mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-26 16:01:32 +01:00
8310a3fbad
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6000 dfc29bdd-3216-0410-991c-e03cc46cb475
225 lines
5.7 KiB
C++
225 lines
5.7 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_DIMENSION2D_H_INCLUDED__
|
|
#define __IRR_DIMENSION2D_H_INCLUDED__
|
|
|
|
#include "irrTypes.h"
|
|
#include "irrMath.h" // for irr::core::equals()
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
template <class T>
|
|
class vector2d;
|
|
|
|
//! Specifies a 2 dimensional size.
|
|
template <class T>
|
|
class dimension2d
|
|
{
|
|
public:
|
|
//! Default constructor for empty dimension
|
|
dimension2d() : Width(0), Height(0) {}
|
|
//! Constructor with width and height
|
|
dimension2d(const T& width, const T& height)
|
|
: Width(width), Height(height) {}
|
|
|
|
dimension2d(const vector2d<T>& other); // Defined in vector2d.h
|
|
|
|
//! Use this constructor only where you are sure that the conversion is valid.
|
|
template <class U>
|
|
explicit dimension2d(const dimension2d<U>& other) :
|
|
Width((T)other.Width), Height((T)other.Height) { }
|
|
|
|
template <class U>
|
|
dimension2d<T>& operator=(const dimension2d<U>& other)
|
|
{
|
|
Width = (T) other.Width;
|
|
Height = (T) other.Height;
|
|
return *this;
|
|
}
|
|
|
|
|
|
//! Equality operator
|
|
bool operator==(const dimension2d<T>& other) const
|
|
{
|
|
return core::equals(Width, other.Width) &&
|
|
core::equals(Height, other.Height);
|
|
}
|
|
|
|
//! Inequality operator
|
|
bool operator!=(const dimension2d<T>& other) const
|
|
{
|
|
return ! (*this == other);
|
|
}
|
|
|
|
bool operator==(const vector2d<T>& other) const; // Defined in vector2d.h
|
|
|
|
bool operator!=(const vector2d<T>& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
//! Set to new values
|
|
dimension2d<T>& set(const T& width, const T& height)
|
|
{
|
|
Width = width;
|
|
Height = height;
|
|
return *this;
|
|
}
|
|
|
|
//! Divide width and height by scalar
|
|
dimension2d<T>& operator/=(const T& scale)
|
|
{
|
|
Width /= scale;
|
|
Height /= scale;
|
|
return *this;
|
|
}
|
|
|
|
//! Divide width and height by scalar
|
|
dimension2d<T> operator/(const T& scale) const
|
|
{
|
|
return dimension2d<T>(Width/scale, Height/scale);
|
|
}
|
|
|
|
//! Multiply width and height by scalar
|
|
dimension2d<T>& operator*=(const T& scale)
|
|
{
|
|
Width *= scale;
|
|
Height *= scale;
|
|
return *this;
|
|
}
|
|
|
|
//! Multiply width and height by scalar
|
|
dimension2d<T> operator*(const T& scale) const
|
|
{
|
|
return dimension2d<T>(Width*scale, Height*scale);
|
|
}
|
|
|
|
//! Add another dimension to this one.
|
|
dimension2d<T>& operator+=(const dimension2d<T>& other)
|
|
{
|
|
Width += other.Width;
|
|
Height += other.Height;
|
|
return *this;
|
|
}
|
|
|
|
//! Add two dimensions
|
|
dimension2d<T> operator+(const dimension2d<T>& other) const
|
|
{
|
|
return dimension2d<T>(Width+other.Width, Height+other.Height);
|
|
}
|
|
|
|
//! Subtract a dimension from this one
|
|
dimension2d<T>& operator-=(const dimension2d<T>& other)
|
|
{
|
|
Width -= other.Width;
|
|
Height -= other.Height;
|
|
return *this;
|
|
}
|
|
|
|
//! Subtract one dimension from another
|
|
dimension2d<T> operator-(const dimension2d<T>& other) const
|
|
{
|
|
return dimension2d<T>(Width-other.Width, Height-other.Height);
|
|
}
|
|
|
|
//! Get area
|
|
T getArea() const
|
|
{
|
|
return Width*Height;
|
|
}
|
|
|
|
//! Get the optimal size according to some properties
|
|
/** This is a function often used for texture dimension
|
|
calculations. The function returns the next larger or
|
|
smaller dimension which is a power-of-two dimension
|
|
(2^n,2^m) and/or square (Width=Height).
|
|
\param requirePowerOfTwo Forces the result to use only
|
|
powers of two as values.
|
|
\param requireSquare Makes width==height in the result
|
|
\param larger Choose whether the result is larger or
|
|
smaller than the current dimension. If one dimension
|
|
need not be changed it is kept with any value of larger.
|
|
\param maxValue Maximum texturesize. if value > 0 size is
|
|
clamped to maxValue
|
|
\return The optimal dimension under the given
|
|
constraints. */
|
|
dimension2d<T> getOptimalSize(
|
|
bool requirePowerOfTwo=true,
|
|
bool requireSquare=false,
|
|
bool larger=true,
|
|
u32 maxValue = 0) const
|
|
{
|
|
u32 i=1;
|
|
u32 j=1;
|
|
if (requirePowerOfTwo)
|
|
{
|
|
while (i<(u32)Width)
|
|
i<<=1;
|
|
if (!larger && i!=1 && i!=(u32)Width)
|
|
i>>=1;
|
|
while (j<(u32)Height)
|
|
j<<=1;
|
|
if (!larger && j!=1 && j!=(u32)Height)
|
|
j>>=1;
|
|
}
|
|
else
|
|
{
|
|
i=(u32)Width;
|
|
j=(u32)Height;
|
|
}
|
|
|
|
if (requireSquare)
|
|
{
|
|
if ((larger && (i>j)) || (!larger && (i<j)))
|
|
j=i;
|
|
else
|
|
i=j;
|
|
}
|
|
|
|
if ( maxValue > 0 && i > maxValue)
|
|
i = maxValue;
|
|
|
|
if ( maxValue > 0 && j > maxValue)
|
|
j = maxValue;
|
|
|
|
return dimension2d<T>((T)i,(T)j);
|
|
}
|
|
|
|
//! Get the interpolated dimension
|
|
/** \param other Other dimension to interpolate with.
|
|
\param d Value between 0.0f and 1.0f. d=0 returns other, d=1 returns this, values between interpolate.
|
|
\return Interpolated dimension. */
|
|
dimension2d<T> getInterpolated(const dimension2d<T>& other, f32 d) const
|
|
{
|
|
f32 inv = (1.0f - d);
|
|
return dimension2d<T>( (T)(other.Width*inv + Width*d), (T)(other.Height*inv + Height*d));
|
|
}
|
|
|
|
|
|
//! Width of the dimension.
|
|
T Width;
|
|
//! Height of the dimension.
|
|
T Height;
|
|
};
|
|
|
|
//! Typedef for an f32 dimension.
|
|
typedef dimension2d<f32> dimension2df;
|
|
//! Typedef for an unsigned integer dimension.
|
|
typedef dimension2d<u32> dimension2du;
|
|
|
|
//! Typedef for an integer dimension.
|
|
/** There are few cases where negative dimensions make sense. Please consider using
|
|
dimension2du instead. */
|
|
typedef dimension2d<s32> dimension2di;
|
|
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|