irrlicht/source/Irrlicht/COGLESDriver.cpp
Desour adc96072cd Fix ugly formatted arrays
Found via: `rg --multiline "=\n\t*\{\n"`
2024-03-21 22:08:26 +01:00

2404 lines
75 KiB
C++

// Copyright (C) 2002-2008 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "COGLESDriver.h"
#include <cassert>
#include "CNullDriver.h"
#include "IContextManager.h"
#ifdef _IRR_COMPILE_WITH_OGLES1_
#include "COpenGLCoreTexture.h"
#include "COpenGLCoreRenderTarget.h"
#include "COpenGLCoreCacheHandler.h"
#include "COGLESMaterialRenderer.h"
#include "EVertexAttributes.h"
#include "CImage.h"
#include "os.h"
#ifdef _IRR_COMPILE_WITH_ANDROID_DEVICE_
#include "android_native_app_glue.h"
#endif
namespace irr
{
namespace video
{
COGLES1Driver::COGLES1Driver(const SIrrlichtCreationParameters &params, io::IFileSystem *io, IContextManager *contextManager) :
CNullDriver(io, params.WindowSize), COGLES1ExtensionHandler(), CacheHandler(0), CurrentRenderMode(ERM_NONE),
ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias),
ColorFormat(ECF_R8G8B8), Params(params), ContextManager(contextManager)
{
#ifdef _DEBUG
setDebugName("COGLESDriver");
#endif
core::dimension2d<u32> windowSize(0, 0);
if (!ContextManager)
return;
ContextManager->grab();
ContextManager->generateSurface();
ContextManager->generateContext();
ExposedData = ContextManager->getContext();
ContextManager->activateContext(ExposedData, false);
windowSize = params.WindowSize;
genericDriverInit(windowSize, params.Stencilbuffer);
}
COGLES1Driver::~COGLES1Driver()
{
deleteMaterialRenders();
CacheHandler->getTextureCache().clear();
removeAllRenderTargets();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
delete CacheHandler;
if (ContextManager) {
ContextManager->destroyContext();
ContextManager->destroySurface();
ContextManager->terminate();
ContextManager->drop();
}
}
// -----------------------------------------------------------------------
// METHODS
// -----------------------------------------------------------------------
bool COGLES1Driver::genericDriverInit(const core::dimension2d<u32> &screenSize, bool stencilBuffer)
{
Name = glGetString(GL_VERSION);
printVersion();
// print renderer information
VendorName = glGetString(GL_VENDOR);
os::Printer::log(VendorName.c_str(), ELL_INFORMATION);
// load extensions
initExtensions();
// reset cache handler
delete CacheHandler;
CacheHandler = new COGLES1CacheHandler(this);
StencilBuffer = stencilBuffer;
DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy);
DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices);
DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize);
DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias);
DriverAttributes->setAttribute("Version", Version);
DriverAttributes->setAttribute("AntiAlias", AntiAlias);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
UserClipPlane.reallocate(MaxUserClipPlanes);
UserClipPlaneEnabled.resize(MaxUserClipPlanes);
for (s32 i = 0; i < MaxUserClipPlanes; ++i) {
UserClipPlane.push_back(core::plane3df());
UserClipPlaneEnabled[i] = false;
}
for (s32 i = 0; i < ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f));
glClearDepthf(1.0f);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
glHint(GL_GENERATE_MIPMAP_HINT, GL_FASTEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
glAlphaFunc(GL_GREATER, 0.f);
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
testGLError(__LINE__);
return true;
}
void COGLES1Driver::createMaterialRenderers()
{
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_SOLID(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this));
addAndDropMaterialRenderer(new COGLES1MaterialRenderer_ONETEXTURE_BLEND(this));
}
bool COGLES1Driver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData &videoData, core::rect<s32> *sourceRect)
{
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
if (ContextManager)
ContextManager->activateContext(videoData, true);
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
bool COGLES1Driver::endScene()
{
CNullDriver::endScene();
glFlush();
if (ContextManager)
return ContextManager->swapBuffers();
return false;
}
//! Returns the transformation set by setTransform
const core::matrix4 &COGLES1Driver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COGLES1Driver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4 &mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
switch (state) {
case ETS_VIEW:
case ETS_WORLD: {
// OGLES1 only has a model matrix, view and world is not existent. so lets fake these two.
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
// we have to update the clip planes to the latest view matrix
for (u32 i = 0; i < MaxUserClipPlanes; ++i)
if (UserClipPlaneEnabled[i])
uploadClipPlane(i);
} break;
case ETS_PROJECTION: {
GLfloat glmat[16];
getGLMatrix(glmat, mat);
// flip z to compensate OGLES1s right-hand coordinate system
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
} break;
default:
break;
}
}
bool COGLES1Driver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer;
const void *vertices = mb->getVertices();
const u32 vertexCount = mb->getVertexCount();
const E_VERTEX_TYPE vType = mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
// buffer vertex data, and convert colours...
core::array<c8> buffer(vertexSize * vertexCount);
buffer.set_used(vertexSize * vertexCount);
memcpy(buffer.pointer(), vertices, vertexSize * vertexCount);
// in order to convert the colors into opengl format (RGBA)
switch (vType) {
case EVT_STANDARD: {
S3DVertex *pb = reinterpret_cast<S3DVertex *>(buffer.pointer());
const S3DVertex *po = static_cast<const S3DVertex *>(vertices);
for (u32 i = 0; i < vertexCount; i++) {
po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color));
}
} break;
case EVT_2TCOORDS: {
S3DVertex2TCoords *pb = reinterpret_cast<S3DVertex2TCoords *>(buffer.pointer());
const S3DVertex2TCoords *po = static_cast<const S3DVertex2TCoords *>(vertices);
for (u32 i = 0; i < vertexCount; i++) {
po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color));
}
} break;
case EVT_TANGENTS: {
S3DVertexTangents *pb = reinterpret_cast<S3DVertexTangents *>(buffer.pointer());
const S3DVertexTangents *po = static_cast<const S3DVertexTangents *>(vertices);
for (u32 i = 0; i < vertexCount; i++) {
po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color.color));
}
} break;
default: {
return false;
}
}
// get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_verticesID) {
glGenBuffers(1, &HWBuffer->vbo_verticesID);
if (!HWBuffer->vbo_verticesID)
return false;
newBuffer = true;
} else if (HWBuffer->vbo_verticesSize < vertexCount * vertexSize) {
newBuffer = true;
}
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer());
else {
HWBuffer->vbo_verticesSize = vertexCount * vertexSize;
if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC)
glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW);
else
glBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
bool COGLES1Driver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer;
const void *indices = mb->getIndices();
u32 indexCount = mb->getIndexCount();
GLenum indexSize;
switch (mb->getIndexType()) {
case (EIT_16BIT): {
indexSize = sizeof(u16);
break;
}
case (EIT_32BIT): {
indexSize = sizeof(u32);
break;
}
default: {
return false;
}
}
// get or create buffer
bool newBuffer = false;
if (!HWBuffer->vbo_indicesID) {
glGenBuffers(1, &HWBuffer->vbo_indicesID);
if (!HWBuffer->vbo_indicesID)
return false;
newBuffer = true;
} else if (HWBuffer->vbo_indicesSize < indexCount * indexSize) {
newBuffer = true;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
// copy data to graphics card
if (!newBuffer)
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
else {
HWBuffer->vbo_indicesSize = indexCount * indexSize;
if (HWBuffer->Mapped_Index == scene::EHM_STATIC)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW);
else
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return (!testGLError(__LINE__));
}
//! updates hardware buffer if needed
bool COGLES1Driver::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) {
if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !static_cast<SHWBufferLink_opengl *>(HWBuffer)->vbo_verticesID) {
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer(static_cast<SHWBufferLink_opengl *>(HWBuffer)))
return false;
}
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER) {
if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl *)HWBuffer)->vbo_indicesID) {
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer(static_cast<SHWBufferLink_opengl *>(HWBuffer)))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
COGLES1Driver::SHWBufferLink *COGLES1Driver::createHardwareBuffer(const scene::IMeshBuffer *mb)
{
if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb);
// add to map
HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer);
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex();
HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index();
HWBuffer->vbo_verticesID = 0;
HWBuffer->vbo_indicesID = 0;
HWBuffer->vbo_verticesSize = 0;
HWBuffer->vbo_indicesSize = 0;
if (!updateHardwareBuffer(HWBuffer)) {
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
void COGLES1Driver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl *>(_HWBuffer);
if (HWBuffer->vbo_verticesID) {
glDeleteBuffers(1, &HWBuffer->vbo_verticesID);
HWBuffer->vbo_verticesID = 0;
}
if (HWBuffer->vbo_indicesID) {
glDeleteBuffers(1, &HWBuffer->vbo_indicesID);
HWBuffer->vbo_indicesID = 0;
}
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COGLES1Driver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
SHWBufferLink_opengl *HWBuffer = static_cast<SHWBufferLink_opengl *>(_HWBuffer);
updateHardwareBuffer(HWBuffer); // check if update is needed
const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer;
const void *vertices = mb->getVertices();
const void *indexList = mb->getIndices();
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) {
glBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
vertices = 0;
}
if (HWBuffer->Mapped_Index != scene::EHM_NEVER) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
indexList = 0;
}
drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList,
mb->getPrimitiveCount(), mb->getVertexType(),
mb->getPrimitiveType(), mb->getIndexType());
if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER)
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (HWBuffer->Mapped_Index != scene::EHM_NEVER)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
IRenderTarget *COGLES1Driver::addRenderTarget()
{
COGLES1RenderTarget *renderTarget = new COGLES1RenderTarget(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
// small helper function to create vertex buffer object adress offsets
static inline u8 *buffer_offset(const long offset)
{
return ((u8 *)0 + offset);
}
//! draws a vertex primitive list
void COGLES1Driver::drawVertexPrimitiveList(const void *vertices, u32 vertexCount,
const void *indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!checkPrimitiveCount(primitiveCount))
return;
setRenderStates3DMode();
drawVertexPrimitiveList2d3d(vertices, vertexCount, (const u16 *)indexList, primitiveCount, vType, pType, iType);
}
void COGLES1Driver::drawVertexPrimitiveList2d3d(const void *vertices, u32 vertexCount,
const void *indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType, bool threed)
{
if (!primitiveCount || !vertexCount)
return;
if (!threed && !checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (vertices) {
// convert colors to gl color format.
vertexCount *= 4; // reused as color component count
ColorBuffer.set_used(vertexCount);
u32 i;
switch (vType) {
case EVT_STANDARD: {
const S3DVertex *p = static_cast<const S3DVertex *>(vertices);
for (i = 0; i < vertexCount; i += 4) {
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
} break;
case EVT_2TCOORDS: {
const S3DVertex2TCoords *p = static_cast<const S3DVertex2TCoords *>(vertices);
for (i = 0; i < vertexCount; i += 4) {
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
} break;
case EVT_TANGENTS: {
const S3DVertexTangents *p = static_cast<const S3DVertexTangents *>(vertices);
for (i = 0; i < vertexCount; i += 4) {
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
} break;
}
}
// draw everything
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
if ((pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
#ifdef GL_OES_point_size_array
else if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness == 0.0f))
glEnableClientState(GL_POINT_SIZE_ARRAY_OES);
#endif
if (threed && (pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES))
glEnableClientState(GL_NORMAL_ARRAY);
if (vertices)
glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]);
switch (vType) {
case EVT_STANDARD:
if (vertices) {
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex *>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex *>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex *>(vertices))[0].Pos);
} else {
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0);
}
if (Feature.MaxTextureUnits > 0 && CacheHandler->getTextureCache().get(1)) {
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex *>(vertices))[0].TCoords);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
if (vertices) {
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords *>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords *>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords *>(vertices))[0].Pos);
} else {
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0));
}
if (Feature.MaxTextureUnits > 0) {
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords *>(vertices))[0].TCoords2);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
if (vertices) {
if (threed)
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents *>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents *>(vertices))[0].TCoords);
glVertexPointer((threed ? 3 : 2), GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents *>(vertices))[0].Pos);
} else {
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0));
}
if (Feature.MaxTextureUnits > 0) {
glClientActiveTexture(GL_TEXTURE0 + 1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents *>(vertices))[0].Tangent);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36));
glClientActiveTexture(GL_TEXTURE0 + 2);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents *>(vertices))[0].Binormal);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48));
}
break;
}
GLenum indexSize = 0;
switch (iType) {
case (EIT_16BIT): {
indexSize = GL_UNSIGNED_SHORT;
break;
}
case (EIT_32BIT): {
#ifdef GL_OES_element_index_uint
#ifndef GL_UNSIGNED_INT
#define GL_UNSIGNED_INT 0x1405
#endif
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_element_index_uint])
indexSize = GL_UNSIGNED_INT;
else
#endif
indexSize = GL_UNSIGNED_SHORT;
break;
}
}
switch (pType) {
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES: {
#ifdef GL_OES_point_sprite
if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite])
glEnable(GL_POINT_SPRITE_OES);
#endif
// if ==0 we use the point size array
if (Material.Thickness != 0.f) {
float quadratic[] = {0.0f, 0.0f, 10.01f};
glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, quadratic);
float maxParticleSize = 1.0f;
glGetFloatv(GL_POINT_SIZE_MAX, &maxParticleSize);
// maxParticleSize=maxParticleSize<Material.Thickness?maxParticleSize:Material.Thickness;
// extGlPointParameterf(GL_POINT_SIZE_MAX,maxParticleSize);
// extGlPointParameterf(GL_POINT_SIZE_MIN,Material.Thickness);
glPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, 60.0f);
glPointSize(Material.Thickness);
}
#ifdef GL_OES_point_sprite
if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite])
glTexEnvf(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);
#endif
glDrawArrays(GL_POINTS, 0, primitiveCount);
#ifdef GL_OES_point_sprite
if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_sprite]) {
glDisable(GL_POINT_SPRITE_OES);
glTexEnvf(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_FALSE);
}
#endif
} break;
case scene::EPT_LINE_STRIP:
glDrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList);
break;
case scene::EPT_LINE_LOOP:
glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
break;
case scene::EPT_LINES:
glDrawElements(GL_LINES, primitiveCount * 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
glDrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
glDrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLES:
glDrawElements((LastMaterial.Wireframe) ? GL_LINES : (LastMaterial.PointCloud) ? GL_POINTS
: GL_TRIANGLES,
primitiveCount * 3, indexSize, indexList);
break;
}
if (Feature.MaxTextureUnits > 0) {
if (vType == EVT_TANGENTS) {
glClientActiveTexture(GL_TEXTURE0 + 2);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if ((vType != EVT_STANDARD) || CacheHandler->getTextureCache().get(1)) {
glClientActiveTexture(GL_TEXTURE0 + 1);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
glClientActiveTexture(GL_TEXTURE0);
}
#ifdef GL_OES_point_size_array
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_point_size_array] && (Material.Thickness == 0.0f))
glDisableClientState(GL_POINT_SIZE_ARRAY_OES);
#endif
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
//! draws a 2d image, using a color and the alpha channel of the texture
void COGLES1Driver::draw2DImage(const video::ITexture *texture,
const core::position2d<s32> &pos,
const core::rect<s32> &sourceRect,
const core::rect<s32> *clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos(pos);
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner);
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect) {
if (targetPos.X < clipRect->UpperLeftCorner.X) {
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) {
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y) {
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) {
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X < 0) {
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) {
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < 0) {
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) {
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2d<u32> &ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
(isRTT ? (sourcePos.Y + sourceSize.Height) : sourcePos.Y) * invH,
(sourcePos.X + sourceSize.Width) * invW,
(isRTT ? sourcePos.Y : (sourcePos.Y + sourceSize.Height)) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! The same, but with a four element array of colors, one for each vertex
void COGLES1Driver::draw2DImage(const video::ITexture *texture, const core::rect<s32> &destRect,
const core::rect<s32> &sourceRect, const core::rect<s32> *clipRect,
const video::SColor *const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2du &ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) * invH);
const video::SColor temp[4] = {
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
};
const video::SColor *const useColor = colors ? colors : temp;
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 ||
useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255,
true, useAlphaChannelOfTexture);
if (clipRect) {
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
void COGLES1Driver::draw2DImage(const video::ITexture *texture, u32 layer, bool flip)
{
if (!texture || !CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(false, true, true);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Transformation3DChanged = true;
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f);
vertices[1].Pos = core::vector3df(1.f, 1.f, 0.f);
vertices[2].Pos = core::vector3df(1.f, -1.f, 0.f);
vertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f);
f32 modificator = (flip) ? 1.f : 0.f;
vertices[0].TCoords = core::vector2df(0.f, 0.f + modificator);
vertices[1].TCoords = core::vector2df(1.f, 0.f + modificator);
vertices[2].TCoords = core::vector2df(1.f, 1.f - modificator);
vertices[3].TCoords = core::vector2df(0.f, 1.f - modificator);
vertices[0].Color = 0xFFFFFFFF;
vertices[1].Color = 0xFFFFFFFF;
vertices[2].Color = 0xFFFFFFFF;
vertices[3].Color = 0xFFFFFFFF;
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! draws a set of 2d images, using a color and the alpha channel of the texture if desired.
void COGLES1Driver::draw2DImageBatch(const video::ITexture *texture,
const core::array<core::position2d<s32>> &positions,
const core::array<core::rect<s32>> &sourceRects,
const core::rect<s32> *clipRect,
SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
const u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
if (!drawCount)
return;
const core::dimension2d<u32> &ss = texture->getOriginalSize();
if (!ss.Width || !ss.Height)
return;
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
if (!CacheHandler->getTextureCache().set(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
core::array<S3DVertex> vertices;
core::array<u16> quadIndices;
vertices.reallocate(drawCount * 4);
quadIndices.reallocate(drawCount * 6);
for (u32 i = 0; i < drawCount; ++i) {
if (!sourceRects[i].isValid())
continue;
core::position2d<s32> targetPos(positions[i]);
core::position2d<s32> sourcePos(sourceRects[i].UpperLeftCorner);
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
if (clipRect) {
if (targetPos.X < clipRect->UpperLeftCorner.X) {
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) {
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y) {
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) {
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
continue;
}
}
// clip these coordinates
if (targetPos.X < 0) {
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
continue;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) {
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
continue;
}
if (targetPos.Y < 0) {
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
continue;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) {
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
continue;
}
// ok, we've clipped everything.
const core::rect<f32> tcoords(
sourcePos.X * invW,
sourcePos.Y * invH,
(sourcePos.X + sourceSize.Width) * invW,
(sourcePos.Y + sourceSize.Height) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
const u32 vstart = vertices.size();
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y));
vertices.push_back(S3DVertex((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y));
vertices.push_back(S3DVertex((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0, 0, 0, 1, color, tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y));
quadIndices.push_back(vstart);
quadIndices.push_back(vstart + 1);
quadIndices.push_back(vstart + 2);
quadIndices.push_back(vstart);
quadIndices.push_back(vstart + 2);
quadIndices.push_back(vstart + 3);
}
if (vertices.size())
drawVertexPrimitiveList2d3d(vertices.pointer(), vertices.size(),
quadIndices.pointer(), vertices.size() / 2,
video::EVT_STANDARD, scene::EPT_TRIANGLES,
EIT_16BIT, false);
}
//! draw a 2d rectangle
void COGLES1Driver::draw2DRectangle(SColor color, const core::rect<s32> &position,
const core::rect<s32> *clip)
{
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, color, 0, 0);
vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0);
vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, color, 0, 0);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! draw an 2d rectangle
void COGLES1Driver::draw2DRectangle(const core::rect<s32> &position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32> *clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255,
false, false);
u16 indices[] = {0, 1, 2, 3};
S3DVertex vertices[4];
vertices[0] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorLeftUp, 0, 0);
vertices[1] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0, 0, 0, 1, colorRightUp, 0, 0);
vertices[2] = S3DVertex((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorRightDown, 0, 0);
vertices[3] = S3DVertex((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0, 0, 0, 1, colorLeftDown, 0, 0);
drawVertexPrimitiveList2d3d(vertices, 4, indices, 2, video::EVT_STANDARD, scene::EPT_TRIANGLE_FAN, EIT_16BIT, false);
}
//! Draws a 2d line.
void COGLES1Driver::draw2DLine(const core::position2d<s32> &start,
const core::position2d<s32> &end,
SColor color)
{
setRenderStates2DMode(color.getAlpha() < 255, false, false);
u16 indices[] = {0, 1};
S3DVertex vertices[2];
vertices[0] = S3DVertex((f32)start.X, (f32)start.Y, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex((f32)end.X, (f32)end.Y, 0, 0, 0, 1, color, 1, 1);
drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES, EIT_16BIT, false);
}
//! creates a matrix in supplied GLfloat array to pass to OGLES1
inline void COGLES1Driver::getGLMatrix(GLfloat gl_matrix[16], const core::matrix4 &m)
{
memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32));
}
//! creates a opengltexturematrix from a D3D style texture matrix
inline void COGLES1Driver::getGLTextureMatrix(GLfloat *o, const core::matrix4 &m)
{
o[0] = m[0];
o[1] = m[1];
o[2] = 0.f;
o[3] = 0.f;
o[4] = m[4];
o[5] = m[5];
o[6] = 0.f;
o[7] = 0.f;
o[8] = 0.f;
o[9] = 0.f;
o[10] = 1.f;
o[11] = 0.f;
o[12] = m[8];
o[13] = m[9];
o[14] = 0.f;
o[15] = 1.f;
}
ITexture *COGLES1Driver::createDeviceDependentTexture(const io::path &name, IImage *image)
{
core::array<IImage *> imageArray(1);
imageArray.push_back(image);
COGLES1Texture *texture = new COGLES1Texture(name, imageArray, ETT_2D, this);
return texture;
}
ITexture *COGLES1Driver::createDeviceDependentTextureCubemap(const io::path &name, const core::array<IImage *> &image)
{
COGLES1Texture *texture = new COGLES1Texture(name, image, ETT_CUBEMAP, this);
return texture;
}
//! Sets a material. All 3d drawing functions draw geometry now using this material.
void COGLES1Driver::setMaterial(const SMaterial &material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i = 0; i < Feature.MaxTextureUnits; ++i)
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i));
}
//! prints error if an error happened.
bool COGLES1Driver::testGLError(int code)
{
#ifdef _DEBUG
GLenum g = glGetError();
switch (g) {
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_STACK_OVERFLOW:
os::Printer::log("GL_STACK_OVERFLOW", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_STACK_UNDERFLOW:
os::Printer::log("GL_STACK_UNDERFLOW", core::stringc(code).c_str(), ELL_ERROR);
break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR);
break;
};
// _IRR_DEBUG_BREAK_IF(true);
return true;
#else
return false;
#endif
}
//! sets the needed renderstates
void COGLES1Driver::setRenderStates3DMode()
{
if (CurrentRenderMode != ERM_3D) {
// Reset Texture Stages
CacheHandler->setBlend(false);
glDisable(GL_ALPHA_TEST);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// switch back the matrices
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
GLfloat glmat[16];
getGLMatrix(glmat, Matrices[ETS_PROJECTION]);
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material) {
// unset old material
if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
GLint COGLES1Driver::getTextureWrapMode(u8 clamp) const
{
switch (clamp) {
case ETC_CLAMP:
// return GL_CLAMP; not supported in ogl-es
return GL_CLAMP_TO_EDGE;
break;
case ETC_CLAMP_TO_EDGE:
return GL_CLAMP_TO_EDGE;
break;
case ETC_CLAMP_TO_BORDER:
// return GL_CLAMP_TO_BORDER; not supported in ogl-es
return GL_CLAMP_TO_EDGE;
break;
case ETC_MIRROR:
#ifdef GL_OES_texture_mirrored_repeat
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat])
return GL_MIRRORED_REPEAT_OES;
else
#endif
return GL_REPEAT;
break;
// the next three are not yet supported at all
case ETC_MIRROR_CLAMP:
case ETC_MIRROR_CLAMP_TO_EDGE:
case ETC_MIRROR_CLAMP_TO_BORDER:
#ifdef GL_OES_texture_mirrored_repeat
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_texture_mirrored_repeat])
return GL_MIRRORED_REPEAT_OES;
else
#endif
return GL_CLAMP_TO_EDGE;
break;
case ETC_REPEAT:
default:
return GL_REPEAT;
break;
}
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COGLES1Driver::setBasicRenderStates(const SMaterial &material, const SMaterial &lastmaterial,
bool resetAllRenderStates)
{
if (resetAllRenderStates ||
lastmaterial.ColorMaterial != material.ColorMaterial) {
// we only have diffuse_and_ambient in ogl-es
if (material.ColorMaterial == ECM_DIFFUSE_AND_AMBIENT)
glEnable(GL_COLOR_MATERIAL);
else
glDisable(GL_COLOR_MATERIAL);
}
if (resetAllRenderStates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.ColorMaterial != material.ColorMaterial) {
GLfloat color[4];
const f32 inv = 1.0f / 255.0f;
if ((material.ColorMaterial != video::ECM_AMBIENT) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) {
color[0] = material.AmbientColor.getRed() * inv;
color[1] = material.AmbientColor.getGreen() * inv;
color[2] = material.AmbientColor.getBlue() * inv;
color[3] = material.AmbientColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color);
}
if ((material.ColorMaterial != video::ECM_DIFFUSE) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) {
color[0] = material.DiffuseColor.getRed() * inv;
color[1] = material.DiffuseColor.getGreen() * inv;
color[2] = material.DiffuseColor.getBlue() * inv;
color[3] = material.DiffuseColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);
}
if (material.ColorMaterial != video::ECM_EMISSIVE) {
color[0] = material.EmissiveColor.getRed() * inv;
color[1] = material.EmissiveColor.getGreen() * inv;
color[2] = material.EmissiveColor.getBlue() * inv;
color[3] = material.EmissiveColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color);
}
}
if (resetAllRenderStates ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.Shininess != material.Shininess) {
GLfloat color[] = {0.f, 0.f, 0.f, 1.f};
const f32 inv = 1.0f / 255.0f;
// disable Specular colors if no shininess is set
if ((material.Shininess != 0.0f) &&
(material.ColorMaterial != video::ECM_SPECULAR)) {
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess);
color[0] = material.SpecularColor.getRed() * inv;
color[1] = material.SpecularColor.getGreen() * inv;
color[2] = material.SpecularColor.getBlue() * inv;
color[3] = material.SpecularColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color);
}
#ifdef GL_EXT_separate_specular_color
else if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
#endif
}
// TODO ogl-es
// fillmode
// if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud))
// glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL);
// shademode
if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading)) {
if (material.GouraudShading)
glShadeModel(GL_SMOOTH);
else
glShadeModel(GL_FLAT);
}
// lighting
if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting)) {
if (material.Lighting)
glEnable(GL_LIGHTING);
else
glDisable(GL_LIGHTING);
}
// zbuffer
if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer) {
switch (material.ZBuffer) {
case ECFN_DISABLED:
glDisable(GL_DEPTH_TEST);
break;
case ECFN_LESSEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
break;
case ECFN_NEVER:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_NEVER);
break;
}
}
// zwrite
if (getWriteZBuffer(material)) {
glDepthMask(GL_TRUE);
} else {
glDepthMask(GL_FALSE);
}
// back face culling
if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) {
if ((material.FrontfaceCulling) && (material.BackfaceCulling)) {
glCullFace(GL_FRONT_AND_BACK);
glEnable(GL_CULL_FACE);
} else if (material.BackfaceCulling) {
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
} else if (material.FrontfaceCulling) {
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
} else
glDisable(GL_CULL_FACE);
}
// fog
if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable) {
if (material.FogEnable)
glEnable(GL_FOG);
else
glDisable(GL_FOG);
}
// normalization
if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals) {
if (material.NormalizeNormals)
glEnable(GL_NORMALIZE);
else
glDisable(GL_NORMALIZE);
}
// Color Mask
if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask) {
glColorMask(
(material.ColorMask & ECP_RED) ? GL_TRUE : GL_FALSE,
(material.ColorMask & ECP_GREEN) ? GL_TRUE : GL_FALSE,
(material.ColorMask & ECP_BLUE) ? GL_TRUE : GL_FALSE,
(material.ColorMask & ECP_ALPHA) ? GL_TRUE : GL_FALSE);
}
// Blend Equation
if (material.BlendOperation == EBO_NONE)
CacheHandler->setBlend(false);
else {
CacheHandler->setBlend(true);
if (queryFeature(EVDF_BLEND_OPERATIONS)) {
switch (material.BlendOperation) {
case EBO_ADD:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_ADD_OES);
#endif
break;
case EBO_SUBTRACT:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT_OES);
#endif
break;
case EBO_REVSUBTRACT:
#if defined(GL_OES_blend_subtract)
CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT_OES);
#endif
break;
default:
break;
}
}
}
// Blend Factor
if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF?
&& material.MaterialType != EMT_ONETEXTURE_BLEND) {
E_BLEND_FACTOR srcRGBFact = EBF_ZERO;
E_BLEND_FACTOR dstRGBFact = EBF_ZERO;
E_BLEND_FACTOR srcAlphaFact = EBF_ZERO;
E_BLEND_FACTOR dstAlphaFact = EBF_ZERO;
E_MODULATE_FUNC modulo = EMFN_MODULATE_1X;
u32 alphaSource = 0;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor);
if (queryFeature(EVDF_BLEND_SEPARATE)) {
CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact),
getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact));
} else {
CacheHandler->setBlendFunc(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact));
}
}
// TODO: Polygon Offset. Not sure if it was left out deliberately or if it won't work with this driver.
// thickness
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) {
if (AntiAlias) {
// glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1]));
// we don't use point smoothing
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
} else {
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
}
}
// Anti aliasing
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) {
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE);
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE);
if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE | EAAM_QUALITY)))
glEnable(GL_MULTISAMPLE);
else
glDisable(GL_MULTISAMPLE);
}
// Texture parameters
setTextureRenderStates(material, resetAllRenderStates);
}
//! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call.
void COGLES1Driver::setTextureRenderStates(const SMaterial &material, bool resetAllRenderstates)
{
// Set textures to TU/TIU and apply filters to them
for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i) {
CacheHandler->getTextureCache().set(i, material.TextureLayers[i].Texture);
const COGLES1Texture *tmpTexture = CacheHandler->getTextureCache().get(i);
if (!tmpTexture)
continue;
GLenum tmpTextureType = tmpTexture->getOpenGLTextureType();
CacheHandler->setActiveTexture(GL_TEXTURE0 + i);
{
const bool isRTT = tmpTexture->isRenderTarget();
glMatrixMode(GL_TEXTURE);
if (!isRTT && Matrices[ETS_TEXTURE_0 + i].isIdentity())
glLoadIdentity();
else {
GLfloat glmat[16];
if (isRTT)
getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i] * TextureFlipMatrix);
else
getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i]);
glLoadMatrixf(glmat);
}
}
COGLES1Texture::SStatesCache &statesCache = tmpTexture->getStatesCache();
if (resetAllRenderstates)
statesCache.IsCached = false;
#if defined(GL_EXT_texture_lod_bias)
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_lod_bias]) {
if (material.TextureLayers[i].LODBias) {
const float tmp = core::clamp(material.TextureLayers[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp);
} else
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f);
}
#endif
if (!statesCache.IsCached || material.TextureLayers[i].MagFilter != statesCache.MagFilter) {
E_TEXTURE_MAG_FILTER magFilter = material.TextureLayers[i].MagFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER,
magFilter == ETMAGF_NEAREST ? GL_NEAREST : (assert(magFilter == ETMAGF_LINEAR), GL_LINEAR));
statesCache.MagFilter = magFilter;
}
if (material.UseMipMaps && tmpTexture->hasMipMaps()) {
if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter ||
!statesCache.MipMapStatus) {
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
minFilter == ETMINF_NEAREST_MIPMAP_NEAREST ? GL_NEAREST_MIPMAP_NEAREST : minFilter == ETMINF_LINEAR_MIPMAP_NEAREST ? GL_LINEAR_MIPMAP_NEAREST
: minFilter == ETMINF_NEAREST_MIPMAP_LINEAR ? GL_NEAREST_MIPMAP_LINEAR
: (assert(minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR_MIPMAP_LINEAR));
statesCache.MinFilter = minFilter;
statesCache.MipMapStatus = true;
}
} else {
if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter ||
statesCache.MipMapStatus) {
E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter;
glTexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
(minFilter == ETMINF_NEAREST_MIPMAP_NEAREST || minFilter == ETMINF_NEAREST_MIPMAP_LINEAR) ? GL_NEAREST : (assert(minFilter == ETMINF_LINEAR_MIPMAP_NEAREST || minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR));
statesCache.MinFilter = minFilter;
statesCache.MipMapStatus = false;
}
}
#ifdef GL_EXT_texture_filter_anisotropic
if (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_texture_filter_anisotropic] &&
(!statesCache.IsCached || material.TextureLayers[i].AnisotropicFilter != statesCache.AnisotropicFilter)) {
glTexParameteri(tmpTextureType, GL_TEXTURE_MAX_ANISOTROPY_EXT,
material.TextureLayers[i].AnisotropicFilter > 1 ? core::min_(MaxAnisotropy, material.TextureLayers[i].AnisotropicFilter) : 1);
statesCache.AnisotropicFilter = material.TextureLayers[i].AnisotropicFilter;
}
#endif
if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapU != statesCache.WrapU) {
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayers[i].TextureWrapU));
statesCache.WrapU = material.TextureLayers[i].TextureWrapU;
}
if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapV != statesCache.WrapV) {
glTexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayers[i].TextureWrapV));
statesCache.WrapV = material.TextureLayers[i].TextureWrapV;
}
statesCache.IsCached = true;
}
// be sure to leave in texture stage 0
CacheHandler->setActiveTexture(GL_TEXTURE0);
}
//! sets the needed renderstates
void COGLES1Driver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (CurrentRenderMode != ERM_2D || Transformation3DChanged) {
// unset last 3d material
if (CurrentRenderMode == ERM_3D) {
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
if (Transformation3DChanged) {
glMatrixMode(GL_PROJECTION);
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m(core::matrix4::EM4CONST_NOTHING);
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f);
m.setTranslation(core::vector3df(-1, 1, 0));
glLoadMatrixf(m.pointer());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
Transformation3DChanged = false;
}
}
Material = (OverrideMaterial2DEnabled) ? OverrideMaterial2D : InitMaterial2D;
Material.Lighting = false;
Material.TextureLayers[0].Texture = (texture) ? const_cast<COGLES1Texture *>(CacheHandler->getTextureCache().get(0)) : 0;
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
setBasicRenderStates(Material, LastMaterial, false);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
// no alphaChannel without texture
alphaChannel &= texture;
if (alphaChannel || alpha) {
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
CacheHandler->setBlendEquation(GL_FUNC_ADD);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.f);
} else {
CacheHandler->setBlend(false);
glDisable(GL_ALPHA_TEST);
}
if (texture) {
// Due to the transformation change, the previous line would call a reset each frame
// but we can safely reset the variable as it was false before
Transformation3DChanged = false;
if (alphaChannel) {
// if alpha and alpha texture just modulate, otherwise use only the alpha channel
if (alpha) {
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_TEXTURE);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR);
}
} else {
if (alpha) {
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_PRIMARY_COLOR);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC0_RGB, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SRC1_RGB, GL_PRIMARY_COLOR);
} else {
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
}
}
CurrentRenderMode = ERM_2D;
}
//! \return Returns the name of the video driver.
const char *COGLES1Driver::getName() const
{
return Name.c_str();
}
//! Sets the dynamic ambient light color.
void COGLES1Driver::setAmbientLight(const SColorf &color)
{
CNullDriver::setAmbientLight(color);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data);
}
// this code was sent in by Oliver Klems, thank you
void COGLES1Driver::setViewPort(const core::rect<s32> &area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
void COGLES1Driver::setViewPortRaw(u32 width, u32 height)
{
CacheHandler->setViewport(0, 0, width, height);
ViewPort = core::recti(0, 0, width, height);
}
//! Sets the fog mode.
void COGLES1Driver::setFog(SColor c, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog);
glFogf(GL_FOG_MODE, GLfloat((fogType == EFT_FOG_LINEAR) ? GL_LINEAR : (fogType == EFT_FOG_EXP) ? GL_EXP
: GL_EXP2));
#ifdef GL_EXT_fog_coord
if (FeatureAvailable[IRR_EXT_fog_coord])
glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH);
#endif
if (fogType == EFT_FOG_LINEAR) {
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, end);
} else
glFogf(GL_FOG_DENSITY, density);
if (pixelFog)
glHint(GL_FOG_HINT, GL_NICEST);
else
glHint(GL_FOG_HINT, GL_FASTEST);
SColorf color(c);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glFogfv(GL_FOG_COLOR, data);
}
//! Draws a 3d line.
void COGLES1Driver::draw3DLine(const core::vector3df &start,
const core::vector3df &end, SColor color)
{
setRenderStates3DMode();
u16 indices[] = {0, 1};
S3DVertex vertices[2];
vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0);
drawVertexPrimitiveList2d3d(vertices, 2, indices, 1, video::EVT_STANDARD, scene::EPT_LINES);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COGLES1Driver::OnResize(const core::dimension2d<u32> &size)
{
CNullDriver::OnResize(size);
CacheHandler->setViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COGLES1Driver::getDriverType() const
{
return EDT_OGLES1;
}
//! returns color format
ECOLOR_FORMAT COGLES1Driver::getColorFormat() const
{
return ColorFormat;
}
//! Get a vertex shader constant index.
s32 COGLES1Driver::getVertexShaderConstantID(const c8 *name)
{
return getPixelShaderConstantID(name);
}
//! Get a pixel shader constant index.
s32 COGLES1Driver::getPixelShaderConstantID(const c8 *name)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->getPixelShaderConstantID().");
return -1;
}
//! Sets a constant for the vertex shader based on an index.
bool COGLES1Driver::setVertexShaderConstant(s32 index, const f32 *floats, int count)
{
// pass this along, as in GLSL the same routine is used for both vertex and fragment shaders
return setPixelShaderConstant(index, floats, count);
}
//! Int interface for the above.
bool COGLES1Driver::setVertexShaderConstant(s32 index, const s32 *ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
bool COGLES1Driver::setVertexShaderConstant(s32 index, const u32 *ints, int count)
{
return setPixelShaderConstant(index, ints, count);
}
//! Sets a constant for the pixel shader based on an index.
bool COGLES1Driver::setPixelShaderConstant(s32 index, const f32 *floats, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Int interface for the above.
bool COGLES1Driver::setPixelShaderConstant(s32 index, const s32 *ints, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
bool COGLES1Driver::setPixelShaderConstant(s32 index, const u32 *ints, int count)
{
os::Printer::log("Error: Please use IMaterialRendererServices from IShaderConstantSetCallBack::OnSetConstants not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COGLES1Driver::addHighLevelShaderMaterial(
const c8 *vertexShaderProgram,
const c8 *vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8 *pixelShaderProgram,
const c8 *pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8 *geometryShaderProgram,
const c8 *geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack *callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
os::Printer::log("No shader support.");
return -1;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver *COGLES1Driver::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices *COGLES1Driver::getGPUProgrammingServices()
{
return this;
}
ITexture *COGLES1Driver::addRenderTargetTexture(const core::dimension2d<u32> &size,
const io::path &name, const ECOLOR_FORMAT format)
{
// disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
core::dimension2du destSize(size);
if (!supportForFBO) {
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COGLES1Texture *renderTargetTexture = new COGLES1Texture(name, destSize, ETT_2D, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
// restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
ITexture *COGLES1Driver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path &name, const ECOLOR_FORMAT format)
{
// disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
const core::dimension2d<u32> size(sideLen, sideLen);
core::dimension2du destSize(size);
if (!supportForFBO) {
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COGLES1Texture *renderTargetTexture = new COGLES1Texture(name, destSize, ETT_CUBEMAP, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
// restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
//! Returns the maximum amount of primitives
u32 COGLES1Driver::getMaximalPrimitiveCount() const
{
return 65535;
}
bool COGLES1Driver::setRenderTargetEx(IRenderTarget *target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != EDT_OGLES1) {
os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL driver.", ELL_ERROR);
return false;
}
bool supportForFBO = (Feature.ColorAttachment > 0);
core::dimension2d<u32> destRenderTargetSize(0, 0);
if (target) {
COGLES1RenderTarget *renderTarget = static_cast<COGLES1RenderTarget *>(target);
if (supportForFBO) {
CacheHandler->setFBO(renderTarget->getBufferID());
renderTarget->update();
}
destRenderTargetSize = renderTarget->getSize();
setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height);
} else {
if (supportForFBO)
CacheHandler->setFBO(0);
else {
COGLES1RenderTarget *prevRenderTarget = static_cast<COGLES1RenderTarget *>(CurrentRenderTarget);
COGLES1Texture *renderTargetTexture = static_cast<COGLES1Texture *>(prevRenderTarget->getTexture());
if (renderTargetTexture) {
const COGLES1Texture *prevTexture = CacheHandler->getTextureCache().get(0);
CacheHandler->getTextureCache().set(0, renderTargetTexture);
const core::dimension2d<u32> size = renderTargetTexture->getSize();
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, size.Width, size.Height);
CacheHandler->getTextureCache().set(0, prevTexture);
}
}
destRenderTargetSize = core::dimension2d<u32>(0, 0);
setViewPortRaw(ScreenSize.Width, ScreenSize.Height);
}
if (CurrentRenderTargetSize != destRenderTargetSize) {
CurrentRenderTargetSize = destRenderTargetSize;
Transformation3DChanged = true;
}
CurrentRenderTarget = target;
if (!supportForFBO) {
clearFlag |= ECBF_COLOR;
clearFlag |= ECBF_DEPTH;
}
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
void COGLES1Driver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
GLbitfield mask = 0;
if (flag & ECBF_COLOR) {
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (flag & ECBF_DEPTH) {
glDepthMask(GL_TRUE);
glClearDepthf(depth);
mask |= GL_DEPTH_BUFFER_BIT;
}
if (flag & ECBF_STENCIL) {
glClearStencil(stencil);
mask |= GL_STENCIL_BUFFER_BIT;
}
if (mask)
glClear(mask);
}
//! Returns an image created from the last rendered frame.
// We want to read the front buffer to get the latest render finished.
// This is not possible under ogl-es, though, so one has to call this method
// outside of the render loop only.
IImage *COGLES1Driver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target == video::ERT_MULTI_RENDER_TEXTURES || target == video::ERT_RENDER_TEXTURE || target == video::ERT_STEREO_BOTH_BUFFERS)
return 0;
GLint internalformat = GL_RGBA;
GLint type = GL_UNSIGNED_BYTE;
if (false && (FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_IMG_read_format] || FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_OES_read_format] || FeatureAvailable[COGLESCoreExtensionHandler::IRR_GL_EXT_read_format_bgra])) {
#ifdef GL_IMPLEMENTATION_COLOR_READ_TYPE_OES
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES, &internalformat);
glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE_OES, &type);
#endif
// there are formats we don't support ATM
if (GL_UNSIGNED_SHORT_4_4_4_4 == type)
type = GL_UNSIGNED_SHORT_5_5_5_1;
#ifdef GL_EXT_read_format_bgra
else if (GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT == type)
type = GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT;
#endif
}
IImage *newImage = 0;
if ((GL_RGBA == internalformat)
#ifdef GL_EXT_read_format_bgra
|| (GL_BGRA_EXT == internalformat)
#endif
) {
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_A1R5G5B5, ScreenSize);
} else {
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_R5G6B5, ScreenSize);
}
u8 *pixels = static_cast<u8 *>(newImage->getData());
if (!pixels) {
newImage->drop();
return 0;
}
glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels);
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch = newImage->getPitch();
u8 *p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8 *tmpBuffer = new u8[pitch];
for (u32 i = 0; i < ScreenSize.Height; i += 2) {
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete[] tmpBuffer;
if (testGLError(__LINE__)) {
newImage->drop();
return 0;
}
return newImage;
}
void COGLES1Driver::removeTexture(ITexture *texture)
{
CacheHandler->getTextureCache().remove(texture);
CNullDriver::removeTexture(texture);
}
//! Set/unset a clipping plane.
bool COGLES1Driver::setClipPlane(u32 index, const core::plane3df &plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
UserClipPlane[index] = plane;
enableClipPlane(index, enable);
return true;
}
void COGLES1Driver::uploadClipPlane(u32 index)
{
// opengl needs an array of doubles for the plane equation
float clip_plane[4];
clip_plane[0] = UserClipPlane[index].Normal.X;
clip_plane[1] = UserClipPlane[index].Normal.Y;
clip_plane[2] = UserClipPlane[index].Normal.Z;
clip_plane[3] = UserClipPlane[index].D;
glClipPlanef(GL_CLIP_PLANE0 + index, clip_plane);
}
//! Enable/disable a clipping plane.
void COGLES1Driver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
if (enable) {
if (!UserClipPlaneEnabled[index]) {
uploadClipPlane(index);
glEnable(GL_CLIP_PLANE0 + index);
}
} else
glDisable(GL_CLIP_PLANE0 + index);
UserClipPlaneEnabled[index] = enable;
}
core::dimension2du COGLES1Driver::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
GLenum COGLES1Driver::getGLBlend(E_BLEND_FACTOR factor) const
{
static GLenum const blendTable[] = {
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE,
};
return blendTable[factor];
}
GLenum COGLES1Driver::getZBufferBits() const
{
GLenum bits = 0;
switch (Params.ZBufferBits) {
case 24:
#if defined(GL_OES_depth24)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth24))
bits = GL_DEPTH_COMPONENT24_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
case 32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32))
bits = GL_DEPTH_COMPONENT32_OES;
else
#endif
bits = GL_DEPTH_COMPONENT16;
break;
default:
bits = GL_DEPTH_COMPONENT16;
break;
}
return bits;
}
bool COGLES1Driver::getColorFormatParameters(ECOLOR_FORMAT format, GLint &internalFormat, GLenum &pixelFormat,
GLenum &pixelType, void (**converter)(const void *, s32, void *)) const
{
bool supported = false;
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_BYTE;
*converter = 0;
switch (format) {
case ECF_A1R5G5B5:
supported = true;
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
pixelType = GL_UNSIGNED_SHORT_5_5_5_1;
*converter = CColorConverter::convert_A1R5G5B5toR5G5B5A1;
break;
case ECF_R5G6B5:
supported = true;
internalFormat = GL_RGB;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_SHORT_5_6_5;
break;
case ECF_R8G8B8:
supported = true;
internalFormat = GL_RGB;
pixelFormat = GL_RGB;
pixelType = GL_UNSIGNED_BYTE;
break;
case ECF_A8R8G8B8:
supported = true;
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_IMG_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_EXT_texture_format_BGRA8888) ||
queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_APPLE_texture_format_BGRA8888)) {
internalFormat = GL_BGRA;
pixelFormat = GL_BGRA;
} else {
internalFormat = GL_RGBA;
pixelFormat = GL_RGBA;
*converter = CColorConverter::convert_A8R8G8B8toA8B8G8R8;
}
pixelType = GL_UNSIGNED_BYTE;
break;
case ECF_D16:
supported = true;
internalFormat = GL_DEPTH_COMPONENT16;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_SHORT;
break;
case ECF_D32:
#if defined(GL_OES_depth32)
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_depth32)) {
supported = true;
internalFormat = GL_DEPTH_COMPONENT32_OES;
pixelFormat = GL_DEPTH_COMPONENT;
pixelType = GL_UNSIGNED_INT;
}
#endif
break;
case ECF_D24S8:
#ifdef GL_OES_packed_depth_stencil
if (queryGLESFeature(COGLESCoreExtensionHandler::IRR_GL_OES_packed_depth_stencil)) {
supported = true;
internalFormat = GL_DEPTH24_STENCIL8_OES;
pixelFormat = GL_DEPTH_STENCIL_OES;
pixelType = GL_UNSIGNED_INT_24_8_OES;
}
#endif
break;
case ECF_R8:
break;
case ECF_R8G8:
break;
case ECF_R16:
break;
case ECF_R16G16:
break;
case ECF_R16F:
break;
case ECF_G16R16F:
break;
case ECF_A16B16G16R16F:
break;
case ECF_R32F:
break;
case ECF_G32R32F:
break;
case ECF_A32B32G32R32F:
break;
default:
break;
}
#ifdef _IRR_IOS_PLATFORM_
if (internalFormat == GL_BGRA)
internalFormat = GL_RGBA;
#endif
return supported;
}
bool COGLES1Driver::queryTextureFormat(ECOLOR_FORMAT format) const
{
GLint dummyInternalFormat;
GLenum dummyPixelFormat;
GLenum dummyPixelType;
void (*dummyConverter)(const void *, s32, void *);
return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter);
}
bool COGLES1Driver::needsTransparentRenderPass(const irr::video::SMaterial &material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation();
}
COGLES1CacheHandler *COGLES1Driver::getCacheHandler() const
{
return CacheHandler;
}
} // end namespace
} // end namespace
#endif // _IRR_COMPILE_WITH_OGLES1_
namespace irr
{
namespace video
{
#ifndef _IRR_COMPILE_WITH_OGLES1_
class IVideoDriver;
class IContextManager;
#endif
IVideoDriver *createOGLES1Driver(const SIrrlichtCreationParameters &params, io::IFileSystem *io, IContextManager *contextManager)
{
#ifdef _IRR_COMPILE_WITH_OGLES1_
return new COGLES1Driver(params, io, contextManager);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OGLES1_
}
} // end namespace
} // end namespace