mirror of
https://github.com/minetest/irrlicht.git
synced 2024-11-09 17:23:50 +01:00
1efc93d766
(fixing OSX again) git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6257 dfc29bdd-3216-0410-991c-e03cc46cb475
686 lines
19 KiB
C++
686 lines
19 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef IRR_MATH_H_INCLUDED
|
|
#define IRR_MATH_H_INCLUDED
|
|
|
|
#include "IrrCompileConfig.h"
|
|
#include "irrTypes.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <stdlib.h> // for abs() etc.
|
|
#include <limits.h> // For INT_MAX / UINT_MAX
|
|
|
|
#if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) || defined (_WIN32_WCE)
|
|
#define sqrtf(X) (irr::f32)sqrt((irr::f64)(X))
|
|
#define sinf(X) (irr::f32)sin((irr::f64)(X))
|
|
#define cosf(X) (irr::f32)cos((irr::f64)(X))
|
|
#define asinf(X) (irr::f32)asin((irr::f64)(X))
|
|
#define acosf(X) (irr::f32)acos((irr::f64)(X))
|
|
#define atan2f(X,Y) (irr::f32)atan2((irr::f64)(X),(irr::f64)(Y))
|
|
#define ceilf(X) (irr::f32)ceil((irr::f64)(X))
|
|
#define floorf(X) (irr::f32)floor((irr::f64)(X))
|
|
#define powf(X,Y) (irr::f32)pow((irr::f64)(X),(irr::f64)(Y))
|
|
#define fmodf(X,Y) (irr::f32)fmod((irr::f64)(X),(irr::f64)(Y))
|
|
#define fabsf(X) (irr::f32)fabs((irr::f64)(X))
|
|
#define logf(X) (irr::f32)log((irr::f64)(X))
|
|
#endif
|
|
|
|
#ifndef FLT_MAX
|
|
#define FLT_MAX 3.402823466E+38F
|
|
#endif
|
|
|
|
#ifndef FLT_MIN
|
|
#define FLT_MIN 1.17549435e-38F
|
|
#endif
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! Rounding error constant often used when comparing f32 values.
|
|
|
|
const s32 ROUNDING_ERROR_S32 = 0;
|
|
|
|
#ifdef __IRR_HAS_S64
|
|
const s64 ROUNDING_ERROR_S64 = 0;
|
|
#endif
|
|
const f32 ROUNDING_ERROR_f32 = 0.000001f;
|
|
const f64 ROUNDING_ERROR_f64 = 0.00000001;
|
|
|
|
#ifdef PI // make sure we don't collide with a define
|
|
#undef PI
|
|
#endif
|
|
//! Constant for PI.
|
|
const f32 PI = 3.14159265359f;
|
|
|
|
//! Constant for reciprocal of PI.
|
|
const f32 RECIPROCAL_PI = 1.0f/PI;
|
|
|
|
//! Constant for half of PI.
|
|
const f32 HALF_PI = PI/2.0f;
|
|
|
|
#ifdef PI64 // make sure we don't collide with a define
|
|
#undef PI64
|
|
#endif
|
|
//! Constant for 64bit PI.
|
|
const f64 PI64 = 3.1415926535897932384626433832795028841971693993751;
|
|
|
|
//! Constant for 64bit reciprocal of PI.
|
|
const f64 RECIPROCAL_PI64 = 1.0/PI64;
|
|
|
|
//! 32bit Constant for converting from degrees to radians
|
|
const f32 DEGTORAD = PI / 180.0f;
|
|
|
|
//! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)
|
|
const f32 RADTODEG = 180.0f / PI;
|
|
|
|
//! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)
|
|
const f64 DEGTORAD64 = PI64 / 180.0;
|
|
|
|
//! 64bit constant for converting from radians to degrees
|
|
const f64 RADTODEG64 = 180.0 / PI64;
|
|
|
|
//! Utility function to convert a radian value to degrees
|
|
/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
|
|
\param radians The radians value to convert to degrees.
|
|
*/
|
|
inline f32 radToDeg(f32 radians)
|
|
{
|
|
return RADTODEG * radians;
|
|
}
|
|
|
|
//! Utility function to convert a radian value to degrees
|
|
/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
|
|
\param radians The radians value to convert to degrees.
|
|
*/
|
|
inline f64 radToDeg(f64 radians)
|
|
{
|
|
return RADTODEG64 * radians;
|
|
}
|
|
|
|
//! Utility function to convert a degrees value to radians
|
|
/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
|
|
\param degrees The degrees value to convert to radians.
|
|
*/
|
|
inline f32 degToRad(f32 degrees)
|
|
{
|
|
return DEGTORAD * degrees;
|
|
}
|
|
|
|
//! Utility function to convert a degrees value to radians
|
|
/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
|
|
\param degrees The degrees value to convert to radians.
|
|
*/
|
|
inline f64 degToRad(f64 degrees)
|
|
{
|
|
return DEGTORAD64 * degrees;
|
|
}
|
|
|
|
//! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)
|
|
template<class T>
|
|
inline const T& min_(const T& a, const T& b)
|
|
{
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
//! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)
|
|
template<class T>
|
|
inline const T& min_(const T& a, const T& b, const T& c)
|
|
{
|
|
return a < b ? min_(a, c) : min_(b, c);
|
|
}
|
|
|
|
//! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)
|
|
template<class T>
|
|
inline const T& max_(const T& a, const T& b)
|
|
{
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
//! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)
|
|
template<class T>
|
|
inline const T& max_(const T& a, const T& b, const T& c)
|
|
{
|
|
return a < b ? max_(b, c) : max_(a, c);
|
|
}
|
|
|
|
//! returns abs of two values. Own implementation to get rid of STL (VS6 problems)
|
|
template<class T>
|
|
inline T abs_(const T& a)
|
|
{
|
|
return a < (T)0 ? -a : a;
|
|
}
|
|
|
|
//! returns linear interpolation of a and b with ratio t
|
|
//! \return: a if t==0, b if t==1, and the linear interpolation else
|
|
template<class T>
|
|
inline T lerp(const T& a, const T& b, const f32 t)
|
|
{
|
|
return (T)(a*(1.f-t)) + (b*t);
|
|
}
|
|
|
|
//! clamps a value between low and high
|
|
template <class T>
|
|
inline const T clamp (const T& value, const T& low, const T& high)
|
|
{
|
|
return min_ (max_(value,low), high);
|
|
}
|
|
|
|
//! swaps the content of the passed parameters
|
|
// Note: We use the same trick as boost and use two template arguments to
|
|
// avoid ambiguity when swapping objects of an Irrlicht type that has not
|
|
// it's own swap overload. Otherwise we get conflicts with some compilers
|
|
// in combination with stl.
|
|
template <class T1, class T2>
|
|
inline void swap(T1& a, T2& b)
|
|
{
|
|
T1 c(a);
|
|
a = b;
|
|
b = c;
|
|
}
|
|
|
|
template <class T>
|
|
inline T roundingError();
|
|
|
|
template <>
|
|
inline f32 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_f32;
|
|
}
|
|
|
|
template <>
|
|
inline f64 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_f64;
|
|
}
|
|
|
|
template <>
|
|
inline s32 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_S32;
|
|
}
|
|
|
|
template <>
|
|
inline u32 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_S32;
|
|
}
|
|
|
|
#ifdef __IRR_HAS_S64
|
|
template <>
|
|
inline s64 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_S64;
|
|
}
|
|
|
|
template <>
|
|
inline u64 roundingError()
|
|
{
|
|
return ROUNDING_ERROR_S64;
|
|
}
|
|
#endif
|
|
|
|
template <class T>
|
|
inline T relativeErrorFactor()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
template <>
|
|
inline f32 relativeErrorFactor()
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
template <>
|
|
inline f64 relativeErrorFactor()
|
|
{
|
|
return 8;
|
|
}
|
|
|
|
//! returns if a equals b, taking possible rounding errors into account
|
|
template <class T>
|
|
inline bool equals(const T a, const T b, const T tolerance = roundingError<T>())
|
|
{
|
|
return (a + tolerance >= b) && (a - tolerance <= b);
|
|
}
|
|
|
|
|
|
//! returns if a equals b, taking relative error in form of factor
|
|
//! this particular function does not involve any division.
|
|
template <class T>
|
|
inline bool equalsRelative( const T a, const T b, const T factor = relativeErrorFactor<T>())
|
|
{
|
|
//https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
|
|
|
|
const T maxi = max_( a, b);
|
|
const T mini = min_( a, b);
|
|
const T maxMagnitude = max_( maxi, -mini);
|
|
|
|
return (maxMagnitude*factor + maxi) == (maxMagnitude*factor + mini); // MAD Wise
|
|
}
|
|
|
|
union FloatIntUnion32
|
|
{
|
|
FloatIntUnion32(float f1 = 0.0f) : f(f1) {}
|
|
// Portable sign-extraction
|
|
bool sign() const { return (i >> 31) != 0; }
|
|
|
|
irr::s32 i;
|
|
irr::f32 f;
|
|
};
|
|
|
|
//! We compare the difference in ULP's (spacing between floating-point numbers, aka ULP=1 means there exists no float between).
|
|
//\result true when numbers have a ULP <= maxUlpDiff AND have the same sign.
|
|
inline bool equalsByUlp(f32 a, f32 b, int maxUlpDiff)
|
|
{
|
|
// Based on the ideas and code from Bruce Dawson on
|
|
// http://www.altdevblogaday.com/2012/02/22/comparing-floating-point-numbers-2012-edition/
|
|
// When floats are interpreted as integers the two nearest possible float numbers differ just
|
|
// by one integer number. Also works the other way round, an integer of 1 interpreted as float
|
|
// is for example the smallest possible float number.
|
|
|
|
const FloatIntUnion32 fa(a);
|
|
const FloatIntUnion32 fb(b);
|
|
|
|
// Different signs, we could maybe get difference to 0, but so close to 0 using epsilons is better.
|
|
if ( fa.sign() != fb.sign() )
|
|
{
|
|
// Check for equality to make sure +0==-0
|
|
if (fa.i == fb.i)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Find the difference in ULPs.
|
|
const int ulpsDiff = abs_(fa.i- fb.i);
|
|
if (ulpsDiff <= maxUlpDiff)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//! returns if a equals zero, taking rounding errors into account
|
|
inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64)
|
|
{
|
|
return fabs(a) <= tolerance;
|
|
}
|
|
|
|
//! returns if a equals zero, taking rounding errors into account
|
|
inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
|
|
{
|
|
return fabsf(a) <= tolerance;
|
|
}
|
|
|
|
//! returns if a equals not zero, taking rounding errors into account
|
|
inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
|
|
{
|
|
return fabsf(a) > tolerance;
|
|
}
|
|
|
|
//! returns if a equals zero, taking rounding errors into account
|
|
inline bool iszero(const s32 a, const s32 tolerance = 0)
|
|
{
|
|
return ( a & 0x7ffffff ) <= tolerance;
|
|
}
|
|
|
|
//! returns if a equals zero, taking rounding errors into account
|
|
inline bool iszero(const u32 a, const u32 tolerance = 0)
|
|
{
|
|
return a <= tolerance;
|
|
}
|
|
|
|
#ifdef __IRR_HAS_S64
|
|
//! returns if a equals zero, taking rounding errors into account
|
|
inline bool iszero(const s64 a, const s64 tolerance = 0)
|
|
{
|
|
return abs_(a) <= tolerance;
|
|
}
|
|
#endif
|
|
|
|
inline s32 s32_min(s32 a, s32 b)
|
|
{
|
|
const s32 mask = (a - b) >> 31;
|
|
return (a & mask) | (b & ~mask);
|
|
}
|
|
|
|
inline s32 s32_max(s32 a, s32 b)
|
|
{
|
|
const s32 mask = (a - b) >> 31;
|
|
return (b & mask) | (a & ~mask);
|
|
}
|
|
|
|
inline s32 s32_clamp (s32 value, s32 low, s32 high)
|
|
{
|
|
return s32_min(s32_max(value,low), high);
|
|
}
|
|
|
|
/*
|
|
float IEEE-754 bit representation
|
|
|
|
0 0x00000000
|
|
1.0 0x3f800000
|
|
0.5 0x3f000000
|
|
3 0x40400000
|
|
+inf 0x7f800000
|
|
-inf 0xff800000
|
|
+NaN 0x7fc00000 or 0x7ff00000
|
|
in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
|
|
*/
|
|
|
|
typedef union { u32 u; s32 s; f32 f; } inttofloat;
|
|
|
|
#define F32_AS_S32(f) (*((s32 *) &(f)))
|
|
#define F32_AS_U32(f) (*((u32 *) &(f)))
|
|
#define F32_AS_U32_POINTER(f) ( ((u32 *) &(f)))
|
|
|
|
#define F32_VALUE_0 0x00000000
|
|
#define F32_VALUE_1 0x3f800000
|
|
#define F32_SIGN_BIT 0x80000000U
|
|
#define F32_EXPON_MANTISSA 0x7FFFFFFFU
|
|
|
|
//! code is taken from IceFPU
|
|
//! Integer representation of a floating-point value.
|
|
#ifdef IRRLICHT_FAST_MATH
|
|
#define IR(x) ((u32&)(x))
|
|
#else
|
|
inline u32 IR(f32 x) {inttofloat tmp; tmp.f=x; return tmp.u;}
|
|
#endif
|
|
|
|
//! Absolute integer representation of a floating-point value
|
|
#define AIR(x) (IR(x)&0x7fffffff)
|
|
|
|
//! Floating-point representation of an integer value.
|
|
#ifdef IRRLICHT_FAST_MATH
|
|
#define FR(x) ((f32&)(x))
|
|
#else
|
|
inline f32 FR(u32 x) {inttofloat tmp; tmp.u=x; return tmp.f;}
|
|
inline f32 FR(s32 x) {inttofloat tmp; tmp.s=x; return tmp.f;}
|
|
#endif
|
|
|
|
//! integer representation of 1.0
|
|
#define IEEE_1_0 0x3f800000
|
|
//! integer representation of 255.0
|
|
#define IEEE_255_0 0x437f0000
|
|
|
|
#ifdef IRRLICHT_FAST_MATH
|
|
#define F32_LOWER_0(f) (F32_AS_U32(f) > F32_SIGN_BIT)
|
|
#define F32_LOWER_EQUAL_0(f) (F32_AS_S32(f) <= F32_VALUE_0)
|
|
#define F32_GREATER_0(f) (F32_AS_S32(f) > F32_VALUE_0)
|
|
#define F32_GREATER_EQUAL_0(f) (F32_AS_U32(f) <= F32_SIGN_BIT)
|
|
#define F32_EQUAL_1(f) (F32_AS_U32(f) == F32_VALUE_1)
|
|
#define F32_EQUAL_0(f) ( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0)
|
|
|
|
// only same sign
|
|
#define F32_A_GREATER_B(a,b) (F32_AS_S32((a)) > F32_AS_S32((b)))
|
|
|
|
#else
|
|
|
|
#define F32_LOWER_0(n) ((n) < 0.0f)
|
|
#define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f)
|
|
#define F32_GREATER_0(n) ((n) > 0.0f)
|
|
#define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f)
|
|
#define F32_EQUAL_1(n) ((n) == 1.0f)
|
|
#define F32_EQUAL_0(n) ((n) == 0.0f)
|
|
#define F32_A_GREATER_B(a,b) ((a) > (b))
|
|
#endif
|
|
|
|
|
|
#ifndef REALINLINE
|
|
#ifdef _MSC_VER
|
|
#define REALINLINE __forceinline
|
|
#else
|
|
#define REALINLINE inline
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__BORLANDC__) || defined (__BCPLUSPLUS__)
|
|
|
|
// 8-bit bools in Borland builder
|
|
|
|
//! conditional set based on mask and arithmetic shift
|
|
REALINLINE u32 if_c_a_else_b ( const c8 condition, const u32 a, const u32 b )
|
|
{
|
|
return ( ( -condition >> 7 ) & ( a ^ b ) ) ^ b;
|
|
}
|
|
|
|
//! conditional set based on mask and arithmetic shift
|
|
REALINLINE u32 if_c_a_else_0 ( const c8 condition, const u32 a )
|
|
{
|
|
return ( -condition >> 31 ) & a;
|
|
}
|
|
#else
|
|
|
|
//! conditional set based on mask and arithmetic shift
|
|
REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b )
|
|
{
|
|
return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b;
|
|
}
|
|
|
|
//! conditional set based on mask and arithmetic shift
|
|
REALINLINE u16 if_c_a_else_b ( const s16 condition, const u16 a, const u16 b )
|
|
{
|
|
return ( ( -condition >> 15 ) & ( a ^ b ) ) ^ b;
|
|
}
|
|
|
|
//! conditional set based on mask and arithmetic shift
|
|
REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a )
|
|
{
|
|
return ( -condition >> 31 ) & a;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
if (condition) state |= m; else state &= ~m;
|
|
*/
|
|
REALINLINE void setbit_cond ( u32 &state, s32 condition, u32 mask )
|
|
{
|
|
// 0, or any positive to mask
|
|
//s32 conmask = -condition >> 31;
|
|
state ^= ( ( -condition >> 31 ) ^ state ) & mask;
|
|
}
|
|
|
|
// NOTE: This is not as exact as the c99/c++11 round function, especially at high numbers starting with 8388609
|
|
// (only low number which seems to go wrong is 0.49999997 which is rounded to 1)
|
|
// Also negative 0.5 is rounded up not down unlike with the standard function (p.E. input -0.5 will be 0 and not -1)
|
|
inline f32 round_( f32 x )
|
|
{
|
|
return floorf( x + 0.5f );
|
|
}
|
|
|
|
// calculate: sqrt ( x )
|
|
REALINLINE f32 squareroot(const f32 f)
|
|
{
|
|
return sqrtf(f);
|
|
}
|
|
|
|
// calculate: sqrt ( x )
|
|
REALINLINE f64 squareroot(const f64 f)
|
|
{
|
|
return sqrt(f);
|
|
}
|
|
|
|
// calculate: sqrt ( x )
|
|
REALINLINE s32 squareroot(const s32 f)
|
|
{
|
|
return static_cast<s32>(squareroot(static_cast<f32>(f)));
|
|
}
|
|
|
|
#ifdef __IRR_HAS_S64
|
|
// calculate: sqrt ( x )
|
|
REALINLINE s64 squareroot(const s64 f)
|
|
{
|
|
return static_cast<s64>(squareroot(static_cast<f64>(f)));
|
|
}
|
|
#endif
|
|
|
|
// calculate: 1 / sqrt ( x )
|
|
REALINLINE f64 reciprocal_squareroot(const f64 x)
|
|
{
|
|
return 1.0 / sqrt(x);
|
|
}
|
|
|
|
// calculate: 1 / sqrtf ( x )
|
|
REALINLINE f32 reciprocal_squareroot(const f32 f)
|
|
{
|
|
#if defined ( IRRLICHT_FAST_MATH )
|
|
// NOTE: Unlike comment below says I found inaccuracies already at 4'th significant bit.
|
|
// p.E: Input 1, expected 1, got 0.999755859
|
|
|
|
#if defined(_MSC_VER) && !defined(_WIN64)
|
|
// SSE reciprocal square root estimate, accurate to 12 significant
|
|
// bits of the mantissa
|
|
f32 recsqrt;
|
|
__asm rsqrtss xmm0, f // xmm0 = rsqrtss(f)
|
|
__asm movss recsqrt, xmm0 // return xmm0
|
|
return recsqrt;
|
|
|
|
/*
|
|
// comes from Nvidia
|
|
u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1;
|
|
f32 y = *(f32*)&tmp;
|
|
return y * (1.47f - 0.47f * x * y * y);
|
|
*/
|
|
#else
|
|
return 1.f / sqrtf(f);
|
|
#endif
|
|
#else // no fast math
|
|
return 1.f / sqrtf(f);
|
|
#endif
|
|
}
|
|
|
|
// calculate: 1 / sqrtf( x )
|
|
REALINLINE s32 reciprocal_squareroot(const s32 x)
|
|
{
|
|
return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x)));
|
|
}
|
|
|
|
// calculate: 1 / x
|
|
REALINLINE f32 reciprocal( const f32 f )
|
|
{
|
|
#if defined (IRRLICHT_FAST_MATH)
|
|
// NOTE: Unlike with 1.f / f the values very close to 0 return -nan instead of inf
|
|
|
|
// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
|
|
// bi ts of the mantissa
|
|
// One Newton-Raphson Iteration:
|
|
// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
|
|
#if defined(_MSC_VER) && !defined(_WIN64)
|
|
f32 rec;
|
|
__asm rcpss xmm0, f // xmm0 = rcpss(f)
|
|
__asm movss xmm1, f // xmm1 = f
|
|
__asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
|
|
__asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
|
|
__asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
|
|
__asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
|
|
// - f * rcpss(f) * rcpss(f)
|
|
__asm movss rec, xmm0 // return xmm0
|
|
return rec;
|
|
#else // no support yet for other compilers
|
|
return 1.f / f;
|
|
#endif
|
|
//! i do not divide through 0.. (fpu expection)
|
|
// instead set f to a high value to get a return value near zero..
|
|
// -1000000000000.f.. is use minus to stay negative..
|
|
// must test's here (plane.normal dot anything ) checks on <= 0.f
|
|
//u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5;
|
|
//return 1.f / FR ( x );
|
|
|
|
#else // no fast math
|
|
return 1.f / f;
|
|
#endif
|
|
}
|
|
|
|
// calculate: 1 / x
|
|
REALINLINE f64 reciprocal ( const f64 f )
|
|
{
|
|
return 1.0 / f;
|
|
}
|
|
|
|
|
|
// calculate: 1 / x, low precision allowed
|
|
REALINLINE f32 reciprocal_approxim ( const f32 f )
|
|
{
|
|
#if defined( IRRLICHT_FAST_MATH)
|
|
|
|
// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant
|
|
// bi ts of the mantissa
|
|
// One Newton-Raphson Iteration:
|
|
// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)
|
|
#if defined(_MSC_VER) && !defined(_WIN64)
|
|
f32 rec;
|
|
__asm rcpss xmm0, f // xmm0 = rcpss(f)
|
|
__asm movss xmm1, f // xmm1 = f
|
|
__asm mulss xmm1, xmm0 // xmm1 = f * rcpss(f)
|
|
__asm mulss xmm1, xmm0 // xmm2 = f * rcpss(f) * rcpss(f)
|
|
__asm addss xmm0, xmm0 // xmm0 = 2 * rcpss(f)
|
|
__asm subss xmm0, xmm1 // xmm0 = 2 * rcpss(f)
|
|
// - f * rcpss(f) * rcpss(f)
|
|
__asm movss rec, xmm0 // return xmm0
|
|
return rec;
|
|
#else // no support yet for other compilers
|
|
return 1.f / f;
|
|
#endif
|
|
|
|
/*
|
|
// SSE reciprocal estimate, accurate to 12 significant bits of
|
|
f32 rec;
|
|
__asm rcpss xmm0, f // xmm0 = rcpss(f)
|
|
__asm movss rec , xmm0 // return xmm0
|
|
return rec;
|
|
*/
|
|
/*
|
|
u32 x = 0x7F000000 - IR ( p );
|
|
const f32 r = FR ( x );
|
|
return r * (2.0f - p * r);
|
|
*/
|
|
#else // no fast math
|
|
return 1.f / f;
|
|
#endif
|
|
}
|
|
|
|
|
|
REALINLINE s32 floor32(f32 x)
|
|
{
|
|
return (s32) floorf ( x );
|
|
}
|
|
|
|
REALINLINE s32 ceil32 ( f32 x )
|
|
{
|
|
return (s32) ceilf ( x );
|
|
}
|
|
|
|
// NOTE: Please check round_ documentation about some inaccuracies in this compared to standard library round function.
|
|
REALINLINE s32 round32(f32 x)
|
|
{
|
|
return (s32) round_(x);
|
|
}
|
|
|
|
inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
|
|
{
|
|
return a > b ? (a > c ? a : c) : (b > c ? b : c);
|
|
}
|
|
|
|
inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
|
|
{
|
|
return a < b ? (a < c ? a : c) : (b < c ? b : c);
|
|
}
|
|
|
|
inline f32 fract ( f32 x )
|
|
{
|
|
return x - floorf ( x );
|
|
}
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#ifndef IRRLICHT_FAST_MATH
|
|
using irr::core::IR;
|
|
using irr::core::FR;
|
|
#endif
|
|
|
|
#endif
|