// Copyright (C) 2023 Vitaliy Lobachevskiy // Copyright (C) 2014 Patryk Nadrowski // Copyright (C) 2009-2010 Amundis // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in Irrlicht.h #include "Driver.h" #include "CNullDriver.h" #include "IContextManager.h" #include "COpenGLCoreTexture.h" #include "COpenGLCoreRenderTarget.h" #include "COpenGLCoreCacheHandler.h" #include "MaterialRenderer.h" #include "FixedPipelineRenderer.h" #include "Renderer2D.h" #include "EVertexAttributes.h" #include "CImage.h" #include "os.h" #ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_ #include "android_native_app_glue.h" #endif #include "mt_opengl.h" namespace irr { namespace video { struct VertexAttribute { enum class Mode { Regular, Normalized, Integral, }; int Index; int ComponentCount; GLenum ComponentType; Mode mode; int Offset; }; struct VertexType { int VertexSize; int AttributeCount; VertexAttribute Attributes[]; VertexType(const VertexType &) = delete; VertexType &operator= (const VertexType &) = delete; }; static const VertexAttribute *begin(const VertexType &type) { return type.Attributes; } static const VertexAttribute *end(const VertexType &type) { return type.Attributes + type.AttributeCount; } static constexpr VertexType vtStandard = { sizeof(S3DVertex), 4, { {EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)}, {EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Normal)}, {EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)}, {EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)}, }, }; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Winvalid-offsetof" static constexpr VertexType vt2TCoords = { sizeof(S3DVertex2TCoords), 5, { {EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Pos)}, {EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Normal)}, {EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex2TCoords, Color)}, {EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords)}, {EVA_TCOORD1, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords2)}, }, }; static constexpr VertexType vtTangents = { sizeof(S3DVertexTangents), 6, { {EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Pos)}, {EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Normal)}, {EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertexTangents, Color)}, {EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, TCoords)}, {EVA_TANGENT, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Tangent)}, {EVA_BINORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Binormal)}, }, }; #pragma GCC diagnostic pop static const VertexType &getVertexTypeDescription(E_VERTEX_TYPE type) { switch (type) { case EVT_STANDARD: return vtStandard; case EVT_2TCOORDS: return vt2TCoords; case EVT_TANGENTS: return vtTangents; default: assert(false); } } static constexpr VertexType vt2DImage = { sizeof(S3DVertex), 3, { {EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)}, {EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)}, {EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)}, }, }; static constexpr VertexType vtPrimitive = { sizeof(S3DVertex), 2, { {EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)}, {EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)}, }, }; void APIENTRY COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam) { ((COpenGL3DriverBase *)userParam)->debugCb(source, type, id, severity, length, message); } void COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message) { printf("%04x %04x %x %x %.*s\n", source, type, id, severity, length, message); } COpenGL3DriverBase::COpenGL3DriverBase(const SIrrlichtCreationParameters& params, io::IFileSystem* io, IContextManager* contextManager) : CNullDriver(io, params.WindowSize), COpenGL3ExtensionHandler(), CacheHandler(0), Params(params), ResetRenderStates(true), LockRenderStateMode(false), AntiAlias(params.AntiAlias), MaterialRenderer2DActive(0), MaterialRenderer2DTexture(0), MaterialRenderer2DNoTexture(0), CurrentRenderMode(ERM_NONE), Transformation3DChanged(true), OGLES2ShaderPath(params.OGLES2ShaderPath), ColorFormat(ECF_R8G8B8), ContextManager(contextManager) { #ifdef _DEBUG setDebugName("Driver"); #endif if (!ContextManager) return; ContextManager->grab(); ContextManager->generateSurface(); ContextManager->generateContext(); ExposedData = ContextManager->getContext(); ContextManager->activateContext(ExposedData, false); GL.LoadAllProcedures(ContextManager); GL.DebugMessageCallback(debugCb, this); initQuadsIndices(); } COpenGL3DriverBase::~COpenGL3DriverBase() { deleteMaterialRenders(); CacheHandler->getTextureCache().clear(); removeAllRenderTargets(); deleteAllTextures(); removeAllOcclusionQueries(); removeAllHardwareBuffers(); delete MaterialRenderer2DTexture; delete MaterialRenderer2DNoTexture; delete CacheHandler; if (ContextManager) { ContextManager->destroyContext(); ContextManager->destroySurface(); ContextManager->terminate(); ContextManager->drop(); } } void COpenGL3DriverBase::initQuadsIndices(int max_vertex_count) { int max_quad_count = max_vertex_count / 4; QuadsIndices.reserve(6 * max_quad_count); for (int k = 0; k < max_quad_count; k++) { QuadsIndices.push_back(4 * k + 0); QuadsIndices.push_back(4 * k + 1); QuadsIndices.push_back(4 * k + 2); QuadsIndices.push_back(4 * k + 0); QuadsIndices.push_back(4 * k + 2); QuadsIndices.push_back(4 * k + 3); } } bool COpenGL3DriverBase::genericDriverInit(const core::dimension2d& screenSize, bool stencilBuffer) { Name = glGetString(GL_VERSION); printVersion(); // print renderer information VendorName = glGetString(GL_VENDOR); os::Printer::log(VendorName.c_str(), ELL_INFORMATION); // load extensions initExtensions(); // reset cache handler delete CacheHandler; CacheHandler = new COpenGL3CacheHandler(this); StencilBuffer = stencilBuffer; DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits); DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits); // DriverAttributes->setAttribute("MaxLights", MaxLights); DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy); // DriverAttributes->setAttribute("MaxUserClipPlanes", MaxUserClipPlanes); // DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers); // DriverAttributes->setAttribute("MaxMultipleRenderTargets", MaxMultipleRenderTargets); DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices); DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize); DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias); DriverAttributes->setAttribute("Version", Version); DriverAttributes->setAttribute("AntiAlias", AntiAlias); glPixelStorei(GL_PACK_ALIGNMENT, 1); UserClipPlane.reallocate(0); for (s32 i = 0; i < ETS_COUNT; ++i) setTransform(static_cast(i), core::IdentityMatrix); setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f)); glClearDepthf(1.0f); glHint(GL_GENERATE_MIPMAP_HINT, GL_NICEST); glFrontFace(GL_CW); // create material renderers createMaterialRenderers(); // set the renderstates setRenderStates3DMode(); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // create matrix for flipping textures TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f)); // We need to reset once more at the beginning of the first rendering. // This fixes problems with intermediate changes to the material during texture load. ResetRenderStates = true; testGLError(__LINE__); return true; } void COpenGL3DriverBase::loadShaderData(const io::path& vertexShaderName, const io::path& fragmentShaderName, c8** vertexShaderData, c8** fragmentShaderData) { io::path vsPath(OGLES2ShaderPath); vsPath += vertexShaderName; io::path fsPath(OGLES2ShaderPath); fsPath += fragmentShaderName; *vertexShaderData = 0; *fragmentShaderData = 0; io::IReadFile* vsFile = FileSystem->createAndOpenFile(vsPath); if ( !vsFile ) { core::stringw warning(L"Warning: Missing shader files needed to simulate fixed function materials:\n"); warning += core::stringw(vsPath) + L"\n"; warning += L"Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath"; os::Printer::log(warning.c_str(), ELL_WARNING); return; } io::IReadFile* fsFile = FileSystem->createAndOpenFile(fsPath); if ( !fsFile ) { core::stringw warning(L"Warning: Missing shader files needed to simulate fixed function materials:\n"); warning += core::stringw(fsPath) + L"\n"; warning += L"Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath"; os::Printer::log(warning.c_str(), ELL_WARNING); return; } long size = vsFile->getSize(); if (size) { *vertexShaderData = new c8[size+1]; vsFile->read(*vertexShaderData, size); (*vertexShaderData)[size] = 0; } size = fsFile->getSize(); if (size) { // if both handles are the same we must reset the file if (fsFile == vsFile) fsFile->seek(0); *fragmentShaderData = new c8[size+1]; fsFile->read(*fragmentShaderData, size); (*fragmentShaderData)[size] = 0; } vsFile->drop(); fsFile->drop(); } void COpenGL3DriverBase::createMaterialRenderers() { // Create callbacks. COpenGL3MaterialSolidCB* SolidCB = new COpenGL3MaterialSolidCB(); COpenGL3MaterialSolid2CB* Solid2LayerCB = new COpenGL3MaterialSolid2CB(); COpenGL3MaterialLightmapCB* LightmapCB = new COpenGL3MaterialLightmapCB(1.f); COpenGL3MaterialLightmapCB* LightmapAddCB = new COpenGL3MaterialLightmapCB(1.f); COpenGL3MaterialLightmapCB* LightmapM2CB = new COpenGL3MaterialLightmapCB(2.f); COpenGL3MaterialLightmapCB* LightmapM4CB = new COpenGL3MaterialLightmapCB(4.f); COpenGL3MaterialLightmapCB* LightmapLightingCB = new COpenGL3MaterialLightmapCB(1.f); COpenGL3MaterialLightmapCB* LightmapLightingM2CB = new COpenGL3MaterialLightmapCB(2.f); COpenGL3MaterialLightmapCB* LightmapLightingM4CB = new COpenGL3MaterialLightmapCB(4.f); COpenGL3MaterialSolid2CB* DetailMapCB = new COpenGL3MaterialSolid2CB(); COpenGL3MaterialReflectionCB* SphereMapCB = new COpenGL3MaterialReflectionCB(); COpenGL3MaterialReflectionCB* Reflection2LayerCB = new COpenGL3MaterialReflectionCB(); COpenGL3MaterialSolidCB* TransparentAddColorCB = new COpenGL3MaterialSolidCB(); COpenGL3MaterialSolidCB* TransparentAlphaChannelCB = new COpenGL3MaterialSolidCB(); COpenGL3MaterialSolidCB* TransparentAlphaChannelRefCB = new COpenGL3MaterialSolidCB(); COpenGL3MaterialSolidCB* TransparentVertexAlphaCB = new COpenGL3MaterialSolidCB(); COpenGL3MaterialReflectionCB* TransparentReflection2LayerCB = new COpenGL3MaterialReflectionCB(); COpenGL3MaterialOneTextureBlendCB* OneTextureBlendCB = new COpenGL3MaterialOneTextureBlendCB(); // Create built-in materials. core::stringc VertexShader = OGLES2ShaderPath + "Solid.vsh"; core::stringc FragmentShader = OGLES2ShaderPath + "Solid.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, SolidCB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "Solid2.vsh"; FragmentShader = OGLES2ShaderPath + "Solid2Layer.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, Solid2LayerCB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "Solid2.vsh"; FragmentShader = OGLES2ShaderPath + "LightmapModulate.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapCB, EMT_SOLID, 0); FragmentShader = OGLES2ShaderPath + "LightmapAdd.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapAddCB, EMT_SOLID, 0); FragmentShader = OGLES2ShaderPath + "LightmapModulate.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapM2CB, EMT_SOLID, 0); addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapM4CB, EMT_SOLID, 0); addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapLightingCB, EMT_SOLID, 0); addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapLightingM2CB, EMT_SOLID, 0); addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, LightmapLightingM4CB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "Solid2.vsh"; FragmentShader = OGLES2ShaderPath + "DetailMap.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, DetailMapCB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "SphereMap.vsh"; FragmentShader = OGLES2ShaderPath + "SphereMap.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, SphereMapCB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "Reflection2Layer.vsh"; FragmentShader = OGLES2ShaderPath + "Reflection2Layer.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, Reflection2LayerCB, EMT_SOLID, 0); VertexShader = OGLES2ShaderPath + "Solid.vsh"; FragmentShader = OGLES2ShaderPath + "Solid.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAddColorCB, EMT_TRANSPARENT_ADD_COLOR, 0); FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannel.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0); FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannelRef.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelRefCB, EMT_SOLID, 0); FragmentShader = OGLES2ShaderPath + "TransparentVertexAlpha.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentVertexAlphaCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0); VertexShader = OGLES2ShaderPath + "Reflection2Layer.vsh"; FragmentShader = OGLES2ShaderPath + "Reflection2Layer.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentReflection2LayerCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0); VertexShader = OGLES2ShaderPath + "Solid.vsh"; FragmentShader = OGLES2ShaderPath + "OneTextureBlend.fsh"; addHighLevelShaderMaterialFromFiles(VertexShader, "main", EVST_VS_2_0, FragmentShader, "main", EPST_PS_2_0, "", "main", EGST_GS_4_0, scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, OneTextureBlendCB, EMT_ONETEXTURE_BLEND, 0); // Drop callbacks. SolidCB->drop(); Solid2LayerCB->drop(); LightmapCB->drop(); LightmapAddCB->drop(); LightmapM2CB->drop(); LightmapM4CB->drop(); LightmapLightingCB->drop(); LightmapLightingM2CB->drop(); LightmapLightingM4CB->drop(); DetailMapCB->drop(); SphereMapCB->drop(); Reflection2LayerCB->drop(); TransparentAddColorCB->drop(); TransparentAlphaChannelCB->drop(); TransparentAlphaChannelRefCB->drop(); TransparentVertexAlphaCB->drop(); TransparentReflection2LayerCB->drop(); OneTextureBlendCB->drop(); // Create 2D material renderers c8* vs2DData = 0; c8* fs2DData = 0; loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D.fsh"), &vs2DData, &fs2DData); MaterialRenderer2DTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, true); delete[] vs2DData; delete[] fs2DData; vs2DData = 0; fs2DData = 0; loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D_noTex.fsh"), &vs2DData, &fs2DData); MaterialRenderer2DNoTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, false); delete[] vs2DData; delete[] fs2DData; } bool COpenGL3DriverBase::setMaterialTexture(irr::u32 layerIdx, const irr::video::ITexture* texture) { Material.TextureLayer[layerIdx].Texture = const_cast(texture); // function uses const-pointer for texture because all draw functions use const-pointers already return CacheHandler->getTextureCache().set(0, texture); } bool COpenGL3DriverBase::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData& videoData, core::rect* sourceRect) { CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); if (ContextManager) ContextManager->activateContext(videoData, true); clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } bool COpenGL3DriverBase::endScene() { CNullDriver::endScene(); glFlush(); if (ContextManager) return ContextManager->swapBuffers(); return false; } //! Returns the transformation set by setTransform const core::matrix4& COpenGL3DriverBase::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COpenGL3DriverBase::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Matrices[state] = mat; Transformation3DChanged = true; } bool COpenGL3DriverBase::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* vertices = mb->getVertices(); const u32 vertexCount = mb->getVertexCount(); const E_VERTEX_TYPE vType = mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); const void *buffer = vertices; size_t bufferSize = vertexSize * vertexCount; //get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_verticesID) { glGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer = true; } else if (HWBuffer->vbo_verticesSize < bufferSize) { newBuffer = true; } glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); // copy data to graphics card if (!newBuffer) glBufferSubData(GL_ARRAY_BUFFER, 0, bufferSize, buffer); else { HWBuffer->vbo_verticesSize = bufferSize; if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC) glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_STATIC_DRAW); else glBufferData(GL_ARRAY_BUFFER, bufferSize, buffer, GL_DYNAMIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); } bool COpenGL3DriverBase::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* indices = mb->getIndices(); u32 indexCount = mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case(EIT_16BIT): { indexSize = sizeof(u16); break; } case(EIT_32BIT): { indexSize = sizeof(u32); break; } default: { return false; } } //get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_indicesID) { glGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer = true; } else if (HWBuffer->vbo_indicesSize < indexCount*indexSize) { newBuffer = true; } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); // copy data to graphics card if (!newBuffer) glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount * indexSize; if (HWBuffer->Mapped_Index == scene::EHM_STATIC) glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); } //! updates hardware buffer if needed bool COpenGL3DriverBase::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !static_cast(HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer(static_cast(HWBuffer))) return false; } } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !static_cast(HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer COpenGL3DriverBase::SHWBufferLink *COpenGL3DriverBase::createHardwareBuffer(const scene::IMeshBuffer* mb) { if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb); //add to map HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer); HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index(); HWBuffer->vbo_verticesID = 0; HWBuffer->vbo_indicesID = 0; HWBuffer->vbo_verticesSize = 0; HWBuffer->vbo_indicesSize = 0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; } void COpenGL3DriverBase::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = static_cast(_HWBuffer); if (HWBuffer->vbo_verticesID) { glDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID = 0; } if (HWBuffer->vbo_indicesID) { glDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID = 0; } CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COpenGL3DriverBase::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; SHWBufferLink_opengl *HWBuffer = static_cast(_HWBuffer); updateHardwareBuffer(HWBuffer); //check if update is needed const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const void *indexList = mb->getIndices(); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices = 0; } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList = 0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getPrimitiveCount(), mb->getVertexType(), mb->getPrimitiveType(), mb->getIndexType()); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) glBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index != scene::EHM_NEVER) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } IRenderTarget* COpenGL3DriverBase::addRenderTarget() { COpenGL3RenderTarget* renderTarget = new COpenGL3RenderTarget(this); RenderTargets.push_back(renderTarget); return renderTarget; } // small helper function to create vertex buffer object adress offsets static inline u8* buffer_offset(const long offset) { return ((u8*)0 + offset); } //! draws a vertex primitive list void COpenGL3DriverBase::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); setRenderStates3DMode(); auto &vTypeDesc = getVertexTypeDescription(vType); beginDraw(vTypeDesc, reinterpret_cast(vertices)); GLenum indexSize = 0; switch (iType) { case(EIT_16BIT): { indexSize = GL_UNSIGNED_SHORT; break; } case(EIT_32BIT): { #ifdef GL_OES_element_index_uint #ifndef GL_UNSIGNED_INT #define GL_UNSIGNED_INT 0x1405 #endif if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint]) indexSize = GL_UNSIGNED_INT; else #endif indexSize = GL_UNSIGNED_SHORT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: glDrawArrays(GL_POINTS, 0, primitiveCount); break; case scene::EPT_LINE_STRIP: glDrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList); break; case scene::EPT_LINE_LOOP: glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList); break; case scene::EPT_LINES: glDrawElements(GL_LINES, primitiveCount*2, indexSize, indexList); break; case scene::EPT_TRIANGLE_STRIP: glDrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList); break; case scene::EPT_TRIANGLE_FAN: glDrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList); break; case scene::EPT_TRIANGLES: glDrawElements((LastMaterial.Wireframe) ? GL_LINES : (LastMaterial.PointCloud) ? GL_POINTS : GL_TRIANGLES, primitiveCount*3, indexSize, indexList); break; default: break; } endDraw(vTypeDesc); } void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, const core::position2d& destPos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; SColor colors[4] = {color, color, color, color}; draw2DImage(texture, {destPos, sourceRect.getSize()}, sourceRect, clipRect, colors, useAlphaChannelOfTexture); } void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (!texture) return; // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2du& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, (isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH, sourceRect.LowerRightCorner.X * invW, (isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) *invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; chooseMaterial2D(); if (!setMaterialTexture(0, texture )) return; setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 || useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255, true, useAlphaChannelOfTexture); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } f32 left = (f32)destRect.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 right = (f32)destRect.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 down = 2.f - (f32)destRect.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; f32 top = 2.f - (f32)destRect.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; S3DVertex vertices[4]; vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); drawQuad(vt2DImage, vertices); if (clipRect) glDisable(GL_SCISSOR_TEST); testGLError(__LINE__); } void COpenGL3DriverBase::draw2DImage(const video::ITexture* texture, u32 layer, bool flip) { if (!texture) return; chooseMaterial2D(); if (!setMaterialTexture(0, texture )) return; setRenderStates2DMode(false, true, true); S3DVertex quad2DVertices[4]; quad2DVertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f); quad2DVertices[1].Pos = core::vector3df(1.f, 1.f, 0.f); quad2DVertices[2].Pos = core::vector3df(1.f, -1.f, 0.f); quad2DVertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f); f32 modificator = (flip) ? 1.f : 0.f; quad2DVertices[0].TCoords = core::vector2df(0.f, 0.f + modificator); quad2DVertices[1].TCoords = core::vector2df(1.f, 0.f + modificator); quad2DVertices[2].TCoords = core::vector2df(1.f, 1.f - modificator); quad2DVertices[3].TCoords = core::vector2df(0.f, 1.f - modificator); quad2DVertices[0].Color = SColor(0xFFFFFFFF); quad2DVertices[1].Color = SColor(0xFFFFFFFF); quad2DVertices[2].Color = SColor(0xFFFFFFFF); quad2DVertices[3].Color = SColor(0xFFFFFFFF); drawQuad(vt2DImage, quad2DVertices); } void COpenGL3DriverBase::draw2DImageBatch(const video::ITexture* texture, const core::array >& positions, const core::array >& sourceRects, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; chooseMaterial2D(); if (!setMaterialTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } const irr::u32 drawCount = core::min_(positions.size(), sourceRects.size()); assert(6 * std::size_t(drawCount) <= QuadsIndices.size()); core::array vtx(drawCount * 4); for (u32 i = 0; i < drawCount; i++) { core::position2d targetPos = positions[i]; core::position2d sourcePos = sourceRects[i].UpperLeftCorner; // This needs to be signed as it may go negative. core::dimension2d sourceSize(sourceRects[i].getSize()); // now draw it. core::rect tcoords; tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width ; tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height; tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width); tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height); const core::rect poss(targetPos, sourceSize); f32 left = (f32)poss.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 right = (f32)poss.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 down = 2.f - (f32)poss.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; f32 top = 2.f - (f32)poss.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; vtx.push_back(S3DVertex(left, top, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex(right, top, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y)); vtx.push_back(S3DVertex(right, down, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y)); vtx.push_back(S3DVertex(left, down, 0.0f, 0.0f, 0.0f, 0.0f, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y)); } drawElements(GL_TRIANGLES, vt2DImage, vtx.const_pointer(), QuadsIndices.data(), 6 * drawCount); if (clipRect) glDisable(GL_SCISSOR_TEST); } //! draw a 2d rectangle void COpenGL3DriverBase::draw2DRectangle(SColor color, const core::rect& position, const core::rect* clip) { chooseMaterial2D(); setMaterialTexture(0, 0); setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; S3DVertex vertices[4]; vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, color, 0, 0); vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, color, 0, 0); vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, color, 0, 0); drawQuad(vtPrimitive, vertices); } //! draw an 2d rectangle void COpenGL3DriverBase::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; chooseMaterial2D(); setMaterialTexture(0, 0); setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); f32 left = (f32)pos.UpperLeftCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 right = (f32)pos.LowerRightCorner.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 down = 2.f - (f32)pos.LowerRightCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; f32 top = 2.f - (f32)pos.UpperLeftCorner.Y / (f32)renderTargetSize.Height * 2.f - 1.f; S3DVertex vertices[4]; vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, colorLeftUp, 0, 0); vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, colorRightUp, 0, 0); vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, colorRightDown, 0, 0); vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, colorLeftDown, 0, 0); drawQuad(vtPrimitive, vertices); } //! Draws a 2d line. void COpenGL3DriverBase::draw2DLine(const core::position2d& start, const core::position2d& end, SColor color) { if (start==end) drawPixel(start.X, start.Y, color); else { chooseMaterial2D(); setMaterialTexture(0, 0); setRenderStates2DMode(color.getAlpha() < 255, false, false); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); f32 startX = (f32)start.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 endX = (f32)end.X / (f32)renderTargetSize.Width * 2.f - 1.f; f32 startY = 2.f - (f32)start.Y / (f32)renderTargetSize.Height * 2.f - 1.f; f32 endY = 2.f - (f32)end.Y / (f32)renderTargetSize.Height * 2.f - 1.f; S3DVertex vertices[2]; vertices[0] = S3DVertex(startX, startY, 0, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex(endX, endY, 0, 0, 0, 1, color, 1, 1); drawArrays(GL_LINES, vtPrimitive, vertices, 2); } } //! Draws a pixel void COpenGL3DriverBase::drawPixel(u32 x, u32 y, const SColor &color) { const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height) return; chooseMaterial2D(); setMaterialTexture(0, 0); setRenderStates2DMode(color.getAlpha() < 255, false, false); f32 X = (f32)x / (f32)renderTargetSize.Width * 2.f - 1.f; f32 Y = 2.f - (f32)y / (f32)renderTargetSize.Height * 2.f - 1.f; S3DVertex vertices[1]; vertices[0] = S3DVertex(X, Y, 0, 0, 0, 1, color, 0, 0); drawArrays(GL_POINTS, vtPrimitive, vertices, 1); } void COpenGL3DriverBase::drawQuad(const VertexType &vertexType, const S3DVertex (&vertices)[4]) { drawArrays(GL_TRIANGLE_FAN, vertexType, vertices, 4); } void COpenGL3DriverBase::drawArrays(GLenum primitiveType, const VertexType &vertexType, const void *vertices, int vertexCount) { beginDraw(vertexType, reinterpret_cast(vertices)); glDrawArrays(primitiveType, 0, vertexCount); endDraw(vertexType); } void COpenGL3DriverBase::drawElements(GLenum primitiveType, const VertexType &vertexType, const void *vertices, const u16 *indices, int indexCount) { beginDraw(vertexType, reinterpret_cast(vertices)); glDrawElements(primitiveType, indexCount, GL_UNSIGNED_SHORT, indices); endDraw(vertexType); } void COpenGL3DriverBase::beginDraw(const VertexType &vertexType, uintptr_t verticesBase) { for (auto attr: vertexType) { glEnableVertexAttribArray(attr.Index); switch (attr.mode) { case VertexAttribute::Mode::Regular: glVertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_FALSE, vertexType.VertexSize, reinterpret_cast(verticesBase + attr.Offset)); break; case VertexAttribute::Mode::Normalized: glVertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_TRUE, vertexType.VertexSize, reinterpret_cast(verticesBase + attr.Offset)); break; case VertexAttribute::Mode::Integral: glVertexAttribIPointer(attr.Index, attr.ComponentCount, attr.ComponentType, vertexType.VertexSize, reinterpret_cast(verticesBase + attr.Offset)); break; } } } void COpenGL3DriverBase::endDraw(const VertexType &vertexType) { for (auto attr: vertexType) glDisableVertexAttribArray(attr.Index); } ITexture* COpenGL3DriverBase::createDeviceDependentTexture(const io::path& name, IImage* image) { core::array imageArray(1); imageArray.push_back(image); COpenGL3Texture* texture = new COpenGL3Texture(name, imageArray, ETT_2D, this); return texture; } ITexture* COpenGL3DriverBase::createDeviceDependentTextureCubemap(const io::path& name, const core::array& image) { COpenGL3Texture* texture = new COpenGL3Texture(name, image, ETT_CUBEMAP, this); return texture; } //! Sets a material. void COpenGL3DriverBase::setMaterial(const SMaterial& material) { Material = material; OverrideMaterial.apply(Material); for (u32 i = 0; i < Feature.MaxTextureUnits; ++i) { CacheHandler->getTextureCache().set(i, material.getTexture(i)); setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i)); } } //! prints error if an error happened. bool COpenGL3DriverBase::testGLError(int code) { #ifdef _DEBUG GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR); break; }; return true; #else return false; #endif } //! prints error if an error happened. bool COpenGL3DriverBase::testEGLError() { #if defined(EGL_VERSION_1_0) && defined(_DEBUG) EGLint g = eglGetError(); switch (g) { case EGL_SUCCESS: return false; case EGL_NOT_INITIALIZED : os::Printer::log("Not Initialized", ELL_ERROR); break; case EGL_BAD_ACCESS: os::Printer::log("Bad Access", ELL_ERROR); break; case EGL_BAD_ALLOC: os::Printer::log("Bad Alloc", ELL_ERROR); break; case EGL_BAD_ATTRIBUTE: os::Printer::log("Bad Attribute", ELL_ERROR); break; case EGL_BAD_CONTEXT: os::Printer::log("Bad Context", ELL_ERROR); break; case EGL_BAD_CONFIG: os::Printer::log("Bad Config", ELL_ERROR); break; case EGL_BAD_CURRENT_SURFACE: os::Printer::log("Bad Current Surface", ELL_ERROR); break; case EGL_BAD_DISPLAY: os::Printer::log("Bad Display", ELL_ERROR); break; case EGL_BAD_SURFACE: os::Printer::log("Bad Surface", ELL_ERROR); break; case EGL_BAD_MATCH: os::Printer::log("Bad Match", ELL_ERROR); break; case EGL_BAD_PARAMETER: os::Printer::log("Bad Parameter", ELL_ERROR); break; case EGL_BAD_NATIVE_PIXMAP: os::Printer::log("Bad Native Pixmap", ELL_ERROR); break; case EGL_BAD_NATIVE_WINDOW: os::Printer::log("Bad Native Window", ELL_ERROR); break; case EGL_CONTEXT_LOST: os::Printer::log("Context Lost", ELL_ERROR); break; }; return true; #else return false; #endif } void COpenGL3DriverBase::setRenderStates3DMode() { if ( LockRenderStateMode ) return; if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages CacheHandler->setBlend(false); CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material // unset last 3d material if (CurrentRenderMode == ERM_2D && MaterialRenderer2DActive) { MaterialRenderer2DActive->OnUnsetMaterial(); MaterialRenderer2DActive = 0; } else if (LastMaterial.MaterialType != Material.MaterialType && static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; CacheHandler->correctCacheMaterial(LastMaterial); ResetRenderStates = false; } if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } //! Can be called by an IMaterialRenderer to make its work easier. void COpenGL3DriverBase::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates) { // ZBuffer switch (material.ZBuffer) { case ECFN_DISABLED: CacheHandler->setDepthTest(false); break; case ECFN_LESSEQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_EQUAL); break; case ECFN_LESS: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_ALWAYS); break; case ECFN_NEVER: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_NEVER); break; default: break; } // ZWrite if (getWriteZBuffer(material)) { CacheHandler->setDepthMask(true); } else { CacheHandler->setDepthMask(false); } // Back face culling if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { CacheHandler->setCullFaceFunc(GL_FRONT_AND_BACK); CacheHandler->setCullFace(true); } else if (material.BackfaceCulling) { CacheHandler->setCullFaceFunc(GL_BACK); CacheHandler->setCullFace(true); } else if (material.FrontfaceCulling) { CacheHandler->setCullFaceFunc(GL_FRONT); CacheHandler->setCullFace(true); } else { CacheHandler->setCullFace(false); } // Color Mask CacheHandler->setColorMask(material.ColorMask); // Blend Equation if (material.BlendOperation == EBO_NONE) CacheHandler->setBlend(false); else { CacheHandler->setBlend(true); switch (material.BlendOperation) { case EBO_ADD: CacheHandler->setBlendEquation(GL_FUNC_ADD); break; case EBO_SUBTRACT: CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT); break; case EBO_REVSUBTRACT: CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT); break; default: break; } } // Blend Factor if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF? && material.MaterialType != EMT_ONETEXTURE_BLEND ) { E_BLEND_FACTOR srcRGBFact = EBF_ZERO; E_BLEND_FACTOR dstRGBFact = EBF_ZERO; E_BLEND_FACTOR srcAlphaFact = EBF_ZERO; E_BLEND_FACTOR dstAlphaFact = EBF_ZERO; E_MODULATE_FUNC modulo = EMFN_MODULATE_1X; u32 alphaSource = 0; unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor); CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact), getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact)); } // TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver. if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) glLineWidth(core::clamp(static_cast(material.Thickness), DimAliasedLine[0], DimAliasedLine[1])); // Anti aliasing if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); } // Texture parameters setTextureRenderStates(material, resetAllRenderStates); } //! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call. void COpenGL3DriverBase::setTextureRenderStates(const SMaterial& material, bool resetAllRenderstates) { // Set textures to TU/TIU and apply filters to them for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i) { const COpenGL3Texture* tmpTexture = CacheHandler->getTextureCache()[i]; if (!tmpTexture) continue; GLenum tmpTextureType = tmpTexture->getOpenGLTextureType(); CacheHandler->setActiveTexture(GL_TEXTURE0 + i); if (resetAllRenderstates) tmpTexture->getStatesCache().IsCached = false; if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter) { glTexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; } if (material.UseMipMaps && tmpTexture->hasMipMaps()) { if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter || !tmpTexture->getStatesCache().MipMapStatus) { glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER, material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR : material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; tmpTexture->getStatesCache().MipMapStatus = true; } } else { if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].BilinearFilter != tmpTexture->getStatesCache().BilinearFilter || material.TextureLayer[i].TrilinearFilter != tmpTexture->getStatesCache().TrilinearFilter || tmpTexture->getStatesCache().MipMapStatus) { glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); tmpTexture->getStatesCache().BilinearFilter = material.TextureLayer[i].BilinearFilter; tmpTexture->getStatesCache().TrilinearFilter = material.TextureLayer[i].TrilinearFilter; tmpTexture->getStatesCache().MipMapStatus = false; } } #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_filter_anisotropic] && (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].AnisotropicFilter != tmpTexture->getStatesCache().AnisotropicFilter)) { glTexParameteri(tmpTextureType, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1); tmpTexture->getStatesCache().AnisotropicFilter = material.TextureLayer[i].AnisotropicFilter; } #endif if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapU != tmpTexture->getStatesCache().WrapU) { glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[i].TextureWrapU)); tmpTexture->getStatesCache().WrapU = material.TextureLayer[i].TextureWrapU; } if (!tmpTexture->getStatesCache().IsCached || material.TextureLayer[i].TextureWrapV != tmpTexture->getStatesCache().WrapV) { glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[i].TextureWrapV)); tmpTexture->getStatesCache().WrapV = material.TextureLayer[i].TextureWrapV; } tmpTexture->getStatesCache().IsCached = true; } } // Get OpenGL ES2.0 texture wrap mode from Irrlicht wrap mode. GLint COpenGL3DriverBase::getTextureWrapMode(u8 clamp) const { switch (clamp) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: return GL_CLAMP_TO_EDGE; case ETC_MIRROR: return GL_REPEAT; default: return GL_REPEAT; } } //! sets the needed renderstates void COpenGL3DriverBase::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if ( LockRenderStateMode ) return; COpenGL3Renderer2D* nextActiveRenderer = texture ? MaterialRenderer2DTexture : MaterialRenderer2DNoTexture; if (CurrentRenderMode != ERM_2D) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } CurrentRenderMode = ERM_2D; } else if ( MaterialRenderer2DActive && MaterialRenderer2DActive != nextActiveRenderer) { MaterialRenderer2DActive->OnUnsetMaterial(); } MaterialRenderer2DActive = nextActiveRenderer; MaterialRenderer2DActive->OnSetMaterial(Material, LastMaterial, true, 0); LastMaterial = Material; CacheHandler->correctCacheMaterial(LastMaterial); // no alphaChannel without texture alphaChannel &= texture; if (alphaChannel || alpha) { CacheHandler->setBlend(true); CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); CacheHandler->setBlendEquation(GL_FUNC_ADD); } else CacheHandler->setBlend(false); Material.setTexture(0, const_cast(CacheHandler->getTextureCache().get(0))); setTransform(ETS_TEXTURE_0, core::IdentityMatrix); if (texture) { if (OverrideMaterial2DEnabled) setTextureRenderStates(OverrideMaterial2D, false); else setTextureRenderStates(InitMaterial2D, false); } MaterialRenderer2DActive->OnRender(this, video::EVT_STANDARD); } void COpenGL3DriverBase::chooseMaterial2D() { if (!OverrideMaterial2DEnabled) Material = InitMaterial2D; if (OverrideMaterial2DEnabled) { OverrideMaterial2D.Lighting=false; OverrideMaterial2D.ZWriteEnable=EZW_OFF; OverrideMaterial2D.ZBuffer=ECFN_DISABLED; // it will be ECFN_DISABLED after merge OverrideMaterial2D.Lighting=false; Material = OverrideMaterial2D; } } //! \return Returns the name of the video driver. const wchar_t* COpenGL3DriverBase::getName() const { return Name.c_str(); } void COpenGL3DriverBase::setViewPort(const core::rect& area) { core::rect vp = area; core::rect rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight() > 0 && vp.getWidth() > 0) CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight()); ViewPort = vp; } void COpenGL3DriverBase::setViewPortRaw(u32 width, u32 height) { CacheHandler->setViewport(0, 0, width, height); ViewPort = core::recti(0, 0, width, height); } //! Draws a 3d line. void COpenGL3DriverBase::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { setRenderStates3DMode(); S3DVertex vertices[2]; vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0); vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0); drawArrays(GL_LINES, vtPrimitive, vertices, 2); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COpenGL3DriverBase::OnResize(const core::dimension2d& size) { CNullDriver::OnResize(size); CacheHandler->setViewport(0, 0, size.Width, size.Height); Transformation3DChanged = true; } //! Returns type of video driver E_DRIVER_TYPE COpenGL3DriverBase::getDriverType() const { return EDT_OPENGL3; } //! returns color format ECOLOR_FORMAT COpenGL3DriverBase::getColorFormat() const { return ColorFormat; } //! Get a vertex shader constant index. s32 COpenGL3DriverBase::getVertexShaderConstantID(const c8* name) { return getPixelShaderConstantID(name); } //! Get a pixel shader constant index. s32 COpenGL3DriverBase::getPixelShaderConstantID(const c8* name) { os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID()."); return -1; } //! Sets a vertex shader constant. void COpenGL3DriverBase::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setPixelShaderConstant()."); } //! Sets a pixel shader constant. void COpenGL3DriverBase::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); } //! Sets a constant for the vertex shader based on an index. bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const f32* floats, int count) { os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant()."); return false; } //! Int interface for the above. bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const s32* ints, int count) { os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant()."); return false; } bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const u32* ints, int count) { os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant()."); return false; } //! Sets a constant for the pixel shader based on an index. bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const f32* floats, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Int interface for the above. bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const s32* ints, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const u32* ints, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 COpenGL3DriverBase::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { os::Printer::log("No shader support."); return -1; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COpenGL3DriverBase::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGL3MaterialRenderer* r = new COpenGL3MaterialRenderer( this, nr, vertexShaderProgram, pixelShaderProgram, callback, baseMaterial, userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver* COpenGL3DriverBase::getVideoDriver() { return this; } //! Returns pointer to the IGPUProgrammingServices interface. IGPUProgrammingServices* COpenGL3DriverBase::getGPUProgrammingServices() { return this; } ITexture* COpenGL3DriverBase::addRenderTargetTexture(const core::dimension2d& size, const io::path& name, const ECOLOR_FORMAT format) { //disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); COpenGL3Texture* renderTargetTexture = new COpenGL3Texture(name, size, ETT_2D, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); //restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } ITexture* COpenGL3DriverBase::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path& name, const ECOLOR_FORMAT format) { //disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); bool supportForFBO = (Feature.ColorAttachment > 0); const core::dimension2d size(sideLen, sideLen); core::dimension2du destSize(size); if (!supportForFBO) { destSize = core::dimension2d(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height)); destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false); } COpenGL3Texture* renderTargetTexture = new COpenGL3Texture(name, destSize, ETT_CUBEMAP, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); //restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } //! Returns the maximum amount of primitives u32 COpenGL3DriverBase::getMaximalPrimitiveCount() const { return 65535; } bool COpenGL3DriverBase::setRenderTargetEx(IRenderTarget* target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { if (target && target->getDriverType() != getDriverType()) { os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL 3 driver.", ELL_ERROR); return false; } core::dimension2d destRenderTargetSize(0, 0); if (target) { COpenGL3RenderTarget* renderTarget = static_cast(target); CacheHandler->setFBO(renderTarget->getBufferID()); renderTarget->update(); destRenderTargetSize = renderTarget->getSize(); setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height); } else { CacheHandler->setFBO(0); destRenderTargetSize = core::dimension2d(0, 0); setViewPortRaw(ScreenSize.Width, ScreenSize.Height); } if (CurrentRenderTargetSize != destRenderTargetSize) { CurrentRenderTargetSize = destRenderTargetSize; Transformation3DChanged = true; } CurrentRenderTarget = target; clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } void COpenGL3DriverBase::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { GLbitfield mask = 0; u8 colorMask = 0; bool depthMask = false; CacheHandler->getColorMask(colorMask); CacheHandler->getDepthMask(depthMask); if (flag & ECBF_COLOR) { CacheHandler->setColorMask(ECP_ALL); const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (flag & ECBF_DEPTH) { CacheHandler->setDepthMask(true); glClearDepthf(depth); mask |= GL_DEPTH_BUFFER_BIT; } if (flag & ECBF_STENCIL) { glClearStencil(stencil); mask |= GL_STENCIL_BUFFER_BIT; } if (mask) glClear(mask); CacheHandler->setColorMask(colorMask); CacheHandler->setDepthMask(depthMask); } //! Returns an image created from the last rendered frame. // We want to read the front buffer to get the latest render finished. // This is not possible under ogl-es, though, so one has to call this method // outside of the render loop only. IImage* COpenGL3DriverBase::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target==video::ERT_MULTI_RENDER_TEXTURES || target==video::ERT_RENDER_TEXTURE || target==video::ERT_STEREO_BOTH_BUFFERS) return 0; GLint internalformat = GL_RGBA; GLint type = GL_UNSIGNED_BYTE; { // glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &internalformat); // glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &type); // there's a format we don't support ATM if (GL_UNSIGNED_SHORT_4_4_4_4 == type) { internalformat = GL_RGBA; type = GL_UNSIGNED_BYTE; } } IImage* newImage = 0; if (GL_RGBA == internalformat) { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_A8R8G8B8, ScreenSize); else newImage = new CImage(ECF_A1R5G5B5, ScreenSize); } else { if (GL_UNSIGNED_BYTE == type) newImage = new CImage(ECF_R8G8B8, ScreenSize); else newImage = new CImage(ECF_R5G6B5, ScreenSize); } if (!newImage) return 0; u8* pixels = static_cast(newImage->getData()); if (!pixels) { newImage->drop(); return 0; } glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels); testGLError(__LINE__); // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch = newImage->getPitch(); u8* p2 = pixels + (ScreenSize.Height - 1) * pitch; u8* tmpBuffer = new u8[pitch]; for (u32 i = 0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); memcpy(pixels, p2, pitch); memcpy(p2, tmpBuffer, pitch); pixels += pitch; p2 -= pitch; } delete [] tmpBuffer; // also GL_RGBA doesn't match the internal encoding of the image (which is BGRA) if (GL_RGBA == internalformat && GL_UNSIGNED_BYTE == type) { pixels = static_cast(newImage->getData()); for (u32 i = 0; i < ScreenSize.Height; i++) { for (u32 j = 0; j < ScreenSize.Width; j++) { u32 c = *(u32*) (pixels + 4 * j); *(u32*) (pixels + 4 * j) = (c & 0xFF00FF00) | ((c & 0x00FF0000) >> 16) | ((c & 0x000000FF) << 16); } pixels += pitch; } } if (testGLError(__LINE__)) { newImage->drop(); return 0; } testGLError(__LINE__); return newImage; } void COpenGL3DriverBase::removeTexture(ITexture* texture) { CacheHandler->getTextureCache().remove(texture); CNullDriver::removeTexture(texture); } //! Set/unset a clipping plane. bool COpenGL3DriverBase::setClipPlane(u32 index, const core::plane3df& plane, bool enable) { if (index >= UserClipPlane.size()) UserClipPlane.push_back(SUserClipPlane()); UserClipPlane[index].Plane = plane; UserClipPlane[index].Enabled = enable; return true; } //! Enable/disable a clipping plane. void COpenGL3DriverBase::enableClipPlane(u32 index, bool enable) { UserClipPlane[index].Enabled = enable; } //! Get the ClipPlane Count u32 COpenGL3DriverBase::getClipPlaneCount() const { return UserClipPlane.size(); } const core::plane3df& COpenGL3DriverBase::getClipPlane(irr::u32 index) const { if (index < UserClipPlane.size()) return UserClipPlane[index].Plane; else { _IRR_DEBUG_BREAK_IF(true) // invalid index static const core::plane3df dummy; return dummy; } } core::dimension2du COpenGL3DriverBase::getMaxTextureSize() const { return core::dimension2du(MaxTextureSize, MaxTextureSize); } GLenum COpenGL3DriverBase::getGLBlend(E_BLEND_FACTOR factor) const { static GLenum const blendTable[] = { GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA_SATURATE }; return blendTable[factor]; } bool COpenGL3DriverBase::getColorFormatParameters(ECOLOR_FORMAT format, GLint& internalFormat, GLenum& pixelFormat, GLenum& pixelType, void(**converter)(const void*, s32, void*)) const { bool supported = false; pixelFormat = GL_RGBA; pixelType = GL_UNSIGNED_BYTE; *converter = 0; switch (format) { case ECF_A1R5G5B5: supported = true; pixelFormat = GL_RGBA; pixelType = GL_UNSIGNED_SHORT_5_5_5_1; *converter = CColorConverter::convert_A1R5G5B5toR5G5B5A1; break; case ECF_R5G6B5: supported = true; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_SHORT_5_6_5; break; case ECF_R8G8B8: supported = true; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_BYTE; break; case ECF_A8R8G8B8: supported = true; if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_IMG_texture_format_BGRA8888) || queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_format_BGRA8888) || queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_APPLE_texture_format_BGRA8888)) { pixelFormat = GL_BGRA; } else { pixelFormat = GL_RGBA; *converter = CColorConverter::convert_A8R8G8B8toA8B8G8R8; } pixelType = GL_UNSIGNED_BYTE; break; #ifdef GL_EXT_texture_compression_s3tc case ECF_DXT1: supported = true; pixelFormat = GL_RGBA; pixelType = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case ECF_DXT2: case ECF_DXT3: supported = true; pixelFormat = GL_RGBA; pixelType = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case ECF_DXT4: case ECF_DXT5: supported = true; pixelFormat = GL_RGBA; pixelType = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; #endif #ifdef GL_OES_compressed_ETC1_RGB8_texture case ECF_ETC1: supported = true; pixelFormat = GL_RGB; pixelType = GL_ETC1_RGB8_OES; break; #endif #ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available case ECF_ETC2_RGB: supported = true; pixelFormat = GL_RGB; pixelType = GL_COMPRESSED_RGB8_ETC2; break; #endif #ifdef GL_ES_VERSION_3_0 // TO-DO - fix when extension name will be available case ECF_ETC2_ARGB: supported = true; pixelFormat = GL_RGBA; pixelType = GL_COMPRESSED_RGBA8_ETC2_EAC; break; #endif case ECF_D16: supported = true; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_SHORT; break; case ECF_D32: #if defined(GL_OES_depth32) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32)) { supported = true; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_INT; } #endif break; case ECF_D24S8: #ifdef GL_OES_packed_depth_stencil if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_packed_depth_stencil)) { supported = true; pixelFormat = GL_DEPTH_STENCIL_OES; pixelType = GL_UNSIGNED_INT_24_8_OES; } #endif break; case ECF_R8: #if defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)) { supported = true; pixelFormat = GL_RED_EXT; pixelType = GL_UNSIGNED_BYTE; } #endif break; case ECF_R8G8: #if defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg)) { supported = true; pixelFormat = GL_RG_EXT; pixelType = GL_UNSIGNED_BYTE; } #endif break; case ECF_R16: break; case ECF_R16G16: break; case ECF_R16F: #if defined(GL_OES_texture_half_float) && defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg) && queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float) ) { supported = true; pixelFormat = GL_RED_EXT; pixelType = GL_HALF_FLOAT_OES ; } #endif break; case ECF_G16R16F: #if defined(GL_OES_texture_half_float) && defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg) && queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float) ) { supported = true; pixelFormat = GL_RG_EXT; pixelType = GL_HALF_FLOAT_OES ; } #endif break; case ECF_A16B16G16R16F: #if defined(GL_OES_texture_half_float) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float)) { supported = true; pixelFormat = GL_RGBA; pixelType = GL_HALF_FLOAT_OES ; } #endif break; case ECF_R32F: #if defined(GL_OES_texture_float) && defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg) && queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_float) ) { supported = true; pixelFormat = GL_RED_EXT; pixelType = GL_FLOAT; } #endif break; case ECF_G32R32F: #if defined(GL_OES_texture_float) && defined(GL_EXT_texture_rg) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_rg) && queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_float) ) { supported = true; pixelFormat = GL_RG_EXT; pixelType = GL_FLOAT; } #endif break; case ECF_A32B32G32R32F: #if defined(GL_OES_texture_float) if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_texture_half_float)) { supported = true; pixelFormat = GL_RGBA; pixelType = GL_FLOAT ; } #endif break; default: break; } // ES 2.0 says internalFormat must match pixelFormat (chapter 3.7.1 in Spec). // Doesn't mention if "match" means "equal" or some other way of matching, but // some bug on Emscripten and browsing discussions by others lead me to believe // it means they have to be equal. Note that this was different in OpenGL. internalFormat = pixelFormat; #ifdef _IRR_IOS_PLATFORM_ if (internalFormat == GL_BGRA) internalFormat = GL_RGBA; #endif return supported; } bool COpenGL3DriverBase::queryTextureFormat(ECOLOR_FORMAT format) const { GLint dummyInternalFormat; GLenum dummyPixelFormat; GLenum dummyPixelType; void (*dummyConverter)(const void*, s32, void*); return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter); } bool COpenGL3DriverBase::needsTransparentRenderPass(const irr::video::SMaterial& material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); } const SMaterial& COpenGL3DriverBase::getCurrentMaterial() const { return Material; } COpenGL3CacheHandler* COpenGL3DriverBase::getCacheHandler() const { return CacheHandler; } } // end namespace } // end namespace