState( stage, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_DISABLE ); } else { pID3DDevice->SetTexture(stage, ((const CD3D9Texture*)texture)->getDX9BaseTexture()); if (stage <= 4) pID3DDevice->SetTexture(D3DVERTEXTEXTURESAMPLER0 + stage, ((const CD3D9Texture*)texture)->getDX9BaseTexture()); } return true; } //! sets a material void CD3D9Driver::setMaterial(const SMaterial& material) { Material = material; OverrideMaterial.apply(Material); for (u32 i=0; i<MaxTextureUnits; ++i) { const ITexture* texture = Material.getTexture(i); setActiveTexture(i, texture); if ( texture ) { setTransform((E_TRANSFORMATION_STATE) ( ETS_TEXTURE_0 + i ), material.getTextureMatrix(i)); } } } ITexture* CD3D9Driver::createDeviceDependentTexture(const io::path& name, IImage* image) { core::array<IImage*> imageArray(1); imageArray.push_back(image); CD3D9Texture* texture = new CD3D9Texture(name, imageArray, ETT_2D, this); if ( !texture->getDX9Texture() ) { texture->drop(); return 0; } return texture; } ITexture* CD3D9Driver::createDeviceDependentTextureCubemap(const io::path& name, const core::array<IImage*>& image) { CD3D9Texture* texture = new CD3D9Texture(name, image, ETT_CUBEMAP, this); if ( !texture->getDX9CubeTexture() ) { texture->drop(); return 0; } return texture; } bool CD3D9Driver::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { if (target && target->getDriverType() != EDT_DIRECT3D9) { os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR); return false; } if (target) { // Store main render target. if (!BackBufferSurface) { if (FAILED(pID3DDevice->GetRenderTarget(0, &BackBufferSurface))) { os::Printer::log("Could not get main render target.", ELL_ERROR); return false; } } // Set new color textures. CD3D9RenderTarget* renderTarget = static_cast<CD3D9RenderTarget*>(target); const u32 surfaceSize = core::min_(renderTarget->getSurfaceCount(), ActiveRenderTarget.size()); for (u32 i = 0; i < surfaceSize; ++i) { ActiveRenderTarget[i] = true; if (FAILED(pID3DDevice->SetRenderTarget(i, renderTarget->getSurface(i)))) { ActiveRenderTarget[i] = false; os::Printer::log("Error: Could not set render target.", ELL_ERROR); } } // Reset other render target channels. for (u32 i = surfaceSize; i < ActiveRenderTarget.size(); ++i) { if (ActiveRenderTarget[i]) { pID3DDevice->SetRenderTarget(i, 0); ActiveRenderTarget[i] = false; } } // Set depth stencil buffer. IDirect3DSurface9* depthStencilSurface = renderTarget->getDepthStencilSurface(); if (depthStencilSurface && FAILED(pID3DDevice->SetDepthStencilSurface(depthStencilSurface))) { os::Printer::log("Error: Could not set depth-stencil buffer.", ELL_ERROR); } // Set other settings. CurrentRenderTargetSize = renderTarget->getSize(); Transformation3DChanged = true; } else if (CurrentRenderTarget != target) { // Set main render target. if (BackBufferSurface) { ActiveRenderTarget[0] = true; if (FAILED(pID3DDevice->SetRenderTarget(0, BackBufferSurface))) { os::Printer::log("Error: Could not set main render target.", ELL_ERROR); ActiveRenderTarget[0] = false; return false; } BackBufferSurface->Release(); BackBufferSurface = 0; } // Reset other render target channels. for (u32 i = 1; i < ActiveRenderTarget.size(); ++i) { if (ActiveRenderTarget[i]) { pID3DDevice->SetRenderTarget(i, 0); ActiveRenderTarget[i] = false; } } // Set main depth-stencil stencil buffer. if (FAILED(pID3DDevice->SetDepthStencilSurface(DepthStencilSurface))) { os::Printer::log("Error: Could not set main depth-stencil buffer.", ELL_ERROR); } // Set other settings. CurrentRenderTargetSize = core::dimension2d<u32>(0, 0); Transformation3DChanged = true; } CurrentRenderTarget = target; clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } //! sets a viewport void CD3D9Driver::setViewPort(const core::rect<s32>& area) { core::rect<s32> vp = area; core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight()>0 && vp.getWidth()>0) { D3DVIEWPORT9 viewPort; viewPort.X = vp.UpperLeftCorner.X; viewPort.Y = vp.UpperLeftCorner.Y; viewPort.Width = vp.getWidth(); viewPort.Height = vp.getHeight(); viewPort.MinZ = 0.0f; viewPort.MaxZ = 1.0f; HRESULT hr = pID3DDevice->SetViewport(&viewPort); if (FAILED(hr)) os::Printer::log("Failed setting the viewport.", ELL_WARNING); else ViewPort = vp; } } //! gets the area of the current viewport const core::rect<s32>& CD3D9Driver::getViewPort() const { return ViewPort; } bool CD3D9Driver::updateVertexHardwareBuffer(SHWBufferLink_d3d9 *hwBuffer) { if (!hwBuffer) return false; const scene::IMeshBuffer* mb = hwBuffer->MeshBuffer; const void* vertices=mb->getVertices(); const u32 vertexCount=mb->getVertexCount(); const E_VERTEX_TYPE vType=mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); const u32 bufSize = vertexSize * vertexCount; if (!hwBuffer->vertexBuffer || (bufSize > hwBuffer->vertexBufferSize)) { if (hwBuffer->vertexBuffer) { hwBuffer->vertexBuffer->Release(); hwBuffer->vertexBuffer=0; } DWORD FVF; // Get the vertex sizes and cvf switch (vType) { case EVT_STANDARD: FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1; break; case EVT_2TCOORDS: FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX2; break; case EVT_TANGENTS: FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX3; break; default: return false; } DWORD flags = D3DUSAGE_WRITEONLY; // SIO2: Default to D3DUSAGE_WRITEONLY if (hwBuffer->Mapped_Vertex != scene::EHM_STATIC) flags |= D3DUSAGE_DYNAMIC; if (FAILED(pID3DDevice->CreateVertexBuffer(bufSize, flags, FVF, D3DPOOL_DEFAULT, &hwBuffer->vertexBuffer, NULL))) return false; hwBuffer->vertexBufferSize = bufSize; flags = 0; // SIO2: Reset flags before Lock if (hwBuffer->Mapped_Vertex != scene::EHM_STATIC) flags = D3DLOCK_DISCARD; void* lockedBuffer = 0; hwBuffer->vertexBuffer->Lock(0, bufSize, (void**)&lockedBuffer, flags); memcpy(lockedBuffer, vertices, bufSize); hwBuffer->vertexBuffer->Unlock(); } else { void* lockedBuffer = 0; hwBuffer->vertexBuffer->Lock(0, bufSize, (void**)&lockedBuffer, D3DLOCK_DISCARD); memcpy(lockedBuffer, vertices, bufSize); hwBuffer->vertexBuffer->Unlock(); } return true; } bool CD3D9Driver::updateIndexHardwareBuffer(SHWBufferLink_d3d9 *hwBuffer) { if (!hwBuffer) return false; const scene::IMeshBuffer* mb = hwBuffer->MeshBuffer; const u16* indices=mb->getIndices(); const u32 indexCount=mb->getIndexCount(); u32 indexSize = 2; D3DFORMAT indexType=D3DFMT_UNKNOWN; switch (mb->getIndexType()) { case EIT_16BIT: { indexType=D3DFMT_INDEX16; indexSize = 2; break; } case EIT_32BIT: { indexType=D3DFMT_INDEX32; indexSize = 4; break; } } const u32 bufSize = indexSize * indexCount; if (!hwBuffer->indexBuffer || (bufSize > hwBuffer->indexBufferSize)) { if (hwBuffer->indexBuffer) { hwBuffer->indexBuffer->Release(); hwBuffer->indexBuffer=0; } DWORD flags = D3DUSAGE_WRITEONLY; // SIO2: Default to D3DUSAGE_WRITEONLY if (hwBuffer->Mapped_Index != scene::EHM_STATIC) flags |= D3DUSAGE_DYNAMIC; // SIO2: Add DYNAMIC flag for dynamic buffer data if (FAILED(pID3DDevice->CreateIndexBuffer(bufSize, flags, indexType, D3DPOOL_DEFAULT, &hwBuffer->indexBuffer, NULL))) return false; flags = 0; // SIO2: Reset flags before Lock if (hwBuffer->Mapped_Index != scene::EHM_STATIC) flags = D3DLOCK_DISCARD; void* lockedBuffer = 0; if (FAILED(hwBuffer->indexBuffer->Lock( 0, 0, (void**)&lockedBuffer, flags))) return false; memcpy(lockedBuffer, indices, bufSize); hwBuffer->indexBuffer->Unlock(); hwBuffer->indexBufferSize = bufSize; } else { void* lockedBuffer = 0; if( SUCCEEDED(hwBuffer->indexBuffer->Lock( 0, 0, (void**)&lockedBuffer, D3DLOCK_DISCARD))) { memcpy(lockedBuffer, indices, bufSize); hwBuffer->indexBuffer->Unlock(); } } return true; } //! updates hardware buffer if needed bool CD3D9Driver::updateHardwareBuffer(SHWBufferLink *hwBuffer) { if (!hwBuffer) return false; if (hwBuffer->Mapped_Vertex!=scene::EHM_NEVER) { if (hwBuffer->ChangedID_Vertex != hwBuffer->MeshBuffer->getChangedID_Vertex() || !((SHWBufferLink_d3d9*)hwBuffer)->vertexBuffer) { hwBuffer->ChangedID_Vertex = hwBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer((SHWBufferLink_d3d9*)hwBuffer)) return false; } } if (hwBuffer->Mapped_Index!=scene::EHM_NEVER) { if (hwBuffer->ChangedID_Index != hwBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_d3d9*)hwBuffer)->indexBuffer) { hwBuffer->ChangedID_Index = hwBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_d3d9*)hwBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer CD3D9Driver::SHWBufferLink *CD3D9Driver::createHardwareBuffer(const scene::IMeshBuffer* mb) { // Looks like d3d does not support only partial buffering, so refuse // in any case of NEVER if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER || mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER)) return 0; SHWBufferLink_d3d9 *hwBuffer=new SHWBufferLink_d3d9(mb); //add to map HWBufferMap.insert(hwBuffer->MeshBuffer, hwBuffer); hwBuffer->ChangedID_Vertex=hwBuffer->MeshBuffer->getChangedID_Vertex(); hwBuffer->ChangedID_Index=hwBuffer->MeshBuffer->getChangedID_Index(); hwBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex(); hwBuffer->Mapped_Index=mb->getHardwareMappingHint_Index(); hwBuffer->LastUsed=0; hwBuffer->vertexBuffer=0; hwBuffer->indexBuffer=0; hwBuffer->vertexBufferSize=0; hwBuffer->indexBufferSize=0; if (!updateHardwareBuffer(hwBuffer)) { deleteHardwareBuffer(hwBuffer); return 0; } return hwBuffer; } void CD3D9Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_d3d9 *HWBuffer=(SHWBufferLink_d3d9*)_HWBuffer; if (HWBuffer->indexBuffer) { HWBuffer->indexBuffer->Release(); HWBuffer->indexBuffer = 0; } if (HWBuffer->vertexBuffer) { HWBuffer->vertexBuffer->Release(); HWBuffer->vertexBuffer = 0; } CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void CD3D9Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_d3d9 *HWBuffer=(SHWBufferLink_d3d9*)_HWBuffer; updateHardwareBuffer(HWBuffer); //check if update is needed HWBuffer->LastUsed=0;//reset count const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const E_VERTEX_TYPE vType = mb->getVertexType(); const u32 stride = getVertexPitchFromType(vType); const void* vPtr = mb->getVertices(); const void* iPtr = mb->getIndices(); if (HWBuffer->vertexBuffer) { pID3DDevice->SetStreamSource(0, HWBuffer->vertexBuffer, 0, stride); vPtr=0; } if (HWBuffer->indexBuffer) { pID3DDevice->SetIndices(HWBuffer->indexBuffer); iPtr=0; } drawVertexPrimitiveList(vPtr, mb->getVertexCount(), iPtr, mb->getPrimitiveCount(), mb->getVertexType(), mb->getPrimitiveType(), mb->getIndexType()); if (HWBuffer->vertexBuffer) pID3DDevice->SetStreamSource(0, 0, 0, 0); if (HWBuffer->indexBuffer) pID3DDevice->SetIndices(0); } //! Create occlusion query. /** Use node for identification and mesh for occlusion test. */ void CD3D9Driver::addOcclusionQuery(scene::ISceneNode* node, const scene::IMesh* mesh) { if (!queryFeature(EVDF_OCCLUSION_QUERY)) return; CNullDriver::addOcclusionQuery(node, mesh); const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if ((index != -1) && (OcclusionQueries[index].PID == 0)) pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, reinterpret_cast<IDirect3DQuery9**>(&OcclusionQueries[index].PID)); } //! Remove occlusion query. void CD3D9Driver::removeOcclusionQuery(scene::ISceneNode* node) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].PID != 0) reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Release(); CNullDriver::removeOcclusionQuery(node); } } //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ void CD3D9Driver::runOcclusionQuery(scene::ISceneNode* node, bool visible) { if (!node) return; const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].PID) reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Issue(D3DISSUE_BEGIN); CNullDriver::runOcclusionQuery(node,visible); if (OcclusionQueries[index].PID) reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->Issue(D3DISSUE_END); } } //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void CD3D9Driver::updateOcclusionQuery(scene::ISceneNode* node, bool block) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { // not yet started if (OcclusionQueries[index].Run==u32(~0)) return; bool available = block?true:false; int tmp=0; if (!block) available=(reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->GetData(&tmp, sizeof(DWORD), 0)==S_OK); else { do { HRESULT hr = reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[index].PID)->GetData(&tmp, sizeof(DWORD), D3DGETDATA_FLUSH); available = (hr == S_OK); if (hr!=S_FALSE) break; } while (!available); } if (available) OcclusionQueries[index].Result = tmp; } } //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger than the actual value of pixels. */ u32 CD3D9Driver::getOcclusionQueryResult(scene::ISceneNode* node) const { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) return OcclusionQueries[index].Result; else return ~0; } //! Create render target. IRenderTarget* CD3D9Driver::addRenderTarget() { CD3D9RenderTarget* renderTarget = new CD3D9RenderTarget(this); RenderTargets.push_back(renderTarget); return renderTarget; } //! draws a vertex primitive list void CD3D9Driver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType,iType); if (!vertexCount || !primitiveCount) return; draw2D3DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType, true); } //! draws a vertex primitive list void CD3D9Driver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType,iType); if (!vertexCount || !primitiveCount) return; draw2D3DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType, false); } void CD3D9Driver::draw2D3DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType, bool is3D) { setVertexShader(vType); const u32 stride = getVertexPitchFromType(vType); D3DFORMAT indexType=D3DFMT_UNKNOWN; switch (iType) { case (EIT_16BIT): { indexType=D3DFMT_INDEX16; break; } case (EIT_32BIT): { indexType=D3DFMT_INDEX32; break; } } if (is3D) { if (!setRenderStates3DMode()) return; } else { if (Material.MaterialType==EMT_ONETEXTURE_BLEND) { E_BLEND_FACTOR srcFact; E_BLEND_FACTOR dstFact; E_MODULATE_FUNC modulo; u32 alphaSource; unpack_textureBlendFunc ( srcFact, dstFact, modulo, alphaSource, Material.MaterialTypeParam); setRenderStates2DMode(alphaSource&video::EAS_VERTEX_COLOR, (Material.getTexture(0) != 0), (alphaSource&video::EAS_TEXTURE) != 0); } else setRenderStates2DMode(Material.MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL); } switch (pType) { case scene::EPT_POINT_SPRITES: case scene::EPT_POINTS: { f32 tmp=Material.Thickness/getScreenSize().Height; if (pType==scene::EPT_POINT_SPRITES) pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_POINTSIZE, F2DW(tmp)); tmp=1.0f; pID3DDevice->SetRenderState(D3DRS_POINTSCALE_A, F2DW(tmp)); pID3DDevice->SetRenderState(D3DRS_POINTSCALE_B, F2DW(tmp)); pID3DDevice->SetRenderState(D3DRS_POINTSIZE_MIN, F2DW(tmp)); tmp=0.0f; pID3DDevice->SetRenderState(D3DRS_POINTSCALE_C, F2DW(tmp)); if (!vertices) { pID3DDevice->DrawIndexedPrimitive(D3DPT_POINTLIST, 0, 0, vertexCount, 0, primitiveCount); } else { pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_POINTLIST, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); } pID3DDevice->SetRenderState(D3DRS_POINTSCALEENABLE, FALSE); if (pType==scene::EPT_POINT_SPRITES) pID3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, FALSE); } break; case scene::EPT_LINE_STRIP: if(!vertices) pID3DDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, 0, 0, vertexCount, 0, primitiveCount); else pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); break; case scene::EPT_LINE_LOOP: if(!vertices) { // TODO: Implement proper hardware support for this primitive type. // (No looping occurs currently because this would require a way to // draw the hardware buffer with a custom set of indices. We may even // need to create a new mini index buffer specifically for this // primitive type.) pID3DDevice->DrawIndexedPrimitive(D3DPT_LINELIST, 0, 0, vertexCount, 0, primitiveCount); } else { pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINESTRIP, 0, vertexCount, primitiveCount - 1, indexList, indexType, vertices, stride); u16 tmpIndices[] = {static_cast<u16>(primitiveCount - 1), 0}; pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount, 1, tmpIndices, indexType, vertices, stride); } break; case scene::EPT_LINES: if(!vertices) pID3DDevice->DrawIndexedPrimitive(D3DPT_LINELIST, 0, 0, vertexCount, 0, primitiveCount); else pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_LINELIST, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); break; case scene::EPT_TRIANGLE_STRIP: if(!vertices) pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, 0, vertexCount, 0, primitiveCount); else pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLESTRIP, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); break; case scene::EPT_TRIANGLE_FAN: if(!vertices) pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLEFAN, 0, 0, vertexCount, 0, primitiveCount); else pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLEFAN, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); break; case scene::EPT_TRIANGLES: if(!vertices) { pID3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, vertexCount, 0, primitiveCount); } else { pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, vertexCount, primitiveCount, indexList, indexType, vertices, stride); } break; } } void CD3D9Driver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if(!texture) return; const core::dimension2d<u32>& ss = texture->getOriginalSize(); core::rect<f32> tcoords; tcoords.UpperLeftCorner.X = (f32)sourceRect.UpperLeftCorner.X / (f32)ss.Width; tcoords.UpperLeftCorner.Y = (f32)sourceRect.UpperLeftCorner.Y / (f32)ss.Height; tcoords.LowerRightCorner.X = (f32)sourceRect.LowerRightCorner.X / (f32)ss.Width; tcoords.LowerRightCorner.Y = (f32)sourceRect.LowerRightCorner.Y / (f32)ss.Height; const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; S3DVertex vtx[4]; // clock wise vtx[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vtx[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vtx[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vtx[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); s16 indices[6] = {0,1,2,0,2,3}; setActiveTexture(0, texture); setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 || useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255, true, useAlphaChannelOfTexture); setVertexShader(EVT_STANDARD); if (clipRect) { pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE); RECT scissor; scissor.left = clipRect->UpperLeftCorner.X; scissor.top = clipRect->UpperLeftCorner.Y; scissor.right = clipRect->LowerRightCorner.X; scissor.bottom = clipRect->LowerRightCorner.Y; pID3DDevice->SetScissorRect(&scissor); } pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0], D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex)); if (clipRect) pID3DDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE); } void CD3D9Driver::draw2DImageBatch(const video::ITexture* texture, const core::array<core::position2d<s32> >& positions, const core::array<core::rect<s32> >& sourceRects, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size()); core::array<S3DVertex> vtx(drawCount * 4); core::array<u16> indices(drawCount * 6); for(u32 i = 0;i < drawCount;i++) { core::position2d<s32> targetPos = positions[i]; core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner; // This needs to be signed as it may go negative. core::dimension2d<s32> sourceSize(sourceRects[i].getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) continue; } } // clip these coordinates if (targetPos.X<0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) continue; } if (targetPos.Y<0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) continue; } // ok, we've clipped everything. // now draw it. core::rect<f32> tcoords; tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ; tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height; tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width); tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height); const core::rect<s32> poss(targetPos, sourceSize); vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y)); vtx.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y)); const u32 curPos = vtx.size()-4; indices.push_back(0+curPos); indices.push_back(1+curPos); indices.push_back(2+curPos); indices.push_back(0+curPos); indices.push_back(2+curPos); indices.push_back(3+curPos); } if (vtx.size()) { setVertexShader(EVT_STANDARD); pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, vtx.size(), indices.size() / 3, indices.pointer(), D3DFMT_INDEX16,vtx.pointer(), sizeof(S3DVertex)); } } //! draws a 2d image, using a color and the alpha channel of the texture if //! desired. The image is drawn at pos and clipped against clipRect (if != 0). void CD3D9Driver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& pos, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; if (!setActiveTexture(0, texture)) return; core::position2d<s32> targetPos = pos; core::position2d<s32> sourcePos = sourceRect.UpperLeftCorner; // This needs to be signed as it may go negative. core::dimension2d<s32> sourceSize(sourceRect.getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + (s32)sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) return; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + (s32)sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) return; } } // clip these coordinates if (targetPos.X<0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) return; } if (targetPos.Y<0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) return; } // ok, we've clipped everything. // now draw it. core::rect<f32> tcoords; tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ; tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height; tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width); tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height); const core::rect<s32> poss(targetPos, sourceSize); setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); S3DVertex vtx[4]; vtx[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vtx[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vtx[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vtx[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); s16 indices[6] = {0,1,2,0,2,3}; setVertexShader(EVT_STANDARD); pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0], D3DFMT_INDEX16,&vtx[0], sizeof(S3DVertex)); } //!Draws a 2d rectangle with a gradient. void CD3D9Driver::draw2DRectangle(const core::rect<s32>& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect<s32>* clip) { core::rect<s32> pos(position); if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; S3DVertex vtx[4]; vtx[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, colorLeftUp, 0.0f, 0.0f); vtx[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, colorRightUp, 0.0f, 1.0f); vtx[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, colorRightDown, 1.0f, 0.0f); vtx[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f, 0.0f, 0.0f, 0.0f, colorLeftDown, 1.0f, 1.0f); s16 indices[6] = {0,1,2,0,2,3}; setRenderStates2DMode( colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); setActiveTexture(0,0); setVertexShader(EVT_STANDARD); pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0], D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex)); } //! Draws a 2d line. void CD3D9Driver::draw2DLine(const core::position2d<s32>& start, const core::position2d<s32>& end, SColor color) { if (start==end) drawPixel(start.X, start.Y, color); else { // thanks to Vash TheStampede who sent in his implementation S3DVertex vtx[2]; vtx[0] = S3DVertex((f32)start.X+0.375f, (f32)start.Y+0.375f, 0.0f, 0.0f, 0.0f, 0.0f, // normal color, 0.0f, 0.0f); // texture vtx[1] = S3DVertex((f32)end.X+0.375f, (f32)end.Y+0.375f, 0.0f, 0.0f, 0.0f, 0.0f, color, 0.0f, 0.0f); setRenderStates2DMode(color.getAlpha() < 255, false, false); setActiveTexture(0,0); setVertexShader(EVT_STANDARD); pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1, &vtx[0], sizeof(S3DVertex) ); } } //! Draws a pixel void CD3D9Driver::drawPixel(u32 x, u32 y, const SColor & color) { const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); if(x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height) return; setRenderStates2DMode(color.getAlpha() < 255, false, false); setActiveTexture(0,0); setVertexShader(EVT_STANDARD); S3DVertex vertex((f32)x+0.375f, (f32)y+0.375f, 0.f, 0.f, 0.f, 0.f, color, 0.f, 0.f); pID3DDevice->DrawPrimitiveUP(D3DPT_POINTLIST, 1, &vertex, sizeof(vertex)); } //! sets right vertex shader void CD3D9Driver::setVertexShader(E_VERTEX_TYPE newType) { if (newType != LastVertexType) { LastVertexType = newType; HRESULT hr = 0; switch(newType) { case EVT_STANDARD: hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX1); break; case EVT_2TCOORDS: hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX2); break; case EVT_TANGENTS: hr = pID3DDevice->SetFVF(D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_TEX3 | D3DFVF_TEXCOORDSIZE2(0) | // real texture coord D3DFVF_TEXCOORDSIZE3(1) | // misuse texture coord 2 for tangent D3DFVF_TEXCOORDSIZE3(2) // misuse texture coord 3 for binormal ); break; } if (FAILED(hr)) { os::Printer::log("Could not set vertex Shader.", ELL_ERROR); return; } } } //! sets the needed renderstates bool CD3D9Driver::setRenderStates3DMode() { if (!pID3DDevice) return false; if (CurrentRenderMode != ERM_3D) { // switch back the matrices pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW])); pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD])); pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION])); pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); pID3DDevice->SetRenderState(D3DRS_CLIPPING, TRUE); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material if (CurrentRenderMode == ERM_3D && LastMaterial.MaterialType != Material.MaterialType && LastMaterial.MaterialType >= 0 && LastMaterial.MaterialType < (s32)MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); } bool shaderOK = true; if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) shaderOK = MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, LastVertexType); LastMaterial = Material; ResetRenderStates = false; CurrentRenderMode = ERM_3D; return shaderOK; } //! Map Irrlicht texture wrap mode to native values D3DTEXTUREADDRESS CD3D9Driver::getTextureWrapMode(const u8 clamp) { switch (clamp) { case ETC_REPEAT: if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_WRAP) return D3DTADDRESS_WRAP; case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_CLAMP) return D3DTADDRESS_CLAMP; case ETC_MIRROR: if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_MIRROR) return D3DTADDRESS_MIRROR; case ETC_CLAMP_TO_BORDER: if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_BORDER) return D3DTADDRESS_BORDER; else return D3DTADDRESS_CLAMP; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: if (Caps.TextureAddressCaps & D3DPTADDRESSCAPS_MIRRORONCE) return D3DTADDRESS_MIRRORONCE; else return D3DTADDRESS_CLAMP; default: return D3DTADDRESS_WRAP; } } //! Can be called by an IMaterialRenderer to make its work easier. void CD3D9Driver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderstates) { // This needs only to be updated onresets if (Params.HandleSRGB && resetAllRenderstates) pID3DDevice->SetRenderState(D3DRS_SRGBWRITEENABLE, TRUE); if (resetAllRenderstates || lastmaterial.AmbientColor != material.AmbientColor || lastmaterial.DiffuseColor != material.DiffuseColor || lastmaterial.SpecularColor != material.SpecularColor || lastmaterial.EmissiveColor != material.EmissiveColor || lastmaterial.Shininess != material.Shininess) { D3DMATERIAL9 mat; mat.Diffuse = colorToD3D(material.DiffuseColor); mat.Ambient = colorToD3D(material.AmbientColor); mat.Specular = colorToD3D(material.SpecularColor); mat.Emissive = colorToD3D(material.EmissiveColor); mat.Power = material.Shininess; pID3DDevice->SetMaterial(&mat); } if (lastmaterial.ColorMaterial != material.ColorMaterial) { pID3DDevice->SetRenderState(D3DRS_COLORVERTEX, (material.ColorMaterial != ECM_NONE)); pID3DDevice->SetRenderState(D3DRS_DIFFUSEMATERIALSOURCE, ((material.ColorMaterial == ECM_DIFFUSE)|| (material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT))?D3DMCS_COLOR1:D3DMCS_MATERIAL); pID3DDevice->SetRenderState(D3DRS_AMBIENTMATERIALSOURCE, ((material.ColorMaterial == ECM_AMBIENT)|| (material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT))?D3DMCS_COLOR1:D3DMCS_MATERIAL); pID3DDevice->SetRenderState(D3DRS_EMISSIVEMATERIALSOURCE, (material.ColorMaterial == ECM_EMISSIVE)?D3DMCS_COLOR1:D3DMCS_MATERIAL); pID3DDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE, (material.ColorMaterial == ECM_SPECULAR)?D3DMCS_COLOR1:D3DMCS_MATERIAL); } // fillmode if (resetAllRenderstates || lastmaterial.Wireframe != material.Wireframe || lastmaterial.PointCloud != material.PointCloud) { if (material.Wireframe) pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME); else if (material.PointCloud) pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_POINT); else pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); } // shademode if (resetAllRenderstates || lastmaterial.GouraudShading != material.GouraudShading) { if (material.GouraudShading) pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD); else pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); } // lighting if (resetAllRenderstates || lastmaterial.Lighting != material.Lighting) { if (material.Lighting) pID3DDevice->SetRenderState(D3DRS_LIGHTING, TRUE); else pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE); } // zbuffer if (resetAllRenderstates || lastmaterial.ZBuffer != material.ZBuffer) { switch (material.ZBuffer) { case ECFN_DISABLED: pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE); break; case ECFN_LESSEQUAL: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL); break; case ECFN_EQUAL: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_EQUAL); break; case ECFN_LESS: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS); break; case ECFN_NOTEQUAL: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_NOTEQUAL); break; case ECFN_GREATEREQUAL: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_GREATEREQUAL); break; case ECFN_GREATER: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_GREATER); break; case ECFN_ALWAYS: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); break; case ECFN_NEVER: pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_NEVER); } } // zwrite if (getWriteZBuffer(material)) { pID3DDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE); } else { pID3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); } // back face culling if (resetAllRenderstates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) { // if (material.FrontfaceCulling && material.BackfaceCulling) // pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW|D3DCULL_CCW); // else if (material.FrontfaceCulling) pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW); else if (material.BackfaceCulling) pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW); else pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); } // fog if (resetAllRenderstates || lastmaterial.FogEnable != material.FogEnable) { pID3DDevice->SetRenderState(D3DRS_FOGENABLE, material.FogEnable); } // specular highlights if (resetAllRenderstates || !core::equals(lastmaterial.Shininess,material.Shininess)) { const bool enable = (material.Shininess!=0.0f); pID3DDevice->SetRenderState(D3DRS_SPECULARENABLE, enable); pID3DDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL); } // normalization if (resetAllRenderstates || lastmaterial.NormalizeNormals != material.NormalizeNormals) { pID3DDevice->SetRenderState(D3DRS_NORMALIZENORMALS, material.NormalizeNormals); } // Color Mask if (queryFeature(EVDF_COLOR_MASK) && (resetAllRenderstates || lastmaterial.ColorMask != material.ColorMask)) { const DWORD flag = ((material.ColorMask & ECP_RED)?D3DCOLORWRITEENABLE_RED:0) | ((material.ColorMask & ECP_GREEN)?D3DCOLORWRITEENABLE_GREEN:0) | ((material.ColorMask & ECP_BLUE)?D3DCOLORWRITEENABLE_BLUE:0) | ((material.ColorMask & ECP_ALPHA)?D3DCOLORWRITEENABLE_ALPHA:0); pID3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, flag); } // Blend Operation if (material.BlendOperation == EBO_NONE) BridgeCalls->setBlend(false); else { BridgeCalls->setBlend(true); if (queryFeature(EVDF_BLEND_OPERATIONS)) { switch (material.BlendOperation) { case EBO_MAX: case EBO_MAX_FACTOR: case EBO_MAX_ALPHA: BridgeCalls->setBlendOperation(D3DBLENDOP_MAX); break; case EBO_MIN: case EBO_MIN_FACTOR: case EBO_MIN_ALPHA: BridgeCalls->setBlendOperation(D3DBLENDOP_MIN); break; case EBO_SUBTRACT: BridgeCalls->setBlendOperation(D3DBLENDOP_SUBTRACT); break; case EBO_REVSUBTRACT: BridgeCalls->setBlendOperation(D3DBLENDOP_REVSUBTRACT); break; default: BridgeCalls->setBlendOperation(D3DBLENDOP_ADD); break; } } } // Blend Factor if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF? && material.MaterialType != EMT_ONETEXTURE_BLEND ) { E_BLEND_FACTOR srcRGBFact = EBF_ZERO; E_BLEND_FACTOR dstRGBFact = EBF_ZERO; E_BLEND_FACTOR srcAlphaFact = EBF_ZERO; E_BLEND_FACTOR dstAlphaFact = EBF_ZERO; E_MODULATE_FUNC modulo = EMFN_MODULATE_1X; u32 alphaSource = 0; unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor); BridgeCalls->setBlendFuncSeparate(getD3DBlend(srcRGBFact), getD3DBlend(dstRGBFact), getD3DBlend(srcAlphaFact), getD3DBlend(dstAlphaFact)); } // Polygon offset if (queryFeature(EVDF_POLYGON_OFFSET) && (resetAllRenderstates || lastmaterial.PolygonOffsetDirection != material.PolygonOffsetDirection || lastmaterial.PolygonOffsetFactor != material.PolygonOffsetFactor || lastmaterial.PolygonOffsetSlopeScale != material.PolygonOffsetSlopeScale || lastmaterial.PolygonOffsetDepthBias != material.PolygonOffsetDepthBias )) { if ( material.PolygonOffsetSlopeScale || material.PolygonOffsetDepthBias ) { pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, F2DW(material.PolygonOffsetSlopeScale)); pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, F2DW(material.PolygonOffsetDepthBias)); } else if (material.PolygonOffsetFactor) { if (material.PolygonOffsetDirection==EPO_BACK) { pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, F2DW(1.f)); pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, F2DW((FLOAT)material.PolygonOffsetFactor)); } else { pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, F2DW(-1.f)); pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, F2DW((FLOAT)-material.PolygonOffsetFactor)); } } else { pID3DDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0); pID3DDevice->SetRenderState(D3DRS_DEPTHBIAS, 0); } } // Anti Aliasing if (resetAllRenderstates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (AlphaToCoverageSupport && (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)) { if (VendorID==0x10DE)//NVidia pID3DDevice->SetRenderState(D3DRS_ADAPTIVETESS_Y, MAKEFOURCC('A','T','O','C')); // SSAA could give better results on NVidia cards else if (VendorID==0x1002)//ATI pID3DDevice->SetRenderState(D3DRS_POINTSIZE, MAKEFOURCC('A','2','M','1')); } else if (AlphaToCoverageSupport && (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)) { if (VendorID==0x10DE) pID3DDevice->SetRenderState(D3DRS_ADAPTIVETESS_Y, D3DFMT_UNKNOWN); else if (VendorID==0x1002) pID3DDevice->SetRenderState(D3DRS_POINTSIZE, MAKEFOURCC('A','2','M','0')); } // enable antialiasing if (Params.AntiAlias) { if (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY)) pID3DDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE); else if (lastmaterial.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY)) pID3DDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, FALSE); if (material.AntiAliasing & (EAAM_LINE_SMOOTH)) pID3DDevice->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, TRUE); else if (lastmaterial.AntiAliasing & (EAAM_LINE_SMOOTH)) pID3DDevice->SetRenderState(D3DRS_ANTIALIASEDLINEENABLE, FALSE); } } // thickness if (resetAllRenderstates || lastmaterial.Thickness != material.Thickness) { pID3DDevice->SetRenderState(D3DRS_POINTSIZE, F2DW(material.Thickness)); } // texture address mode for (u32 st=0; st<MaxTextureUnits; ++st) { if (resetAllRenderstates && Params.HandleSRGB) pID3DDevice->SetSamplerState(st, D3DSAMP_SRGBTEXTURE, TRUE); if (resetAllRenderstates || lastmaterial.TextureLayer[st].LODBias != material.TextureLayer[st].LODBias) { const float tmp = material.TextureLayer[st].LODBias * 0.125f; pID3DDevice->SetSamplerState(st, D3DSAMP_MIPMAPLODBIAS, F2DW(tmp)); } if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrapU != material.TextureLayer[st].TextureWrapU) pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSU, getTextureWrapMode(material.TextureLayer[st].TextureWrapU)); // If separate UV not supported reuse U for V if (!(Caps.TextureAddressCaps & D3DPTADDRESSCAPS_INDEPENDENTUV)) { pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSV, getTextureWrapMode(material.TextureLayer[st].TextureWrapU)); pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSW, getTextureWrapMode(material.TextureLayer[st].TextureWrapU)); } else { if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrapV != material.TextureLayer[st].TextureWrapV) pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSV, getTextureWrapMode(material.TextureLayer[st].TextureWrapV)); if (resetAllRenderstates || lastmaterial.TextureLayer[st].TextureWrapW != material.TextureLayer[st].TextureWrapW) pID3DDevice->SetSamplerState(st, D3DSAMP_ADDRESSW, getTextureWrapMode(material.TextureLayer[st].TextureWrapW)); } // Bilinear, trilinear, and anisotropic filter if (resetAllRenderstates || lastmaterial.TextureLayer[st].BilinearFilter != material.TextureLayer[st].BilinearFilter || lastmaterial.TextureLayer[st].TrilinearFilter != material.TextureLayer[st].TrilinearFilter || lastmaterial.TextureLayer[st].AnisotropicFilter != material.TextureLayer[st].AnisotropicFilter || lastmaterial.UseMipMaps != material.UseMipMaps) { if (material.TextureLayer[st].BilinearFilter || material.TextureLayer[st].TrilinearFilter || material.TextureLayer[st].AnisotropicFilter) { D3DTEXTUREFILTERTYPE tftMag = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MAGFANISOTROPIC) && material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR; D3DTEXTUREFILTERTYPE tftMin = ((Caps.TextureFilterCaps & D3DPTFILTERCAPS_MINFANISOTROPIC) && material.TextureLayer[st].AnisotropicFilter) ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR; D3DTEXTUREFILTERTYPE tftMip = material.UseMipMaps? (material.TextureLayer[st].TrilinearFilter ? D3DTEXF_LINEAR : D3DTEXF_POINT) : D3DTEXF_NONE; if (tftMag==D3DTEXF_ANISOTROPIC || tftMin == D3DTEXF_ANISOTROPIC) pID3DDevice->SetSamplerState(st, D3DSAMP_MAXANISOTROPY, core::min_((DWORD)material.TextureLayer[st].AnisotropicFilter, Caps.MaxAnisotropy)); pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, tftMag); pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, tftMin); pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, tftMip); } else { pID3DDevice->SetSamplerState(st, D3DSAMP_MINFILTER, D3DTEXF_POINT); pID3DDevice->SetSamplerState(st, D3DSAMP_MIPFILTER, D3DTEXF_NONE); pID3DDevice->SetSamplerState(st, D3DSAMP_MAGFILTER, D3DTEXF_POINT); } } } } //! sets the needed renderstates void CD3D9Driver::setRenderStatesStencilShadowMode(bool zfail, u32 debugDataVisible) { if ((CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL && CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS) || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D && static_cast<u32>(Material.MaterialType) < MaterialRenderers.size()) { MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial(); ResetRenderStates = true; } // switch back the matrices pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)&Matrices[ETS_VIEW])); pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)&Matrices[ETS_WORLD])); pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)&Matrices[ETS_PROJECTION])); Transformation3DChanged = false; setActiveTexture(0,0); setActiveTexture(1,0); setActiveTexture(2,0); setActiveTexture(3,0); pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_DISABLE); pID3DDevice->SetFVF(D3DFVF_XYZ); LastVertexType = (video::E_VERTEX_TYPE)(-1); pID3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE); pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT); //pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE); //pID3DDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE); pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS); pID3DDevice->SetRenderState(D3DRS_STENCILREF, 0x0); pID3DDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff); pID3DDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff); BridgeCalls->setBlend(true); BridgeCalls->setBlendFunc(D3DBLEND_ZERO, D3DBLEND_ONE); pID3DDevice->SetRenderState(D3DRS_ZENABLE, TRUE); pID3DDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESS); //if (!(debugDataVisible & (scene::EDS_SKELETON|scene::EDS_MESH_WIRE_OVERLAY))) // pID3DDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0); if ((debugDataVisible & scene::EDS_MESH_WIRE_OVERLAY)) pID3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME); } if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZPASS && !zfail) { // USE THE ZPASS METHOD pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP); pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP); //pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR); // does not matter, will be set later } else if (CurrentRenderMode != ERM_SHADOW_VOLUME_ZFAIL && zfail) { // USE THE ZFAIL METHOD pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP); //pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR); // does not matter, will be set later pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP); } CurrentRenderMode = zfail ? ERM_SHADOW_VOLUME_ZFAIL : ERM_SHADOW_VOLUME_ZPASS; } //! sets the needed renderstates void CD3D9Driver::setRenderStatesStencilFillMode(bool alpha) { if (CurrentRenderMode != ERM_STENCIL_FILL || Transformation3DChanged) { core::matrix4 mat; pID3DDevice->SetTransform(D3DTS_VIEW, &UnitMatrixD3D9); pID3DDevice->SetTransform(D3DTS_WORLD, &UnitMatrixD3D9); pID3DDevice->SetTransform(D3DTS_PROJECTION, &UnitMatrixD3D9); pID3DDevice->SetRenderState(D3DRS_ZENABLE, FALSE); pID3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE); pID3DDevice->SetRenderState(D3DRS_FOGENABLE, FALSE); pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE); pID3DDevice->SetRenderState(D3DRS_STENCILREF, 0x1); pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_LESSEQUAL); //pID3DDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_GREATEREQUAL); pID3DDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP); pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP); pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP); pID3DDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff); pID3DDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff); pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW); Transformation3DChanged = false; pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE); pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE); pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE); pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE); if (alpha) { BridgeCalls->setBlend(true); BridgeCalls->setBlendFunc(D3DBLEND_SRCALPHA, D3DBLEND_INVSRCALPHA); } else { BridgeCalls->setBlend(false); } } CurrentRenderMode = ERM_STENCIL_FILL; } //! Enable the 2d override material void CD3D9Driver::enableMaterial2D(bool enable) { if (!enable) CurrentRenderMode = ERM_NONE; CNullDriver::enableMaterial2D(enable); } //! sets the needed renderstates void CD3D9Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if (!pID3DDevice) return; if (CurrentRenderMode != ERM_2D || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } if (!OverrideMaterial2DEnabled) { setBasicRenderStates(InitMaterial2D, LastMaterial, true); LastMaterial=InitMaterial2D; // fix everything that is wrongly set by InitMaterial2D default pID3DDevice->SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_DISABLE); pID3DDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE); } core::matrix4 m; // this fixes some problems with pixel exact rendering, but also breaks nice texturing // moreover, it would have to be tested in each call, as the texture flag can change each time // if (!texture) // m.setTranslation(core::vector3df(0.5f,0.5f,0)); pID3DDevice->SetTransform(D3DTS_WORLD, (D3DMATRIX*)((void*)m.pointer())); // adjust the view such that pixel center aligns with texels // Otherwise, subpixel artifacts will occur m.setTranslation(core::vector3df(-0.5f,-0.5f,0)); pID3DDevice->SetTransform(D3DTS_VIEW, (D3DMATRIX*)((void*)m.pointer())); const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0, 1.0); m.setTranslation(core::vector3df(-1,1,0)); pID3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX*)((void*)m.pointer())); // 2d elements are clipped in software pID3DDevice->SetRenderState(D3DRS_CLIPPING, FALSE); Transformation3DChanged = false; } if (OverrideMaterial2DEnabled) { OverrideMaterial2D.Lighting=false; setBasicRenderStates(OverrideMaterial2D, LastMaterial, false); LastMaterial = OverrideMaterial2D; } // no alphaChannel without texture alphaChannel &= texture; if (alpha || alphaChannel) { BridgeCalls->setBlend(true); BridgeCalls->setBlendFunc(D3DBLEND_SRCALPHA, D3DBLEND_INVSRCALPHA); } else BridgeCalls->setBlend(false); pID3DDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE); pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE); pID3DDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE); if (texture) { setTransform(ETS_TEXTURE_0, core::IdentityMatrix); // Due to the transformation change, the previous line would call a reset each frame // but we can safely reset the variable as it was false before Transformation3DChanged=false; } if (alphaChannel) { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); if (alpha) { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE); pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); } else { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1); } } else { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE); if (alpha) { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG2); } else { pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); pID3DDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE); } } CurrentRenderMode = ERM_2D; } //! deletes all dynamic lights there are void CD3D9Driver::deleteAllDynamicLights() { for (s32 i=0; i<LastSetLight+1; ++i) pID3DDevice->LightEnable(i, false); LastSetLight = -1; CNullDriver::deleteAllDynamicLights(); } //! adds a dynamic light s32 CD3D9Driver::addDynamicLight(const SLight& dl) { CNullDriver::addDynamicLight(dl); D3DLIGHT9 light; switch (dl.Type) { case ELT_POINT: light.Type = D3DLIGHT_POINT; break; case ELT_SPOT: light.Type = D3DLIGHT_SPOT; break; case ELT_DIRECTIONAL: light.Type = D3DLIGHT_DIRECTIONAL; break; } light.Position = *(D3DVECTOR*)((void*)(&dl.Position)); light.Direction = *(D3DVECTOR*)((void*)(&dl.Direction)); light.Range = core::min_(dl.Radius, MaxLightDistance); light.Falloff = dl.Falloff; light.Diffuse = *(D3DCOLORVALUE*)((void*)(&dl.DiffuseColor)); light.Specular = *(D3DCOLORVALUE*)((void*)(&dl.SpecularColor)); light.Ambient = *(D3DCOLORVALUE*)((void*)(&dl.AmbientColor)); light.Attenuation0 = dl.Attenuation.X; light.Attenuation1 = dl.Attenuation.Y; light.Attenuation2 = dl.Attenuation.Z; light.Theta = dl.InnerCone * 2.0f * core::DEGTORAD; light.Phi = dl.OuterCone * 2.0f * core::DEGTORAD; ++LastSetLight; if(D3D_OK == pID3DDevice->SetLight(LastSetLight, &light)) { // I don't care if this succeeds (void)pID3DDevice->LightEnable(LastSetLight, true); return LastSetLight; } return -1; } //! Turns a dynamic light on or off //! \param lightIndex: the index returned by addDynamicLight //! \param turnOn: true to turn the light on, false to turn it off void CD3D9Driver::turnLightOn(s32 lightIndex, bool turnOn) { if(lightIndex < 0 || lightIndex > LastSetLight) return; (void)pID3DDevice->LightEnable(lightIndex, turnOn); } //! returns the maximal amount of dynamic lights the device can handle u32 CD3D9Driver::getMaximalDynamicLightAmount() const { return Caps.MaxActiveLights; } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void CD3D9Driver::setAmbientLight(const SColorf& color) { CNullDriver::setAmbientLight(color); if (!pID3DDevice) return; D3DCOLOR col = color.toSColor().color; pID3DDevice->SetRenderState(D3DRS_AMBIENT, col); } //! \return Returns the name of the video driver. Example: In case of the DIRECT3D9 //! driver, it would return "Direct3D9.0". const wchar_t* CD3D9Driver::getName() const { return L"Direct3D 9.0"; } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Then, use IVideoDriver::drawStencilShadow() to visualize the shadow. void CD3D9Driver::drawStencilShadowVolume(const core::array<core::vector3df>& triangles, bool zfail, u32 debugDataVisible) { if (!Params.Stencilbuffer) return; setRenderStatesStencilShadowMode(zfail, debugDataVisible); const u32 count = triangles.size(); if (!count) return; if (!zfail) { // ZPASS Method // Draw front-side of shadow volume in stencil only pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW); pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR); pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df)); // Now reverse cull order so front sides of shadow volume are written. pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW); pID3DDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_DECR); pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df)); } else { // ZFAIL Method // Draw front-side of shadow volume in stencil only pID3DDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW); pID3DDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR); pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df)); // Now reverse cull order so front sides of shadow volume are written. pID3DDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_CCW); pID3DDevice->SetRenderState( D3DRS_STENCILZFAIL, D3DSTENCILOP_DECR); pID3DDevice->DrawPrimitiveUP(D3DPT_TRIANGLELIST, count / 3, triangles.const_pointer(), sizeof(core::vector3df)); } } //! Fills the stencil shadow with color. After the shadow volume has been drawn //! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this //! to draw the color of the shadow. void CD3D9Driver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!Params.Stencilbuffer) return; S3DVertex vtx[4]; vtx[0] = S3DVertex(1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftUpEdge, 0.0f, 0.0f); vtx[1] = S3DVertex(1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightUpEdge, 0.0f, 1.0f); vtx[2] = S3DVertex(-1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, leftDownEdge, 1.0f, 0.0f); vtx[3] = S3DVertex(-1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, rightDownEdge, 1.0f, 1.0f); s16 indices[6] = {0,1,2,1,3,2}; setRenderStatesStencilFillMode( leftUpEdge.getAlpha() < 255 || rightUpEdge.getAlpha() < 255 || leftDownEdge.getAlpha() < 255 || rightDownEdge.getAlpha() < 255); setActiveTexture(0,0); setVertexShader(EVT_STANDARD); pID3DDevice->DrawIndexedPrimitiveUP(D3DPT_TRIANGLELIST, 0, 4, 2, &indices[0], D3DFMT_INDEX16, &vtx[0], sizeof(S3DVertex)); if (clearStencilBuffer) pID3DDevice->Clear( 0, NULL, D3DCLEAR_STENCIL,0, 1.0, 0); } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 CD3D9Driver::getMaximalPrimitiveCount() const { return Caps.MaxPrimitiveCount; } //! Sets the fog mode. void CD3D9Driver::setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog); if (!pID3DDevice) return; pID3DDevice->SetRenderState(D3DRS_FOGCOLOR, color.color); pID3DDevice->SetRenderState( pixelFog ? D3DRS_FOGTABLEMODE : D3DRS_FOGVERTEXMODE, (fogType==EFT_FOG_LINEAR)? D3DFOG_LINEAR : (fogType==EFT_FOG_EXP)?D3DFOG_EXP:D3DFOG_EXP2); if (fogType==EFT_FOG_LINEAR) { pID3DDevice->SetRenderState(D3DRS_FOGSTART, F2DW(start)); pID3DDevice->SetRenderState(D3DRS_FOGEND, F2DW(end)); } else pID3DDevice->SetRenderState(D3DRS_FOGDENSITY, F2DW(density)); if(!pixelFog) pID3DDevice->SetRenderState(D3DRS_RANGEFOGENABLE, rangeFog); } //! Draws a 3d line. void CD3D9Driver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { setVertexShader(EVT_STANDARD); setRenderStates3DMode(); video::S3DVertex v[2]; v[0].Color = color; v[1].Color = color; v[0].Pos = start; v[1].Pos = end; pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 1, v, sizeof(S3DVertex)); } void CD3D9Driver::draw3DBox( const core::aabbox3d<f32>& box, SColor color) { core::vector3df edges[8]; box.getEdges(edges); setVertexShader(EVT_STANDARD); setRenderStates3DMode(); video::S3DVertex v[24]; for(u32 i = 0; i < 24; i++) v[i].Color = color; v[0].Pos = edges[5]; v[1].Pos = edges[1]; v[2].Pos = edges[1]; v[3].Pos = edges[3]; v[4].Pos = edges[3]; v[5].Pos = edges[7]; v[6].Pos = edges[7]; v[7].Pos = edges[5]; v[8].Pos = edges[0]; v[9].Pos = edges[2]; v[10].Pos = edges[2]; v[11].Pos = edges[6]; v[12].Pos = edges[6]; v[13].Pos = edges[4]; v[14].Pos = edges[4]; v[15].Pos = edges[0]; v[16].Pos = edges[1]; v[17].Pos = edges[0]; v[18].Pos = edges[3]; v[19].Pos = edges[2]; v[20].Pos = edges[7]; v[21].Pos = edges[6]; v[22].Pos = edges[5]; v[23].Pos = edges[4]; pID3DDevice->DrawPrimitiveUP(D3DPT_LINELIST, 12, v, sizeof(S3DVertex)); } bool CD3D9Driver::retrieveDevice(int numTries, int msSleepBetweenTries) { while ( numTries > 0) { HRESULT hr; if ( FAILED(hr = pID3DDevice->TestCooperativeLevel()) ) { // hr can be: D3DERR_DEVICELOST, D3DERR_DEVICENOTRESET or D3DERR_DRIVERINTERNALERROR switch ( hr ) { case D3DERR_DEVICENOTRESET: if ( reset() ) return true; // when reset fails, just try again, maybe device got lost in between TestCooperativeLevel and reset calls? break; case D3DERR_DEVICELOST: break; case D3DERR_DRIVERINTERNALERROR: return false; } Sleep(msSleepBetweenTries); --numTries; } else return true; } return false; } //! resets the device bool CD3D9Driver::reset() { os::Printer::log("Resetting D3D9 device.", ELL_INFORMATION); for (u32 i = 0; i<RenderTargets.size(); ++i) { if (RenderTargets[i]->getDriverType() == EDT_DIRECT3D9) { static_cast<CD3D9RenderTarget*>(RenderTargets[i])->releaseSurfaces(); const core::array<ITexture*> texArray = RenderTargets[i]->getTexture(); for (u32 j = 0; j < texArray.size(); ++j) { CD3D9Texture* tex = static_cast<CD3D9Texture*>(texArray[j]); if (tex) tex->releaseTexture(); } CD3D9Texture* tex = static_cast<CD3D9Texture*>(RenderTargets[i]->getDepthStencil()); if (tex) tex->releaseTexture(); } } for (u32 i=0; i<Textures.size(); ++i) { if (Textures[i].Surface->isRenderTarget()) { CD3D9Texture* tex = static_cast<CD3D9Texture*>(Textures[i].Surface); if (tex) tex->releaseTexture(); } } for (u32 i=0; i<OcclusionQueries.size(); ++i) { if (OcclusionQueries[i].PID) { reinterpret_cast<IDirect3DQuery9*>(OcclusionQueries[i].PID)->Release(); OcclusionQueries[i].PID=0; } } // this does not require a restore in the reset method, it's updated // automatically in the next render cycle. removeAllHardwareBuffers(); // reset render target usage information. for (u32 i = 0; i < ActiveRenderTarget.size(); ++i) ActiveRenderTarget[i] = false; if (DepthStencilSurface) { DepthStencilSurface->Release(); DepthStencilSurface = 0; } if (BackBufferSurface) { BackBufferSurface->Release(); BackBufferSurface = 0; } DriverWasReset=true; HRESULT hr = pID3DDevice->Reset(&present); if (FAILED(hr)) { if (hr == D3DERR_DEVICELOST) { DeviceLost = true; os::Printer::log("Resetting failed due to device lost.", ELL_WARNING); } #ifdef D3DERR_DEVICEREMOVED else if (hr == D3DERR_DEVICEREMOVED) { os::Printer::log("Resetting failed due to device removed.", ELL_WARNING); } #endif else if (hr == D3DERR_DRIVERINTERNALERROR) { os::Printer::log("Resetting failed due to internal error.", ELL_WARNING); } else if (hr == D3DERR_OUTOFVIDEOMEMORY) { os::Printer::log("Resetting failed due to out of memory.", ELL_WARNING); } else if (hr == D3DERR_DEVICENOTRESET) { os::Printer::log("Resetting failed due to not reset.", ELL_WARNING); } else if (hr == D3DERR_INVALIDCALL) { os::Printer::log("Resetting failed due to invalid call", "You need to release some more surfaces.", ELL_WARNING); } else { os::Printer::log("Resetting failed due to unknown reason.", core::stringc((int)hr).c_str(), ELL_WARNING); } return false; } DeviceLost = false; // reset bridge calls. if (BridgeCalls) BridgeCalls->reset(); // restore screen depthbuffer descriptor if (!SUCCEEDED(pID3DDevice->GetDepthStencilSurface(&DepthStencilSurface))) { os::Printer::log("Was not able to get main depth buffer.", ELL_ERROR); return false; } // restore RTTs for (u32 i=0; i<Textures.size(); ++i) { if (Textures[i].Surface->isRenderTarget()) ((CD3D9Texture*)(Textures[i].Surface))->generateRenderTarget(); } for (u32 i = 0; i<RenderTargets.size(); ++i) { if (RenderTargets[i]->getDriverType() == EDT_DIRECT3D9) { const core::array<ITexture*> texArray = RenderTargets[i]->getTexture(); for (u32 j = 0; j < texArray.size(); ++j) { CD3D9Texture* tex = static_cast<CD3D9Texture*>(texArray[j]); if (tex) tex->generateRenderTarget(); } CD3D9Texture* tex = static_cast<CD3D9Texture*>(RenderTargets[i]->getDepthStencil()); if (tex) tex->generateRenderTarget(); static_cast<CD3D9RenderTarget*>(RenderTargets[i])->generateSurfaces(); } } // restore occlusion queries for (u32 i=0; i<OcclusionQueries.size(); ++i) { pID3DDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, reinterpret_cast<IDirect3DQuery9**>(&OcclusionQueries[i].PID)); } ResetRenderStates = true; LastVertexType = (E_VERTEX_TYPE)-1; for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i) CurrentTexture[i] = 0; setVertexShader(EVT_STANDARD); setRenderStates3DMode(); setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); setAmbientLight(getAmbientLight()); return true; } void CD3D9Driver::OnResize(const core::dimension2d<u32>& size) { if (!pID3DDevice) return; CNullDriver::OnResize(size); present.BackBufferWidth = size.Width; present.BackBufferHeight = size.Height; if ( !reset() ) { if ( !retrieveDevice(20, 200) ) // retrying for 3 seconds, I hope that's long enough? { os::Printer::log("Failed to retrieve device in OnResize.", ELL_ERROR); } } } //! Returns type of video driver E_DRIVER_TYPE CD3D9Driver::getDriverType() const { return EDT_DIRECT3D9; } //! Returns the transformation set by setTransform const core::matrix4& CD3D9Driver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! Get a vertex shader constant index. s32 CD3D9Driver::getVertexShaderConstantID(const c8* name) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->getVariableID(true, name); } return -1; } //! Get a pixel shader constant index. s32 CD3D9Driver::getPixelShaderConstantID(const c8* name) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->getVariableID(false, name); } return -1; } //! Sets a vertex shader constant. void CD3D9Driver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { if (data) pID3DDevice->SetVertexShaderConstantF(startRegister, data, constantAmount); } //! Sets a pixel shader constant. void CD3D9Driver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { if (data) pID3DDevice->SetPixelShaderConstantF(startRegister, data, constantAmount); } //! Sets a constant for the vertex shader based on an index. bool CD3D9Driver::setVertexShaderConstant(s32 index, const f32* floats, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(true, index, floats, count); } return false; } //! Int interface for the above. bool CD3D9Driver::setVertexShaderConstant(s32 index, const s32* ints, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(true, index, ints, count); } return false; } //! Uint interface for the above. bool CD3D9Driver::setVertexShaderConstant(s32 index, const u32* ints, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(true, index, ints, count); } return false; } //! Sets a constant for the pixel shader based on an index. bool CD3D9Driver::setPixelShaderConstant(s32 index, const f32* floats, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(false, index, floats, count); } return false; } //! Int interface for the above. bool CD3D9Driver::setPixelShaderConstant(s32 index, const s32* ints, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(false, index, ints, count); } return false; } //! Uint interface for the above. bool CD3D9Driver::setPixelShaderConstant(s32 index, const u32* ints, int count) { if (Material.MaterialType >= 0 && Material.MaterialType < (s32)MaterialRenderers.size()) { CD3D9MaterialRenderer* r = (CD3D9MaterialRenderer*)MaterialRenderers[Material.MaterialType].Renderer; return r->setVariable(false, index, ints, count); } return false; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 CD3D9Driver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; CD3D9ShaderMaterialRenderer* r = new CD3D9ShaderMaterialRenderer( pID3DDevice, this, nr, vertexShaderProgram, pixelShaderProgram, callback, getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Adds a new material renderer to the VideoDriver, based on a high level shading //! language. s32 CD3D9Driver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; CD3D9HLSLMaterialRenderer* r = new CD3D9HLSLMaterialRenderer( pID3DDevice, this, nr, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, callback, getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver* CD3D9Driver::getVideoDriver() { return this; } //! Creates a render target texture. ITexture* CD3D9Driver::addRenderTargetTexture(const core::dimension2d<u32>& size, const io::path& name, const ECOLOR_FORMAT format) { if ( IImage::isCompressedFormat(format) ) return 0; CD3D9Texture* tex = new CD3D9Texture(this, size, name, ETT_2D, format); if (tex) { if (!tex->Texture) { tex->drop(); return 0; } addTexture(tex); tex->drop(); } return tex; } ITexture* CD3D9Driver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format) { if ( IImage::isCompressedFormat(format) ) return 0; CD3D9Texture* tex = new CD3D9Texture(this, core::dimension2d<u32>(sideLen, sideLen), name, ETT_CUBEMAP, format); if (tex) { if (!tex->CubeTexture) { tex->drop(); return 0; } addTexture(tex); tex->drop(); } return tex; } void CD3D9Driver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { DWORD internalFlag = 0; if (flag & ECBF_COLOR) internalFlag |= D3DCLEAR_TARGET; if (flag & ECBF_DEPTH) internalFlag |= D3DCLEAR_ZBUFFER; if (flag & ECBF_STENCIL) internalFlag |= D3DCLEAR_STENCIL; if (internalFlag) { HRESULT hr = pID3DDevice->Clear(0, NULL, internalFlag, color.color, depth, stencil); if (FAILED(hr)) os::Printer::log("DIRECT3D9 clear failed.", ELL_WARNING); } } //! Returns an image created from the last rendered frame. IImage* CD3D9Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target != video::ERT_FRAME_BUFFER) return 0; if (format==video::ECF_UNKNOWN) format=getColorFormat(); // TODO: Maybe we could support more formats (floating point and some of those beyond ECF_R8), didn't really try yet if (IImage::isCompressedFormat(format) || IImage::isDepthFormat(format) || IImage::isFloatingPointFormat(format) || format >= ECF_R8) return 0; // query the screen dimensions of the current adapter D3DDISPLAYMODE displayMode; pID3DDevice->GetDisplayMode(0, &displayMode); // create the image surface to store the front buffer image [always A8R8G8B8] HRESULT hr; LPDIRECT3DSURFACE9 lpSurface; if (FAILED(hr = pID3DDevice->CreateOffscreenPlainSurface(displayMode.Width, displayMode.Height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &lpSurface, 0))) return 0; // read the front buffer into the image surface if (FAILED(hr = pID3DDevice->GetFrontBufferData(0, lpSurface))) { lpSurface->Release(); return 0; } RECT clientRect; { POINT clientPoint; clientPoint.x = 0; clientPoint.y = 0; ClientToScreen((HWND)getExposedVideoData().D3D9.HWnd, &clientPoint); clientRect.left = clientPoint.x; clientRect.top = clientPoint.y; clientRect.right = clientRect.left + ScreenSize.Width; clientRect.bottom = clientRect.top + ScreenSize.Height; // window can be off-screen partly, we can't take screenshots from that clientRect.left = core::max_(clientRect.left, 0l); clientRect.top = core::max_(clientRect.top, 0l); clientRect.right = core::min_(clientRect.right, (long)displayMode.Width); clientRect.bottom = core::min_(clientRect.bottom, (long)displayMode.Height ); } // lock our area of the surface D3DLOCKED_RECT lockedRect; if (FAILED(lpSurface->LockRect(&lockedRect, &clientRect, D3DLOCK_READONLY))) { lpSurface->Release(); return 0; } irr::core::dimension2d<u32> shotSize; shotSize.Width = core::min_( ScreenSize.Width, (u32)(clientRect.right-clientRect.left) ); shotSize.Height = core::min_( ScreenSize.Height, (u32)(clientRect.bottom-clientRect.top) ); // this could throw, but we aren't going to worry about that case very much IImage* newImage = createImage(format, shotSize); if (newImage) { // d3d pads the image, so we need to copy the correct number of bytes u32* dP = (u32*)newImage->lock(); u8 * sP = (u8 *)lockedRect.pBits; // If the display mode format doesn't promise anything about the Alpha value // and it appears that it's not presenting 255, then we should manually // set each pixel alpha value to 255. if (D3DFMT_X8R8G8B8 == displayMode.Format && (0xFF000000 != (*dP & 0xFF000000))) { for (u32 y = 0; y < shotSize.Height; ++y) { for (u32 x = 0; x < shotSize.Width; ++x) { newImage->setPixel(x,y,*((u32*)sP) | 0xFF000000); sP += 4; } sP += lockedRect.Pitch - (4 * shotSize.Width); } } else { for (u32 y = 0; y < shotSize.Height; ++y) { convertColor(sP, video::ECF_A8R8G8B8, shotSize.Width, dP, format); sP += lockedRect.Pitch; dP += shotSize.Width; } } newImage->unlock(); } // we can unlock and release the surface lpSurface->UnlockRect(); // release the image surface lpSurface->Release(); // return status of save operation to caller return newImage; } //! returns color format ECOLOR_FORMAT CD3D9Driver::getColorFormat() const { return ColorFormat; } //! returns color format D3DFORMAT CD3D9Driver::getD3DColorFormat() const { return D3DColorFormat; } // Set/unset a clipping plane. bool CD3D9Driver::setClipPlane(u32 index, const core::plane3df& plane, bool enable) { if (index >= MaxUserClipPlanes) return false; HRESULT ok = pID3DDevice->SetClipPlane(index, (const float*)&(plane.Normal.X)); if (D3D_OK == ok) enableClipPlane(index, enable); return true; } // Enable/disable a clipping plane. void CD3D9Driver::enableClipPlane(u32 index, bool enable) { if (index >= MaxUserClipPlanes) return; DWORD renderstate; HRESULT ok = pID3DDevice->GetRenderState(D3DRS_CLIPPLANEENABLE, &renderstate); if (S_OK == ok) { if (enable) renderstate |= (1 << index); else renderstate &= ~(1 << index); ok = pID3DDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, renderstate); } } D3DFORMAT CD3D9Driver::getD3DFormatFromColorFormat(ECOLOR_FORMAT format) const { switch(format) { case ECF_A1R5G5B5: return D3DFMT_A1R5G5B5; case ECF_R5G6B5: return D3DFMT_R5G6B5; case ECF_R8G8B8: return D3DFMT_R8G8B8; case ECF_A8R8G8B8: return D3DFMT_A8R8G8B8; case ECF_DXT1: return D3DFMT_DXT1; case ECF_DXT2: return D3DFMT_DXT2; case ECF_DXT3: return D3DFMT_DXT3; case ECF_DXT4: return D3DFMT_DXT4; case ECF_DXT5: return D3DFMT_DXT5; case ECF_R16F: return D3DFMT_R16F; case ECF_G16R16F: return D3DFMT_G16R16F; case ECF_A16B16G16R16F: return D3DFMT_A16B16G16R16F; case ECF_R32F: return D3DFMT_R32F; case ECF_G32R32F: return D3DFMT_G32R32F; case ECF_A32B32G32R32F: return D3DFMT_A32B32G32R32F; case ECF_R8: return D3DFMT_A8; // not correct, but somewhat similar case ECF_R8G8: return D3DFMT_A8L8; // not correct, but somewhat similar case ECF_R16: return D3DFMT_L16; // not correct, but somewhat similar case ECF_R16G16: return D3DFMT_G16R16; // flipped :-( case ECF_D16: return D3DFMT_D16; case ECF_D24S8: return D3DFMT_D24S8; case ECF_D32: return D3DFMT_D32; } return D3DFMT_UNKNOWN; } ECOLOR_FORMAT CD3D9Driver::getColorFormatFromD3DFormat(D3DFORMAT format) const { switch(format) { case D3DFMT_X1R5G5B5: case D3DFMT_A1R5G5B5: return ECF_A1R5G5B5; case D3DFMT_A8B8G8R8: case D3DFMT_A8R8G8B8: case D3DFMT_X8R8G8B8: return ECF_A8R8G8B8; case D3DFMT_R5G6B5: return ECF_R5G6B5; case D3DFMT_R8G8B8: return ECF_R8G8B8; // Floating Point formats. Thanks to Patryk "Nadro" Nadrowski. case D3DFMT_R16F: return ECF_R16F; case D3DFMT_G16R16F: return ECF_G16R16F; case D3DFMT_A16B16G16R16F: return ECF_A16B16G16R16F; case D3DFMT_R32F: return ECF_R32F; case D3DFMT_G32R32F: return ECF_G32R32F; case D3DFMT_A32B32G32R32F: return ECF_A32B32G32R32F; default: return (ECOLOR_FORMAT)0; }; } core::dimension2du CD3D9Driver::getMaxTextureSize() const { return core::dimension2du(Caps.MaxTextureWidth, Caps.MaxTextureHeight); } bool CD3D9Driver::queryTextureFormat(ECOLOR_FORMAT format) const { return getD3DFormatFromColorFormat(format) != D3DFMT_UNKNOWN; } bool CD3D9Driver::needsTransparentRenderPass(const irr::video::SMaterial& material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); } u32 CD3D9Driver::getD3DBlend(E_BLEND_FACTOR factor) const { u32 r = 0; switch (factor) { case EBF_ZERO: r = D3DBLEND_ZERO; break; case EBF_ONE: r = D3DBLEND_ONE; break; case EBF_DST_COLOR: r = D3DBLEND_DESTCOLOR; break; case EBF_ONE_MINUS_DST_COLOR: r = D3DBLEND_INVDESTCOLOR; break; case EBF_SRC_COLOR: r = D3DBLEND_SRCCOLOR; break; case EBF_ONE_MINUS_SRC_COLOR: r = D3DBLEND_INVSRCCOLOR; break; case EBF_SRC_ALPHA: r = D3DBLEND_SRCALPHA; break; case EBF_ONE_MINUS_SRC_ALPHA: r = D3DBLEND_INVSRCALPHA; break; case EBF_DST_ALPHA: r = D3DBLEND_DESTALPHA; break; case EBF_ONE_MINUS_DST_ALPHA: r = D3DBLEND_INVDESTALPHA; break; case EBF_SRC_ALPHA_SATURATE: r = D3DBLEND_SRCALPHASAT; break; } return r; } u32 CD3D9Driver::getD3DModulate(E_MODULATE_FUNC func) const { u32 r = D3DTOP_MODULATE; switch (func) { case EMFN_MODULATE_1X: r = D3DTOP_MODULATE; break; case EMFN_MODULATE_2X: r = D3DTOP_MODULATE2X; break; case EMFN_MODULATE_4X: r = D3DTOP_MODULATE4X; break; } return r; } CD3D9CallBridge* CD3D9Driver::getBridgeCalls() const { return BridgeCalls; } CD3D9CallBridge::CD3D9CallBridge(IDirect3DDevice9* p, CD3D9Driver* driver) : pID3DDevice(p), BlendOperation(D3DBLENDOP_ADD), BlendSourceRGB(D3DBLEND_ONE), BlendDestinationRGB(D3DBLEND_ZERO), BlendSourceAlpha(D3DBLEND_ONE), BlendDestinationAlpha(D3DBLEND_ZERO), Blend(false), BlendSeparate(false), FeatureBlendSeparate(false) { FeatureBlendSeparate = driver->queryFeature(EVDF_BLEND_SEPARATE); reset(); } void CD3D9CallBridge::reset() { BlendOperation = D3DBLENDOP_ADD; BlendSourceRGB = D3DBLEND_ONE; BlendDestinationRGB = D3DBLEND_ZERO; BlendSourceAlpha = D3DBLEND_ONE; BlendDestinationAlpha = D3DBLEND_ZERO; Blend = false; BlendSeparate = false; pID3DDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD); pID3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE); pID3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO); pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); if (FeatureBlendSeparate) { pID3DDevice->SetRenderState(D3DRS_SRCBLENDALPHA, D3DBLEND_ONE); pID3DDevice->SetRenderState(D3DRS_DESTBLENDALPHA, D3DBLEND_ZERO); pID3DDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE); } } void CD3D9CallBridge::setBlendOperation(DWORD mode) { if (BlendOperation != mode) { pID3DDevice->SetRenderState(D3DRS_BLENDOP, mode); BlendOperation = mode; } } void CD3D9CallBridge::setBlendFunc(DWORD source, DWORD destination) { if (BlendSourceRGB != source) { pID3DDevice->SetRenderState(D3DRS_SRCBLEND, source); BlendSourceRGB = source; } if (BlendDestinationRGB != destination) { pID3DDevice->SetRenderState(D3DRS_DESTBLEND, destination); BlendDestinationRGB = destination; } if (FeatureBlendSeparate && BlendSeparate) { pID3DDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE); BlendSeparate = false; } } void CD3D9CallBridge::setBlendFuncSeparate(DWORD sourceRGB, DWORD destinationRGB, DWORD sourceAlpha, DWORD destinationAlpha) { if (BlendSourceRGB != sourceRGB) { pID3DDevice->SetRenderState(D3DRS_SRCBLEND, sourceRGB); BlendSourceRGB = sourceRGB; } if (BlendDestinationRGB != destinationRGB) { pID3DDevice->SetRenderState(D3DRS_DESTBLEND, destinationRGB); BlendDestinationRGB = destinationRGB; } if (FeatureBlendSeparate) { if (sourceRGB != sourceAlpha || destinationRGB != destinationAlpha) { if (BlendSourceAlpha != sourceAlpha) { pID3DDevice->SetRenderState(D3DRS_SRCBLENDALPHA, sourceAlpha); BlendSourceAlpha = sourceAlpha; } if (BlendDestinationAlpha != destinationAlpha) { pID3DDevice->SetRenderState(D3DRS_DESTBLENDALPHA, destinationAlpha); BlendDestinationAlpha = destinationAlpha; } if (!BlendSeparate) { pID3DDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE); BlendSeparate = true; } } else if (BlendSeparate) { pID3DDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE); BlendSeparate = false; } } } void CD3D9CallBridge::setBlend(bool enable) { if (Blend != enable) { if (enable) pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE); else pID3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); Blend = enable; } } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_DIRECT3D_9_ namespace irr { namespace video { #ifdef _IRR_COMPILE_WITH_DIRECT3D_9_ //! creates a video driver IVideoDriver* createDirectX9Driver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, HWND window) { const bool pureSoftware = false; CD3D9Driver* dx9 = new CD3D9Driver(params, io); if (!dx9->initDriver(window, pureSoftware)) { dx9->drop(); dx9 = 0; } return dx9; } #endif // _IRR_COMPILE_WITH_DIRECT3D_9_ } // end namespace video } // end namespace irr