mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-13 16:57:33 +01:00
0c6385cb92
Usually something like __IRR_SOME_GUARD_INCLUDED__ replaced by IRR_SOME_GUARD_INCLUDED. Removing underscores at the end wasn't necessary, but more symmetric (probably the reason they got added there as well). While this touches every header it shouldn't affect users (I hope). Also a few whitespace changes to unify whitespace usage a bit. And a bunch of spelling fixes in comments. git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6252 dfc29bdd-3216-0410-991c-e03cc46cb475
1114 lines
23 KiB
C++
1114 lines
23 KiB
C++
// Copyright (C) 2006-2012 by Kat'Oun
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef IRR_MAP_H_INCLUDED
|
|
#define IRR_MAP_H_INCLUDED
|
|
|
|
#include "irrTypes.h"
|
|
#include "irrMath.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! map template for associative arrays using a red-black tree
|
|
template <class KeyType, class ValueType>
|
|
class map
|
|
{
|
|
//! red/black tree for map
|
|
template <class KeyTypeRB, class ValueTypeRB>
|
|
class RBTree
|
|
{
|
|
public:
|
|
|
|
RBTree(const KeyTypeRB& k, const ValueTypeRB& v)
|
|
: LeftChild(0), RightChild(0), Parent(0), Key(k),
|
|
Value(v), IsRed(true) {}
|
|
|
|
void setLeftChild(RBTree* p)
|
|
{
|
|
LeftChild=p;
|
|
if (p)
|
|
p->setParent(this);
|
|
}
|
|
|
|
void setRightChild(RBTree* p)
|
|
{
|
|
RightChild=p;
|
|
if (p)
|
|
p->setParent(this);
|
|
}
|
|
|
|
void setParent(RBTree* p) { Parent=p; }
|
|
|
|
void setValue(const ValueTypeRB& v) { Value = v; }
|
|
|
|
void setRed() { IsRed = true; }
|
|
void setBlack() { IsRed = false; }
|
|
|
|
RBTree* getLeftChild() const { return LeftChild; }
|
|
RBTree* getRightChild() const { return RightChild; }
|
|
RBTree* getParent() const { return Parent; }
|
|
|
|
const ValueTypeRB& getValue() const
|
|
{
|
|
return Value;
|
|
}
|
|
|
|
ValueTypeRB& getValue()
|
|
{
|
|
return Value;
|
|
}
|
|
|
|
const KeyTypeRB& getKey() const
|
|
{
|
|
return Key;
|
|
}
|
|
|
|
bool isRoot() const
|
|
{
|
|
return Parent==0;
|
|
}
|
|
|
|
bool isLeftChild() const
|
|
{
|
|
return (Parent != 0) && (Parent->getLeftChild()==this);
|
|
}
|
|
|
|
bool isRightChild() const
|
|
{
|
|
return (Parent!=0) && (Parent->getRightChild()==this);
|
|
}
|
|
|
|
bool isLeaf() const
|
|
{
|
|
return (LeftChild==0) && (RightChild==0);
|
|
}
|
|
|
|
unsigned int getLevel() const
|
|
{
|
|
if (isRoot())
|
|
return 1;
|
|
else
|
|
return getParent()->getLevel() + 1;
|
|
}
|
|
|
|
|
|
bool isRed() const
|
|
{
|
|
return IsRed;
|
|
}
|
|
|
|
bool isBlack() const
|
|
{
|
|
return !IsRed;
|
|
}
|
|
|
|
private:
|
|
RBTree();
|
|
|
|
RBTree* LeftChild;
|
|
RBTree* RightChild;
|
|
|
|
RBTree* Parent;
|
|
|
|
KeyTypeRB Key;
|
|
ValueTypeRB Value;
|
|
|
|
bool IsRed;
|
|
}; // RBTree
|
|
|
|
public:
|
|
|
|
typedef RBTree<KeyType,ValueType> Node;
|
|
// We need the forward declaration for the friend declaration
|
|
class ConstIterator;
|
|
|
|
//! Normal Iterator
|
|
class Iterator
|
|
{
|
|
friend class ConstIterator;
|
|
public:
|
|
|
|
Iterator() : Root(0), Cur(0) {}
|
|
|
|
// Constructor(Node*)
|
|
Iterator(Node* root) : Root(root)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Copy constructor
|
|
Iterator(const Iterator& src) : Root(src.Root), Cur(src.Cur) {}
|
|
|
|
void reset(bool atLowest=true)
|
|
{
|
|
if (atLowest)
|
|
Cur = getMin(Root);
|
|
else
|
|
Cur = getMax(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode() const
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
Iterator& operator=(const Iterator& src)
|
|
{
|
|
Root = src.Root;
|
|
Cur = src.Cur;
|
|
return (*this);
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
void operator--(int)
|
|
{
|
|
dec();
|
|
}
|
|
|
|
Node* operator->()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator*()
|
|
{
|
|
IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *Cur;
|
|
}
|
|
|
|
private:
|
|
|
|
Node* getMin(Node* n) const
|
|
{
|
|
while(n && n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
return n;
|
|
}
|
|
|
|
Node* getMax(Node* n) const
|
|
{
|
|
while(n && n->getRightChild())
|
|
n = n->getRightChild();
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getRightChild())
|
|
{
|
|
// If current node has a right child, the next higher node is the
|
|
// node with lowest key beneath the right child.
|
|
Cur = getMin(Cur->getRightChild());
|
|
}
|
|
else if (Cur->isLeftChild())
|
|
{
|
|
// No right child? Well if current node is a left child then
|
|
// the next higher node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is left child nor has a right child.
|
|
// I.e. it is either right child or root
|
|
// The next higher node is the parent of the first non-right
|
|
// child (i.e. either a left child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
while(Cur->isRightChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
void dec()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getLeftChild())
|
|
{
|
|
// If current node has a left child, the next lower node is the
|
|
// node with highest key beneath the left child.
|
|
Cur = getMax(Cur->getLeftChild());
|
|
}
|
|
else if (Cur->isRightChild())
|
|
{
|
|
// No left child? Well if current node is a right child then
|
|
// the next lower node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is right child nor has a left child.
|
|
// It is either left child or root
|
|
// The next higher node is the parent of the first non-left
|
|
// child (i.e. either a right child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
|
|
while(Cur->isLeftChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
}; // Iterator
|
|
|
|
//! Const Iterator
|
|
class ConstIterator
|
|
{
|
|
friend class Iterator;
|
|
public:
|
|
|
|
ConstIterator() : Root(0), Cur(0) {}
|
|
|
|
// Constructor(Node*)
|
|
ConstIterator(const Node* root) : Root(root)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Copy constructor
|
|
ConstIterator(const ConstIterator& src) : Root(src.Root), Cur(src.Cur) {}
|
|
ConstIterator(const Iterator& src) : Root(src.Root), Cur(src.Cur) {}
|
|
|
|
void reset(bool atLowest=true)
|
|
{
|
|
if (atLowest)
|
|
Cur = getMin(Root);
|
|
else
|
|
Cur = getMax(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
const Node* getNode() const
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
ConstIterator& operator=(const ConstIterator& src)
|
|
{
|
|
Root = src.Root;
|
|
Cur = src.Cur;
|
|
return (*this);
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
void operator--(int)
|
|
{
|
|
dec();
|
|
}
|
|
|
|
const Node* operator->()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
const Node& operator*()
|
|
{
|
|
IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *Cur;
|
|
}
|
|
|
|
private:
|
|
|
|
const Node* getMin(const Node* n) const
|
|
{
|
|
while(n && n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
return n;
|
|
}
|
|
|
|
const Node* getMax(const Node* n) const
|
|
{
|
|
while(n && n->getRightChild())
|
|
n = n->getRightChild();
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getRightChild())
|
|
{
|
|
// If current node has a right child, the next higher node is the
|
|
// node with lowest key beneath the right child.
|
|
Cur = getMin(Cur->getRightChild());
|
|
}
|
|
else if (Cur->isLeftChild())
|
|
{
|
|
// No right child? Well if current node is a left child then
|
|
// the next higher node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is left child nor has a right child.
|
|
// It is either right child or root
|
|
// The next higher node is the parent of the first non-right
|
|
// child (i.e. either a left child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
while(Cur->isRightChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
void dec()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getLeftChild())
|
|
{
|
|
// If current node has a left child, the next lower node is the
|
|
// node with highest key beneath the left child.
|
|
Cur = getMax(Cur->getLeftChild());
|
|
}
|
|
else if (Cur->isRightChild())
|
|
{
|
|
// No left child? Well if current node is a right child then
|
|
// the next lower node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is right child nor has a left child.
|
|
// It is either left child or root
|
|
// The next higher node is the parent of the first non-left
|
|
// child (i.e. either a right child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
|
|
while(Cur->isLeftChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
const Node* Root;
|
|
const Node* Cur;
|
|
}; // ConstIterator
|
|
|
|
|
|
//! Parent First Iterator.
|
|
/** Traverses the tree from top to bottom. Typical usage is
|
|
when storing the tree structure, because when reading it
|
|
later (and inserting elements) the tree structure will
|
|
be the same. */
|
|
class ParentFirstIterator
|
|
{
|
|
public:
|
|
|
|
ParentFirstIterator() : Root(0), Cur(0) {}
|
|
|
|
explicit ParentFirstIterator(Node* root) : Root(root), Cur(0)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
Cur = Root;
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode()
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
ParentFirstIterator& operator=(const ParentFirstIterator& src)
|
|
{
|
|
Root = src.Root;
|
|
Cur = src.Cur;
|
|
return (*this);
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
Node* operator -> ()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator* ()
|
|
{
|
|
IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *getNode();
|
|
}
|
|
|
|
private:
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
// First we try down to the left
|
|
if (Cur->getLeftChild())
|
|
{
|
|
Cur = Cur->getLeftChild();
|
|
}
|
|
else if (Cur->getRightChild())
|
|
{
|
|
// No left child? The we go down to the right.
|
|
Cur = Cur->getRightChild();
|
|
}
|
|
else
|
|
{
|
|
// No children? Move up in the hierarchy until
|
|
// we either reach 0 (and are finished) or
|
|
// find a right uncle.
|
|
while (Cur!=0)
|
|
{
|
|
// But if parent is left child and has a right "uncle" the parent
|
|
// has already been processed but the uncle hasn't. Move to
|
|
// the uncle.
|
|
if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
|
|
{
|
|
Cur = Cur->getParent()->getRightChild();
|
|
return;
|
|
}
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
|
|
}; // ParentFirstIterator
|
|
|
|
|
|
//! Parent Last Iterator
|
|
/** Traverse the tree from bottom to top.
|
|
Typical usage is when deleting all elements in the tree
|
|
because you must delete the children before you delete
|
|
their parent. */
|
|
class ParentLastIterator
|
|
{
|
|
public:
|
|
|
|
ParentLastIterator() : Root(0), Cur(0) {}
|
|
|
|
explicit ParentLastIterator(Node* root) : Root(root), Cur(0)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
Cur = getMin(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode()
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
ParentLastIterator& operator=(const ParentLastIterator& src)
|
|
{
|
|
Root = src.Root;
|
|
Cur = src.Cur;
|
|
return (*this);
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
Node* operator -> ()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator* ()
|
|
{
|
|
IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *getNode();
|
|
}
|
|
private:
|
|
|
|
Node* getMin(Node* n)
|
|
{
|
|
while(n!=0 && (n->getLeftChild()!=0 || n->getRightChild()!=0))
|
|
{
|
|
if (n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
else
|
|
n = n->getRightChild();
|
|
}
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
// Note: Starting point is the node as far down to the left as possible.
|
|
|
|
// If current node has an uncle to the right, go to the
|
|
// node as far down to the left from the uncle as possible
|
|
// else just go up a level to the parent.
|
|
if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
|
|
{
|
|
Cur = getMin(Cur->getParent()->getRightChild());
|
|
}
|
|
else
|
|
Cur = Cur->getParent();
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
}; // ParentLastIterator
|
|
|
|
|
|
// AccessClass is a temporary class used with the [] operator.
|
|
// It makes it possible to have different behavior in situations like:
|
|
// myTree["Foo"] = 32;
|
|
// If "Foo" already exists update its value else insert a new element.
|
|
// int i = myTree["Foo"]
|
|
// If "Foo" exists return its value.
|
|
class AccessClass
|
|
{
|
|
// Let map be the only one who can instantiate this class.
|
|
friend class map<KeyType, ValueType>;
|
|
|
|
public:
|
|
|
|
// Assignment operator. Handles the myTree["Foo"] = 32; situation
|
|
void operator=(const ValueType& value)
|
|
{
|
|
// Just use the Set method, it handles already exist/not exist situation
|
|
Tree.set(Key,value);
|
|
}
|
|
|
|
// ValueType operator
|
|
operator ValueType()
|
|
{
|
|
Node* node = Tree.find(Key);
|
|
|
|
// Not found
|
|
IRR_DEBUG_BREAK_IF(node==0) // access violation
|
|
|
|
return node->getValue();
|
|
}
|
|
|
|
private:
|
|
|
|
AccessClass(map& tree, const KeyType& key) : Tree(tree), Key(key) {}
|
|
|
|
AccessClass();
|
|
|
|
map& Tree;
|
|
const KeyType& Key;
|
|
}; // AccessClass
|
|
|
|
|
|
// Constructor.
|
|
map() : Root(0), Size(0) {}
|
|
|
|
// Destructor
|
|
~map()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
// typedefs
|
|
typedef KeyType key_type;
|
|
typedef ValueType value_type;
|
|
typedef u32 size_type;
|
|
|
|
//------------------------------
|
|
// Public Commands
|
|
//------------------------------
|
|
|
|
//! Inserts a new node into the tree
|
|
/** \param keyNew: the index for this value
|
|
\param v: the value to insert
|
|
\return True if successful, false if it fails (already exists) */
|
|
bool insert(const KeyType& keyNew, const ValueType& v)
|
|
{
|
|
// First insert node the "usual" way (no fancy balance logic yet)
|
|
Node* newNode = new Node(keyNew,v);
|
|
if (!insert(newNode))
|
|
{
|
|
delete newNode;
|
|
return false;
|
|
}
|
|
|
|
// Then attend a balancing party
|
|
while (!newNode->isRoot() && (newNode->getParent()->isRed()))
|
|
{
|
|
if (newNode->getParent()->isLeftChild())
|
|
{
|
|
// If newNode is a left child, get its right 'uncle'
|
|
Node* newNodesUncle = newNode->getParent()->getParent()->getRightChild();
|
|
if ( newNodesUncle!=0 && newNodesUncle->isRed())
|
|
{
|
|
// case 1 - change the colors
|
|
newNode->getParent()->setBlack();
|
|
newNodesUncle->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
// Move newNode up the tree
|
|
newNode = newNode->getParent()->getParent();
|
|
}
|
|
else
|
|
{
|
|
// newNodesUncle is a black node
|
|
if ( newNode->isRightChild())
|
|
{
|
|
// and newNode is to the right
|
|
// case 2 - move newNode up and rotate
|
|
newNode = newNode->getParent();
|
|
rotateLeft(newNode);
|
|
}
|
|
// case 3
|
|
newNode->getParent()->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
rotateRight(newNode->getParent()->getParent());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If newNode is a right child, get its left 'uncle'
|
|
Node* newNodesUncle = newNode->getParent()->getParent()->getLeftChild();
|
|
if ( newNodesUncle!=0 && newNodesUncle->isRed())
|
|
{
|
|
// case 1 - change the colors
|
|
newNode->getParent()->setBlack();
|
|
newNodesUncle->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
// Move newNode up the tree
|
|
newNode = newNode->getParent()->getParent();
|
|
}
|
|
else
|
|
{
|
|
// newNodesUncle is a black node
|
|
if (newNode->isLeftChild())
|
|
{
|
|
// and newNode is to the left
|
|
// case 2 - move newNode up and rotate
|
|
newNode = newNode->getParent();
|
|
rotateRight(newNode);
|
|
}
|
|
// case 3
|
|
newNode->getParent()->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
rotateLeft(newNode->getParent()->getParent());
|
|
}
|
|
|
|
}
|
|
}
|
|
// Color the root black
|
|
Root->setBlack();
|
|
return true;
|
|
}
|
|
|
|
//! Replaces the value if the key already exists, otherwise inserts a new element.
|
|
/** \param k The index for this value
|
|
\param v The new value of */
|
|
void set(const KeyType& k, const ValueType& v)
|
|
{
|
|
Node* p = find(k);
|
|
if (p)
|
|
p->setValue(v);
|
|
else
|
|
insert(k,v);
|
|
}
|
|
|
|
//! Removes a node from the tree and returns it.
|
|
/** The returned node must be deleted by the user
|
|
\param k the key to remove
|
|
\return A pointer to the node, or 0 if not found */
|
|
Node* delink(const KeyType& k)
|
|
{
|
|
Node* p = find(k);
|
|
if (p == 0)
|
|
return 0;
|
|
|
|
// Rotate p down to the left until it has no right child, will get there
|
|
// sooner or later.
|
|
while(p->getRightChild())
|
|
{
|
|
// "Pull up my right child and let it knock me down to the left"
|
|
rotateLeft(p);
|
|
}
|
|
// p now has no right child but might have a left child
|
|
Node* left = p->getLeftChild();
|
|
|
|
// Let p's parent point to p's child instead of point to p
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
|
|
else
|
|
{
|
|
// p has no parent => p is the root.
|
|
// Let the left child be the new root.
|
|
setRoot(left);
|
|
}
|
|
|
|
// p is now gone from the tree in the sense that
|
|
// no one is pointing at it, so return it.
|
|
|
|
--Size;
|
|
return p;
|
|
}
|
|
|
|
//! Removes a node from the tree and deletes it.
|
|
/** \return True if the node was found and deleted */
|
|
bool remove(const KeyType& k)
|
|
{
|
|
Node* p = find(k);
|
|
return remove(p);
|
|
}
|
|
|
|
//! Removes a node from the tree and deletes it.
|
|
/** \return True if the node was found and deleted */
|
|
bool remove(Node* p)
|
|
{
|
|
if (p == 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Rotate p down to the left until it has no right child, will get there
|
|
// sooner or later.
|
|
while(p->getRightChild())
|
|
{
|
|
// "Pull up my right child and let it knock me down to the left"
|
|
rotateLeft(p);
|
|
}
|
|
// p now has no right child but might have a left child
|
|
Node* left = p->getLeftChild();
|
|
|
|
// Let p's parent point to p's child instead of point to p
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
|
|
else
|
|
{
|
|
// p has no parent => p is the root.
|
|
// Let the left child be the new root.
|
|
setRoot(left);
|
|
}
|
|
|
|
// p is now gone from the tree in the sense that
|
|
// no one is pointing at it. Let's get rid of it.
|
|
delete p;
|
|
|
|
--Size;
|
|
return true;
|
|
}
|
|
|
|
//! Clear the entire tree
|
|
void clear()
|
|
{
|
|
ParentLastIterator i(getParentLastIterator());
|
|
|
|
while(!i.atEnd())
|
|
{
|
|
Node* p = i.getNode();
|
|
i++; // Increment it before it is deleted
|
|
// else iterator will get quite confused.
|
|
delete p;
|
|
}
|
|
Root = 0;
|
|
Size= 0;
|
|
}
|
|
|
|
//! Is the tree empty?
|
|
//! \return Returns true if empty, false if not
|
|
bool empty() const
|
|
{
|
|
return Root == 0;
|
|
}
|
|
|
|
//! \deprecated Use empty() instead. This method may be removed by Irrlicht 1.9
|
|
IRR_DEPRECATED bool isEmpty() const
|
|
{
|
|
return empty();
|
|
}
|
|
|
|
//! Search for a node with the specified key.
|
|
//! \param keyToFind: The key to find
|
|
//! \return Returns 0 if node couldn't be found.
|
|
Node* find(const KeyType& keyToFind) const
|
|
{
|
|
Node* pNode = Root;
|
|
|
|
while(pNode!=0)
|
|
{
|
|
const KeyType& key=pNode->getKey();
|
|
|
|
if (keyToFind == key)
|
|
return pNode;
|
|
else if (keyToFind < key)
|
|
pNode = pNode->getLeftChild();
|
|
else //keyToFind > key
|
|
pNode = pNode->getRightChild();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//! Gets the root element.
|
|
//! \return Returns a pointer to the root node, or
|
|
//! 0 if the tree is empty.
|
|
Node* getRoot() const
|
|
{
|
|
return Root;
|
|
}
|
|
|
|
//! Returns the number of nodes in the tree.
|
|
u32 size() const
|
|
{
|
|
return Size;
|
|
}
|
|
|
|
//! Swap the content of this map container with the content of another map
|
|
/** Afterwards this object will contain the content of the other object and the other
|
|
object will contain the content of this object. Iterators will afterwards be valid for
|
|
the swapped object.
|
|
\param other Swap content with this object */
|
|
void swap(map<KeyType, ValueType>& other)
|
|
{
|
|
core::swap(Root, other.Root);
|
|
core::swap(Size, other.Size);
|
|
}
|
|
|
|
//------------------------------
|
|
// Public Iterators
|
|
//------------------------------
|
|
|
|
//! Returns an iterator
|
|
Iterator getIterator() const
|
|
{
|
|
Iterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a Constiterator
|
|
ConstIterator getConstIterator() const
|
|
{
|
|
Iterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a ParentFirstIterator.
|
|
//! Traverses the tree from top to bottom. Typical usage is
|
|
//! when storing the tree structure, because when reading it
|
|
//! later (and inserting elements) the tree structure will
|
|
//! be the same.
|
|
ParentFirstIterator getParentFirstIterator() const
|
|
{
|
|
ParentFirstIterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a ParentLastIterator to traverse the tree from
|
|
//! bottom to top.
|
|
//! Typical usage is when deleting all elements in the tree
|
|
//! because you must delete the children before you delete
|
|
//! their parent.
|
|
ParentLastIterator getParentLastIterator() const
|
|
{
|
|
ParentLastIterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//------------------------------
|
|
// Public Operators
|
|
//------------------------------
|
|
|
|
//! operator [] for access to elements
|
|
/** for example myMap["key"] */
|
|
AccessClass operator[](const KeyType& k)
|
|
{
|
|
return AccessClass(*this, k);
|
|
}
|
|
private:
|
|
|
|
//------------------------------
|
|
// Disabled methods
|
|
//------------------------------
|
|
// Copy constructor and assignment operator deliberately
|
|
// defined but not implemented. The tree should never be
|
|
// copied, pass along references to it instead.
|
|
explicit map(const map& src);
|
|
map& operator = (const map& src);
|
|
|
|
//! Set node as new root.
|
|
/** The node will be set to black, otherwise core dumps may arise
|
|
(patch provided by rogerborg).
|
|
\param newRoot Node which will be the new root
|
|
*/
|
|
void setRoot(Node* newRoot)
|
|
{
|
|
Root = newRoot;
|
|
if (Root != 0)
|
|
{
|
|
Root->setParent(0);
|
|
Root->setBlack();
|
|
}
|
|
}
|
|
|
|
//! Insert a node into the tree without using any fancy balancing logic.
|
|
/** \return false if that key already exist in the tree. */
|
|
bool insert(Node* newNode)
|
|
{
|
|
bool result=true; // Assume success
|
|
|
|
if (Root==0)
|
|
{
|
|
setRoot(newNode);
|
|
Size = 1;
|
|
}
|
|
else
|
|
{
|
|
Node* pNode = Root;
|
|
const KeyType& keyNew = newNode->getKey();
|
|
while (pNode)
|
|
{
|
|
const KeyType& key=pNode->getKey();
|
|
|
|
if (keyNew == key)
|
|
{
|
|
result = false;
|
|
pNode = 0;
|
|
}
|
|
else if (keyNew < key)
|
|
{
|
|
if (pNode->getLeftChild() == 0)
|
|
{
|
|
pNode->setLeftChild(newNode);
|
|
pNode = 0;
|
|
}
|
|
else
|
|
pNode = pNode->getLeftChild();
|
|
}
|
|
else // keyNew > key
|
|
{
|
|
if (pNode->getRightChild()==0)
|
|
{
|
|
pNode->setRightChild(newNode);
|
|
pNode = 0;
|
|
}
|
|
else
|
|
{
|
|
pNode = pNode->getRightChild();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
++Size;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//! Rotate left.
|
|
//! Pull up node's right child and let it knock node down to the left
|
|
void rotateLeft(Node* p)
|
|
{
|
|
Node* right = p->getRightChild();
|
|
|
|
p->setRightChild(right->getLeftChild());
|
|
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(right);
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(right);
|
|
else
|
|
setRoot(right);
|
|
|
|
right->setLeftChild(p);
|
|
}
|
|
|
|
//! Rotate right.
|
|
//! Pull up node's left child and let it knock node down to the right
|
|
void rotateRight(Node* p)
|
|
{
|
|
Node* left = p->getLeftChild();
|
|
|
|
p->setLeftChild(left->getRightChild());
|
|
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
else
|
|
setRoot(left);
|
|
|
|
left->setRightChild(p);
|
|
}
|
|
|
|
//------------------------------
|
|
// Private Members
|
|
//------------------------------
|
|
Node* Root; // The top node. 0 if empty.
|
|
u32 Size; // Number of nodes in the tree
|
|
};
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif // IRR_MAP_H_INCLUDED
|