mirror of
https://github.com/minetest/irrlicht.git
synced 2024-12-25 15:42:25 +01:00
83851413a6
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@6378 dfc29bdd-3216-0410-991c-e03cc46cb475
1181 lines
28 KiB
C++
1181 lines
28 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#include "IrrCompileConfig.h"
|
|
#include "IBurningShader.h"
|
|
#include "CSoftwareDriver2.h"
|
|
|
|
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
|
|
|
|
// compile flag for this file
|
|
#undef USE_ZBUFFER
|
|
#undef IPOL_Z
|
|
#undef CMP_Z
|
|
#undef WRITE_Z
|
|
|
|
#undef IPOL_W
|
|
#undef CMP_W
|
|
#undef WRITE_W
|
|
|
|
#undef SUBTEXEL
|
|
#undef INVERSE_W
|
|
|
|
#undef IPOL_C0
|
|
#undef IPOL_C1
|
|
#undef IPOL_C2
|
|
#undef IPOL_C3
|
|
#undef IPOL_T0
|
|
#undef IPOL_T1
|
|
#undef IPOL_T2
|
|
#undef IPOL_L0
|
|
|
|
// define render case
|
|
#define SUBTEXEL
|
|
#define INVERSE_W
|
|
|
|
#define USE_ZBUFFER
|
|
#define IPOL_W
|
|
#define CMP_W
|
|
#define WRITE_W
|
|
|
|
#define IPOL_C0
|
|
#define IPOL_C1
|
|
#define IPOL_C2
|
|
#define IPOL_C3
|
|
#define IPOL_T0
|
|
#define IPOL_T1
|
|
#define IPOL_L0
|
|
|
|
// apply global override
|
|
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
|
|
#undef INVERSE_W
|
|
#endif
|
|
|
|
#ifndef SOFTWARE_DRIVER_2_SUBTEXEL
|
|
#undef SUBTEXEL
|
|
#endif
|
|
|
|
#if BURNING_MATERIAL_MAX_COLORS < 1
|
|
#undef IPOL_C0
|
|
#endif
|
|
|
|
#if BURNING_MATERIAL_MAX_COLORS < 2
|
|
#undef IPOL_C1
|
|
#endif
|
|
|
|
#if BURNING_MATERIAL_MAX_COLORS < 3
|
|
#undef IPOL_C2
|
|
#endif
|
|
|
|
#if BURNING_MATERIAL_MAX_COLORS < 4
|
|
#undef IPOL_C3
|
|
#endif
|
|
|
|
#if BURNING_MATERIAL_MAX_LIGHT_TANGENT < 1
|
|
#undef IPOL_L0
|
|
#endif
|
|
|
|
#if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
|
|
#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
|
|
#undef IPOL_W
|
|
#endif
|
|
#define IPOL_Z
|
|
|
|
#ifdef CMP_W
|
|
#undef CMP_W
|
|
#define CMP_Z
|
|
#endif
|
|
|
|
#ifdef WRITE_W
|
|
#undef WRITE_W
|
|
#define WRITE_Z
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
burning_namespace_start
|
|
|
|
|
|
class CBurningParallaxMap : public IBurningShader
|
|
{
|
|
public:
|
|
|
|
//! constructor
|
|
CBurningParallaxMap(CBurningVideoDriver* driver,s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial);
|
|
~CBurningParallaxMap();
|
|
|
|
//! draws an indexed triangle list
|
|
virtual void drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c) IRR_OVERRIDE;
|
|
virtual void OnSetMaterialBurning(const SBurningShaderMaterial& material) IRR_OVERRIDE;
|
|
virtual void OnSetMaterial(const video::SMaterial& material,
|
|
const video::SMaterial& lastMaterial,
|
|
bool resetAllRenderstates, video::IMaterialRendererServices* services) IRR_OVERRIDE;
|
|
virtual void OnSetConstants(IMaterialRendererServices* services, s32 userData) IRR_OVERRIDE;
|
|
private:
|
|
void fragmentShader();
|
|
f32 CurrentScale;
|
|
tFixPoint CurrentScaleFix[2];
|
|
};
|
|
|
|
|
|
//! constructor
|
|
CBurningParallaxMap::CBurningParallaxMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial)
|
|
: IBurningShader(driver, baseMaterial)
|
|
{
|
|
#ifdef _DEBUG
|
|
setDebugName("CTRNormalMap");
|
|
#endif
|
|
CallBack = this;
|
|
outMaterialTypeNr = driver->addMaterialRenderer(this);
|
|
CurrentScale = 0.02f;
|
|
}
|
|
|
|
CBurningParallaxMap::~CBurningParallaxMap()
|
|
{
|
|
if (CallBack == this)
|
|
CallBack = 0;
|
|
}
|
|
|
|
void CBurningParallaxMap::OnSetMaterialBurning(const SBurningShaderMaterial& material)
|
|
{
|
|
CurrentScale = material.org.MaterialTypeParam;
|
|
}
|
|
|
|
void CBurningParallaxMap::OnSetMaterial(const video::SMaterial& material,
|
|
const video::SMaterial& lastMaterial,
|
|
bool resetAllRenderstates, video::IMaterialRendererServices* services)
|
|
{
|
|
IBurningShader::OnSetMaterial(material, lastMaterial,
|
|
resetAllRenderstates, services);
|
|
|
|
CurrentScale = material.MaterialTypeParam;
|
|
}
|
|
|
|
/*!
|
|
*/
|
|
void CBurningParallaxMap::fragmentShader()
|
|
{
|
|
tVideoSample* dst;
|
|
|
|
#ifdef USE_ZBUFFER
|
|
fp24* z;
|
|
#endif
|
|
|
|
s32 xStart;
|
|
s32 xEnd;
|
|
s32 dx;
|
|
|
|
|
|
#ifdef SUBTEXEL
|
|
f32 subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_Z
|
|
f32 slopeZ;
|
|
#endif
|
|
#ifdef IPOL_W
|
|
fp24 slopeW;
|
|
#endif
|
|
#ifdef IPOL_C0
|
|
sVec4 slopeC[BURNING_MATERIAL_MAX_COLORS];
|
|
#endif
|
|
#ifdef IPOL_T0
|
|
sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
|
|
#endif
|
|
#ifdef IPOL_L0
|
|
sVec3Pack_unpack slopeL[BURNING_MATERIAL_MAX_LIGHT_TANGENT];
|
|
#endif
|
|
|
|
// apply top-left fill-convention, left
|
|
xStart = fill_convention_left(line.x[0]);
|
|
xEnd = fill_convention_right(line.x[1]);
|
|
|
|
dx = xEnd - xStart;
|
|
|
|
if (dx < 0)
|
|
return;
|
|
|
|
// slopes
|
|
const f32 invDeltaX = fill_step_x(line.x[1] - line.x[0]);
|
|
|
|
#ifdef IPOL_Z
|
|
slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_W
|
|
slopeW = (line.w[1] - line.w[0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_C0
|
|
slopeC[0] = (line.c[0][1] - line.c[0][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_C1
|
|
slopeC[1] = (line.c[1][1] - line.c[1][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_C2
|
|
slopeC[2] = (line.c[2][1] - line.c[2][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_C3
|
|
slopeC[3] = (line.c[3][1] - line.c[3][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_T0
|
|
slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_T1
|
|
slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_T2
|
|
slopeT[2] = (line.t[2][1] - line.t[2][0]) * invDeltaX;
|
|
#endif
|
|
#ifdef IPOL_L0
|
|
slopeL[0] = (line.l[0][1] - line.l[0][0]) * invDeltaX;
|
|
#endif
|
|
|
|
#ifdef SUBTEXEL
|
|
subPixel = ((f32)xStart) - line.x[0];
|
|
#ifdef IPOL_Z
|
|
line.z[0] += slopeZ * subPixel;
|
|
#endif
|
|
#ifdef IPOL_W
|
|
line.w[0] += slopeW * subPixel;
|
|
#endif
|
|
#ifdef IPOL_C0
|
|
line.c[0][0] += slopeC[0] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_C1
|
|
line.c[1][0] += slopeC[1] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_C2
|
|
line.c[2][0] += slopeC[2] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_C3
|
|
line.c[3][0] += slopeC[3] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_T0
|
|
line.t[0][0] += slopeT[0] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_T1
|
|
line.t[1][0] += slopeT[1] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_T2
|
|
line.t[2][0] += slopeT[2] * subPixel;
|
|
#endif
|
|
#ifdef IPOL_L0
|
|
line.l[0][0] += slopeL[0] * subPixel;
|
|
#endif
|
|
#endif
|
|
|
|
SOFTWARE_DRIVER_2_CLIPCHECK;
|
|
dst = (tVideoSample*)RenderTarget->getData() + (line.y * RenderTarget->getDimension().Width) + xStart;
|
|
|
|
#ifdef USE_ZBUFFER
|
|
z = (fp24*)DepthBuffer->lock() + (line.y * RenderTarget->getDimension().Width) + xStart;
|
|
#endif
|
|
|
|
|
|
f32 inversew = FIX_POINT_F32_MUL;
|
|
|
|
tFixPoint tx0, ty0;
|
|
|
|
#ifdef IPOL_T1
|
|
tFixPoint tx1, ty1;
|
|
#endif
|
|
|
|
tFixPoint r0, g0, b0;
|
|
tFixPoint r1, g1, b1,a1;
|
|
tFixPoint r2, g2, b2;
|
|
|
|
#ifdef IPOL_L0
|
|
tFixPoint lx, ly, lz;
|
|
sVec4 norm;
|
|
#endif
|
|
tFixPoint ndotl = FIX_POINT_ONE;
|
|
|
|
|
|
#ifdef IPOL_C0
|
|
tFixPoint a3, r3, g3, b3;
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
tFixPoint aFog = FIX_POINT_ONE;
|
|
#endif
|
|
|
|
|
|
for (s32 i = 0; i <= dx; i += SOFTWARE_DRIVER_2_STEP_X)
|
|
{
|
|
#ifdef CMP_Z
|
|
if (line.z[0] < z[i])
|
|
#endif
|
|
#ifdef CMP_W
|
|
if (line.w[0] >= z[i])
|
|
#endif
|
|
{
|
|
#ifdef INVERSE_W
|
|
inversew = fix_inverse32(line.w[0]);
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
//vertex alpha blend ( and omit depthwrite ,hacky..)
|
|
a3 = tofix(line.c[0][0].a, inversew);
|
|
if (a3 + 2 >= FIX_POINT_ONE)
|
|
{
|
|
#ifdef WRITE_Z
|
|
z[i] = line.z[0];
|
|
#endif
|
|
#ifdef WRITE_W
|
|
z[i] = line.w[0];
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
//complete inside fog
|
|
if (TL_Flag & TL_FOG)
|
|
{
|
|
aFog = tofix(line.c[1][0].a, inversew);
|
|
if (aFog <= 0)
|
|
{
|
|
dst[i] = fog_color_sample;
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
tx1 = tofix(line.t[1][0].x, inversew);
|
|
ty1 = tofix(line.t[1][0].y, inversew);
|
|
|
|
// normal map height
|
|
getSample_texture(a1, &IT[1], tx1, ty1);
|
|
|
|
// xyz * 2 - 1
|
|
a1 = (a1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
|
|
tFixPoint ofs = imulFix_simple(a1,CurrentScaleFix[0]);
|
|
//eyevector
|
|
#ifdef IPOL_L0
|
|
#if 0
|
|
norm.x = line.l[0][0].x * inversew;
|
|
norm.y = line.l[0][0].y * inversew;
|
|
norm.z = line.l[0][0].z * inversew;
|
|
norm.normalize_dir_xyz_zero();
|
|
|
|
lx = tofix(norm.x, FIX_POINT_F32_MUL);
|
|
ly = tofix(norm.y, FIX_POINT_F32_MUL);
|
|
#else
|
|
lx = tofix(line.l[0][0].x, inversew);
|
|
ly = tofix(line.l[0][0].y, inversew);
|
|
#endif
|
|
//lz = tofix(line.l[0][0].z, inversew);
|
|
|
|
#endif
|
|
// vec2 TexCoord = EyeVector.xy * TempFetch.w + vTexCoord;
|
|
tx0 = tofix(line.t[0][0].x, inversew) + imulFix_simple(lx, ofs);
|
|
ty0 = tofix(line.t[0][0].y, inversew) + imulFix_simple(ly, ofs);
|
|
|
|
// diffuse map
|
|
getSample_texture(r0, g0, b0, &IT[0], tx0, ty0);
|
|
|
|
ofs = imulFix_simple(a1, CurrentScaleFix[1]);
|
|
tx1 += imulFix_simple(lx, ofs);
|
|
ty1 += imulFix_simple(ly, ofs);
|
|
|
|
// normal map ( same texcoord0 but different mipmapping)
|
|
getSample_texture(r1, g1, b1, &IT[1], tx1, ty1);
|
|
|
|
|
|
// normal: xyz * 2 - 1
|
|
r1 = (r1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
|
|
g1 = (g1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
|
|
b1 = (b1 - FIX_POINT_HALF_COLOR) >> (COLOR_MAX_LOG2 - 1);
|
|
|
|
|
|
//lightvector
|
|
lx = tofix(line.c[2][0].x, inversew);
|
|
ly = tofix(line.c[2][0].y, inversew);
|
|
lz = tofix(line.c[2][0].z, inversew);
|
|
//omit normalize
|
|
//max(dot(LightVector, Normal), 0.0);
|
|
ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz)));
|
|
|
|
#ifdef IPOL_C0
|
|
|
|
//LightColor[0] * lambert
|
|
r3 = imulFix_simple(tofix(line.c[0][0].r, inversew), ndotl);
|
|
g3 = imulFix_simple(tofix(line.c[0][0].g, inversew), ndotl);
|
|
b3 = imulFix_simple(tofix(line.c[0][0].b, inversew), ndotl);
|
|
|
|
//lightvector1
|
|
lx = tofix(line.c[3][0].x, inversew);
|
|
ly = tofix(line.c[3][0].y, inversew);
|
|
lz = tofix(line.c[3][0].z, inversew);
|
|
//omit normalize
|
|
ndotl = clampfix_mincolor((imulFix_simple(r1, lx) + imulFix_simple(g1, ly) + imulFix_simple(b1, lz)));
|
|
|
|
//LightColor[1] * lambert
|
|
r3 += imulFix_simple(tofix(line.c[1][0].r, inversew), ndotl);
|
|
g3 += imulFix_simple(tofix(line.c[1][0].g, inversew), ndotl);
|
|
b3 += imulFix_simple(tofix(line.c[1][0].b, inversew), ndotl);
|
|
|
|
// (Lambert0 * LightColor[0] + Lambert1 * LightColor[1]) * Diffuse Texture;
|
|
r2 = clampfix_maxcolor(imulFix_simple(r3, r0));
|
|
g2 = clampfix_maxcolor(imulFix_simple(g3, g0));
|
|
b2 = clampfix_maxcolor(imulFix_simple(b3, b0));
|
|
|
|
//vertex alpha blend ( and omit depthwrite ,hacky..)
|
|
if (a3 + 2 < FIX_POINT_ONE)
|
|
{
|
|
color_to_fix(r1, g1, b1, dst[i]);
|
|
r2 = r1 + imulFix(a3, r2 - r1);
|
|
g2 = g1 + imulFix(a3, g2 - g1);
|
|
b2 = b1 + imulFix(a3, b2 - b1);
|
|
}
|
|
|
|
#ifdef IPOL_C1
|
|
//mix with distance
|
|
if (aFog < FIX_POINT_ONE) //TL_Flag & TL_FOG)
|
|
{
|
|
r2 = fog_color[1] + imulFix(aFog, r2 - fog_color[1]);
|
|
g2 = fog_color[2] + imulFix(aFog, g2 - fog_color[2]);
|
|
b2 = fog_color[3] + imulFix(aFog, b2 - fog_color[3]);
|
|
}
|
|
#endif
|
|
dst[i] = fix_to_sample(r2, g2, b2);
|
|
|
|
|
|
#else
|
|
r2 = imulFix_tex4(r0, r1);
|
|
g2 = imulFix_tex4(g0, g1);
|
|
b2 = imulFix_tex4(b0, b1);
|
|
dst[i] = fix_to_sample(r2, g2, b2);
|
|
#endif
|
|
|
|
}
|
|
|
|
#ifdef IPOL_Z
|
|
line.z[0] += slopeZ;
|
|
#endif
|
|
#ifdef IPOL_W
|
|
line.w[0] += slopeW;
|
|
#endif
|
|
#ifdef IPOL_C0
|
|
line.c[0][0] += slopeC[0];
|
|
#endif
|
|
#ifdef IPOL_C1
|
|
line.c[1][0] += slopeC[1];
|
|
#endif
|
|
#ifdef IPOL_C2
|
|
line.c[2][0] += slopeC[2];
|
|
#endif
|
|
#ifdef IPOL_C3
|
|
line.c[3][0] += slopeC[3];
|
|
#endif
|
|
#ifdef IPOL_T0
|
|
line.t[0][0] += slopeT[0];
|
|
#endif
|
|
#ifdef IPOL_T1
|
|
line.t[1][0] += slopeT[1];
|
|
#endif
|
|
#ifdef IPOL_T2
|
|
line.t[2][0] += slopeT[2];
|
|
#endif
|
|
#ifdef IPOL_L0
|
|
line.l[0][0] += slopeL[0];
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
void CBurningParallaxMap::drawTriangle(const s4DVertex* burning_restrict a, const s4DVertex* burning_restrict b, const s4DVertex* burning_restrict c)
|
|
{
|
|
// sort on height, y
|
|
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
|
|
if (F32_A_GREATER_B(b->Pos.y, c->Pos.y)) swapVertexPointer(&b, &c);
|
|
if (F32_A_GREATER_B(a->Pos.y, b->Pos.y)) swapVertexPointer(&a, &b);
|
|
|
|
const f32 ca = c->Pos.y - a->Pos.y;
|
|
const f32 ba = b->Pos.y - a->Pos.y;
|
|
const f32 cb = c->Pos.y - b->Pos.y;
|
|
// calculate delta y of the edges
|
|
scan.invDeltaY[0] = fill_step_y(ca);
|
|
scan.invDeltaY[1] = fill_step_y(ba);
|
|
scan.invDeltaY[2] = fill_step_y(cb);
|
|
|
|
if (F32_LOWER_EQUAL_0(scan.invDeltaY[0]))
|
|
return;
|
|
|
|
CurrentScaleFix[0] = tofix(CurrentScale, FIX_POINT_F32_MUL) << (IT[0].pitchlog2- SOFTWARE_DRIVER_2_TEXTURE_GRANULARITY);
|
|
CurrentScaleFix[1] = tofix(CurrentScale, FIX_POINT_F32_MUL) << (IT[1].pitchlog2 - SOFTWARE_DRIVER_2_TEXTURE_GRANULARITY);
|
|
|
|
// find if the major edge is left or right aligned
|
|
f32 temp[4];
|
|
|
|
temp[0] = a->Pos.x - c->Pos.x;
|
|
temp[1] = -ca;
|
|
temp[2] = b->Pos.x - a->Pos.x;
|
|
temp[3] = ba;
|
|
|
|
scan.left = (temp[0] * temp[3] - temp[1] * temp[2]) < 0.f ? 1 : 0;
|
|
scan.right = 1 - scan.left;
|
|
|
|
// calculate slopes for the major edge
|
|
scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
|
|
scan.x[0] = a->Pos.x;
|
|
|
|
#ifdef IPOL_Z
|
|
scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
|
|
scan.z[0] = a->Pos.z;
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
|
|
scan.w[0] = a->Pos.w;
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
|
|
scan.c[0][0] = a->Color[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.slopeC[1][0] = (c->Color[1] - a->Color[1]) * scan.invDeltaY[0];
|
|
scan.c[1][0] = a->Color[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.slopeC[2][0] = (c->Color[2] - a->Color[2]) * scan.invDeltaY[0];
|
|
scan.c[2][0] = a->Color[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.slopeC[3][0] = (c->Color[3] - a->Color[3]) * scan.invDeltaY[0];
|
|
scan.c[3][0] = a->Color[3];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
|
|
scan.t[0][0] = a->Tex[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
|
|
scan.t[1][0] = a->Tex[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.slopeT[2][0] = (c->Tex[2] - a->Tex[2]) * scan.invDeltaY[0];
|
|
scan.t[2][0] = a->Tex[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.slopeL[0][0] = (c->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[0];
|
|
scan.l[0][0] = a->LightTangent[0];
|
|
#endif
|
|
|
|
// top left fill convention y run
|
|
s32 yStart;
|
|
s32 yEnd;
|
|
|
|
#ifdef SUBTEXEL
|
|
f32 subPixel;
|
|
#endif
|
|
|
|
|
|
// rasterize upper sub-triangle
|
|
if (F32_GREATER_0(scan.invDeltaY[1]))
|
|
{
|
|
// calculate slopes for top edge
|
|
scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
|
|
scan.x[1] = a->Pos.x;
|
|
|
|
#ifdef IPOL_Z
|
|
scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
|
|
scan.z[1] = a->Pos.z;
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
|
|
scan.w[1] = a->Pos.w;
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
|
|
scan.c[0][1] = a->Color[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.slopeC[1][1] = (b->Color[1] - a->Color[1]) * scan.invDeltaY[1];
|
|
scan.c[1][1] = a->Color[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.slopeC[2][1] = (b->Color[2] - a->Color[2]) * scan.invDeltaY[1];
|
|
scan.c[2][1] = a->Color[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.slopeC[3][1] = (b->Color[3] - a->Color[3]) * scan.invDeltaY[1];
|
|
scan.c[3][1] = a->Color[3];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
|
|
scan.t[0][1] = a->Tex[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
|
|
scan.t[1][1] = a->Tex[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.slopeT[2][1] = (b->Tex[2] - a->Tex[2]) * scan.invDeltaY[1];
|
|
scan.t[2][1] = a->Tex[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.slopeL[0][1] = (b->LightTangent[0] - a->LightTangent[0]) * scan.invDeltaY[1];
|
|
scan.l[0][1] = a->LightTangent[0];
|
|
#endif
|
|
|
|
// apply top-left fill convention, top part
|
|
yStart = fill_convention_top(a->Pos.y);
|
|
yEnd = fill_convention_down(b->Pos.y);
|
|
|
|
#ifdef SUBTEXEL
|
|
subPixel = ((f32)yStart) - a->Pos.y;
|
|
|
|
// correct to pixel center
|
|
scan.x[0] += scan.slopeX[0] * subPixel;
|
|
scan.x[1] += scan.slopeX[1] * subPixel;
|
|
|
|
#ifdef IPOL_Z
|
|
scan.z[0] += scan.slopeZ[0] * subPixel;
|
|
scan.z[1] += scan.slopeZ[1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.w[0] += scan.slopeW[0] * subPixel;
|
|
scan.w[1] += scan.slopeW[1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
|
|
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
|
|
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
|
|
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.c[3][0] += scan.slopeC[3][0] * subPixel;
|
|
scan.c[3][1] += scan.slopeC[3][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
|
|
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
|
|
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.t[2][0] += scan.slopeT[2][0] * subPixel;
|
|
scan.t[2][1] += scan.slopeT[2][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
|
|
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// rasterize the edge scanlines
|
|
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
|
|
{
|
|
line.x[scan.left] = scan.x[0];
|
|
line.x[scan.right] = scan.x[1];
|
|
|
|
#ifdef IPOL_Z
|
|
line.z[scan.left] = scan.z[0];
|
|
line.z[scan.right] = scan.z[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
line.w[scan.left] = scan.w[0];
|
|
line.w[scan.right] = scan.w[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
line.c[0][scan.left] = scan.c[0][0];
|
|
line.c[0][scan.right] = scan.c[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
line.c[1][scan.left] = scan.c[1][0];
|
|
line.c[1][scan.right] = scan.c[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
line.c[2][scan.left] = scan.c[2][0];
|
|
line.c[2][scan.right] = scan.c[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
line.c[3][scan.left] = scan.c[3][0];
|
|
line.c[3][scan.right] = scan.c[3][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
line.t[0][scan.left] = scan.t[0][0];
|
|
line.t[0][scan.right] = scan.t[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
line.t[1][scan.left] = scan.t[1][0];
|
|
line.t[1][scan.right] = scan.t[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
line.t[2][scan.left] = scan.t[2][0];
|
|
line.t[2][scan.right] = scan.t[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
line.l[0][scan.left] = scan.l[0][0];
|
|
line.l[0][scan.right] = scan.l[0][1];
|
|
#endif
|
|
|
|
// render a scanline
|
|
if_interlace_scanline fragmentShader();
|
|
|
|
scan.x[0] += scan.slopeX[0];
|
|
scan.x[1] += scan.slopeX[1];
|
|
|
|
#ifdef IPOL_Z
|
|
scan.z[0] += scan.slopeZ[0];
|
|
scan.z[1] += scan.slopeZ[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.w[0] += scan.slopeW[0];
|
|
scan.w[1] += scan.slopeW[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.c[0][0] += scan.slopeC[0][0];
|
|
scan.c[0][1] += scan.slopeC[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.c[1][0] += scan.slopeC[1][0];
|
|
scan.c[1][1] += scan.slopeC[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.c[2][0] += scan.slopeC[2][0];
|
|
scan.c[2][1] += scan.slopeC[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.c[3][0] += scan.slopeC[3][0];
|
|
scan.c[3][1] += scan.slopeC[3][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.t[0][0] += scan.slopeT[0][0];
|
|
scan.t[0][1] += scan.slopeT[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.t[1][0] += scan.slopeT[1][0];
|
|
scan.t[1][1] += scan.slopeT[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.t[2][0] += scan.slopeT[2][0];
|
|
scan.t[2][1] += scan.slopeT[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.l[0][0] += scan.slopeL[0][0];
|
|
scan.l[0][1] += scan.slopeL[0][1];
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
// rasterize lower sub-triangle
|
|
if (F32_GREATER_0(scan.invDeltaY[2]))
|
|
{
|
|
// advance to middle point
|
|
if (F32_GREATER_0(scan.invDeltaY[1]))
|
|
{
|
|
temp[0] = b->Pos.y - a->Pos.y; // dy
|
|
|
|
scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
|
|
#ifdef IPOL_Z
|
|
scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_W
|
|
scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_C0
|
|
scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_C1
|
|
scan.c[1][0] = a->Color[1] + scan.slopeC[1][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_C2
|
|
scan.c[2][0] = a->Color[2] + scan.slopeC[2][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_C3
|
|
scan.c[3][0] = a->Color[3] + scan.slopeC[3][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_T0
|
|
scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_T1
|
|
scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_T2
|
|
scan.t[2][0] = a->Tex[2] + scan.slopeT[2][0] * temp[0];
|
|
#endif
|
|
#ifdef IPOL_L0
|
|
scan.l[0][0] = sVec3Pack_unpack(a->LightTangent[0]) + scan.slopeL[0][0] * temp[0];
|
|
#endif
|
|
|
|
}
|
|
|
|
// calculate slopes for bottom edge
|
|
scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
|
|
scan.x[1] = b->Pos.x;
|
|
|
|
#ifdef IPOL_Z
|
|
scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
|
|
scan.z[1] = b->Pos.z;
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
|
|
scan.w[1] = b->Pos.w;
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
|
|
scan.c[0][1] = b->Color[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.slopeC[1][1] = (c->Color[1] - b->Color[1]) * scan.invDeltaY[2];
|
|
scan.c[1][1] = b->Color[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.slopeC[2][1] = (c->Color[2] - b->Color[2]) * scan.invDeltaY[2];
|
|
scan.c[2][1] = b->Color[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.slopeC[3][1] = (c->Color[3] - b->Color[3]) * scan.invDeltaY[2];
|
|
scan.c[3][1] = b->Color[3];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
|
|
scan.t[0][1] = b->Tex[0];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
|
|
scan.t[1][1] = b->Tex[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.slopeT[2][1] = (c->Tex[2] - b->Tex[2]) * scan.invDeltaY[2];
|
|
scan.t[2][1] = b->Tex[2];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.slopeL[0][1] = (c->LightTangent[0] - b->LightTangent[0]) * scan.invDeltaY[2];
|
|
scan.l[0][1] = b->LightTangent[0];
|
|
#endif
|
|
|
|
// apply top-left fill convention, top part
|
|
yStart = fill_convention_top(b->Pos.y);
|
|
yEnd = fill_convention_down(c->Pos.y);
|
|
|
|
#ifdef SUBTEXEL
|
|
subPixel = ((f32)yStart) - b->Pos.y;
|
|
|
|
// correct to pixel center
|
|
scan.x[0] += scan.slopeX[0] * subPixel;
|
|
scan.x[1] += scan.slopeX[1] * subPixel;
|
|
|
|
#ifdef IPOL_Z
|
|
scan.z[0] += scan.slopeZ[0] * subPixel;
|
|
scan.z[1] += scan.slopeZ[1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.w[0] += scan.slopeW[0] * subPixel;
|
|
scan.w[1] += scan.slopeW[1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.c[0][0] += scan.slopeC[0][0] * subPixel;
|
|
scan.c[0][1] += scan.slopeC[0][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.c[1][0] += scan.slopeC[1][0] * subPixel;
|
|
scan.c[1][1] += scan.slopeC[1][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.c[2][0] += scan.slopeC[2][0] * subPixel;
|
|
scan.c[2][1] += scan.slopeC[2][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.c[3][0] += scan.slopeC[3][0] * subPixel;
|
|
scan.c[3][1] += scan.slopeC[3][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.t[0][0] += scan.slopeT[0][0] * subPixel;
|
|
scan.t[0][1] += scan.slopeT[0][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.t[1][0] += scan.slopeT[1][0] * subPixel;
|
|
scan.t[1][1] += scan.slopeT[1][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
scan.t[2][0] += scan.slopeT[2][0] * subPixel;
|
|
scan.t[2][1] += scan.slopeT[2][1] * subPixel;
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.l[0][0] += scan.slopeL[0][0] * subPixel;
|
|
scan.l[0][1] += scan.slopeL[0][1] * subPixel;
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// rasterize the edge scanlines
|
|
for (line.y = yStart; line.y <= yEnd; line.y += SOFTWARE_DRIVER_2_STEP_Y)
|
|
{
|
|
line.x[scan.left] = scan.x[0];
|
|
line.x[scan.right] = scan.x[1];
|
|
|
|
#ifdef IPOL_Z
|
|
line.z[scan.left] = scan.z[0];
|
|
line.z[scan.right] = scan.z[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
line.w[scan.left] = scan.w[0];
|
|
line.w[scan.right] = scan.w[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
line.c[0][scan.left] = scan.c[0][0];
|
|
line.c[0][scan.right] = scan.c[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
line.c[1][scan.left] = scan.c[1][0];
|
|
line.c[1][scan.right] = scan.c[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
line.c[2][scan.left] = scan.c[2][0];
|
|
line.c[2][scan.right] = scan.c[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
line.c[3][scan.left] = scan.c[3][0];
|
|
line.c[3][scan.right] = scan.c[3][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
line.t[0][scan.left] = scan.t[0][0];
|
|
line.t[0][scan.right] = scan.t[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
line.t[1][scan.left] = scan.t[1][0];
|
|
line.t[1][scan.right] = scan.t[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T2
|
|
line.t[2][scan.left] = scan.t[2][0];
|
|
line.t[2][scan.right] = scan.t[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
line.l[0][scan.left] = scan.l[0][0];
|
|
line.l[0][scan.right] = scan.l[0][1];
|
|
#endif
|
|
|
|
// render a scanline
|
|
if_interlace_scanline fragmentShader();
|
|
|
|
scan.x[0] += scan.slopeX[0];
|
|
scan.x[1] += scan.slopeX[1];
|
|
|
|
#ifdef IPOL_Z
|
|
scan.z[0] += scan.slopeZ[0];
|
|
scan.z[1] += scan.slopeZ[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_W
|
|
scan.w[0] += scan.slopeW[0];
|
|
scan.w[1] += scan.slopeW[1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C0
|
|
scan.c[0][0] += scan.slopeC[0][0];
|
|
scan.c[0][1] += scan.slopeC[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C1
|
|
scan.c[1][0] += scan.slopeC[1][0];
|
|
scan.c[1][1] += scan.slopeC[1][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C2
|
|
scan.c[2][0] += scan.slopeC[2][0];
|
|
scan.c[2][1] += scan.slopeC[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_C3
|
|
scan.c[3][0] += scan.slopeC[3][0];
|
|
scan.c[3][1] += scan.slopeC[3][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T0
|
|
scan.t[0][0] += scan.slopeT[0][0];
|
|
scan.t[0][1] += scan.slopeT[0][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_T1
|
|
scan.t[1][0] += scan.slopeT[1][0];
|
|
scan.t[1][1] += scan.slopeT[1][1];
|
|
#endif
|
|
#ifdef IPOL_T2
|
|
scan.t[2][0] += scan.slopeT[2][0];
|
|
scan.t[2][1] += scan.slopeT[2][1];
|
|
#endif
|
|
|
|
#ifdef IPOL_L0
|
|
scan.l[0][0] += scan.slopeL[0][0];
|
|
scan.l[0][1] += scan.slopeL[0][1];
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Called by the engine when the vertex and/or pixel shader constants for an
|
|
//! material renderer should be set.
|
|
void CBurningParallaxMap::OnSetConstants(IMaterialRendererServices* services, s32 userData)
|
|
{
|
|
#if 0
|
|
video::IVideoDriver* driver = services->getVideoDriver();
|
|
|
|
// set transposed world matrix
|
|
const core::matrix4& tWorld = driver->getTransform(video::ETS_WORLD).getTransposed();
|
|
services->setVertexShaderConstant(tWorld.pointer(), 0, 4);
|
|
|
|
// set transposed worldViewProj matrix
|
|
core::matrix4 worldViewProj(driver->getTransform(video::ETS_PROJECTION));
|
|
worldViewProj *= driver->getTransform(video::ETS_VIEW);
|
|
worldViewProj *= driver->getTransform(video::ETS_WORLD);
|
|
core::matrix4 tr(worldViewProj.getTransposed());
|
|
services->setVertexShaderConstant(tr.pointer(), 8, 4);
|
|
|
|
// here we fetch the fixed function lights from the driver
|
|
// and set them as constants
|
|
|
|
u32 cnt = driver->getDynamicLightCount();
|
|
|
|
// Load the inverse world matrix.
|
|
core::matrix4 invWorldMat;
|
|
driver->getTransform(video::ETS_WORLD).getInverse(invWorldMat);
|
|
|
|
for (u32 i = 0; i < 2; ++i)
|
|
{
|
|
video::SLight light;
|
|
|
|
if (i < cnt)
|
|
light = driver->getDynamicLight(i);
|
|
else
|
|
{
|
|
light.DiffuseColor.set(0, 0, 0); // make light dark
|
|
light.Radius = 1.0f;
|
|
}
|
|
|
|
light.DiffuseColor.a = 1.0f / (light.Radius * light.Radius); // set attenuation
|
|
|
|
// Transform the light by the inverse world matrix to get it into object space.
|
|
invWorldMat.transformVect(light.Position);
|
|
|
|
services->setVertexShaderConstant(
|
|
reinterpret_cast<const f32*>(&light.Position), 12 + (i * 2), 1);
|
|
|
|
services->setVertexShaderConstant(
|
|
reinterpret_cast<const f32*>(&light.DiffuseColor), 13 + (i * 2), 1);
|
|
}
|
|
|
|
// Obtain the view position by transforming 0,0,0 by the inverse view matrix
|
|
// and then multiply this by the inverse world matrix.
|
|
core::vector3df viewPos(0.0f, 0.0f, 0.0f);
|
|
core::matrix4 inverseView;
|
|
driver->getTransform(video::ETS_VIEW).getInverse(inverseView);
|
|
inverseView.transformVect(viewPos);
|
|
invWorldMat.transformVect(viewPos);
|
|
services->setVertexShaderConstant(reinterpret_cast<const f32*>(&viewPos.X), 16, 1);
|
|
|
|
// set scale factor
|
|
f32 factor = 0.02f; // default value
|
|
if (CurrentScale != 0.0f)
|
|
factor = CurrentScale;
|
|
|
|
f32 c6[] = { factor, factor, factor, factor };
|
|
services->setPixelShaderConstant(c6, 0, 1);
|
|
#endif
|
|
}
|
|
|
|
burning_namespace_end
|
|
|
|
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
|
|
|
|
burning_namespace_start
|
|
|
|
|
|
IBurningShader* createTRParallaxMap(CBurningVideoDriver* driver, s32& outMaterialTypeNr, E_MATERIAL_TYPE baseMaterial)
|
|
{
|
|
#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
|
|
return new CBurningParallaxMap(driver, outMaterialTypeNr, baseMaterial);
|
|
#else
|
|
return 0;
|
|
#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
|
|
}
|
|
|
|
burning_namespace_end
|