2024-03-21 20:13:15 +01:00
|
|
|
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
|
|
// This file is part of the "Irrlicht Engine".
|
|
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <cstring> // memset, memcpy
|
|
|
|
#include "irrMath.h"
|
|
|
|
#include "vector3d.h"
|
|
|
|
#include "vector2d.h"
|
|
|
|
#include "plane3d.h"
|
|
|
|
#include "aabbox3d.h"
|
|
|
|
#include "rect.h"
|
|
|
|
#include "IrrCompileConfig.h" // for IRRLICHT_API
|
|
|
|
|
|
|
|
// enable this to keep track of changes to the matrix
|
|
|
|
// and make simpler identity check for seldom changing matrices
|
|
|
|
// otherwise identity check will always compare the elements
|
|
|
|
// #define USE_MATRIX_TEST
|
|
|
|
|
|
|
|
namespace irr
|
|
|
|
{
|
|
|
|
namespace core
|
|
|
|
{
|
|
|
|
|
|
|
|
//! 4x4 matrix. Mostly used as transformation matrix for 3d calculations.
|
2024-05-14 23:48:36 +02:00
|
|
|
/** Conventions: Matrices are considered to be in row-major order.
|
|
|
|
* Multiplication of a matrix A with a row vector v is the premultiplication vA.
|
|
|
|
* Translations are thus in the 4th row.
|
|
|
|
* The matrix product AB yields a matrix C such that vC = (vB)A:
|
|
|
|
* B is applied first, then A.
|
|
|
|
*/
|
2024-03-21 20:13:15 +01:00
|
|
|
template <class T>
|
|
|
|
class CMatrix4
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! Constructor Flags
|
|
|
|
enum eConstructor
|
|
|
|
{
|
|
|
|
EM4CONST_NOTHING = 0,
|
|
|
|
EM4CONST_COPY,
|
|
|
|
EM4CONST_IDENTITY,
|
|
|
|
EM4CONST_TRANSPOSED,
|
|
|
|
EM4CONST_INVERSE,
|
|
|
|
EM4CONST_INVERSE_TRANSPOSED
|
|
|
|
};
|
|
|
|
|
|
|
|
//! Default constructor
|
|
|
|
/** \param constructor Choose the initialization style */
|
|
|
|
CMatrix4(eConstructor constructor = EM4CONST_IDENTITY);
|
|
|
|
|
|
|
|
//! Constructor with value initialization
|
|
|
|
constexpr CMatrix4(const T &r0c0, const T &r0c1, const T &r0c2, const T &r0c3,
|
|
|
|
const T &r1c0, const T &r1c1, const T &r1c2, const T &r1c3,
|
|
|
|
const T &r2c0, const T &r2c1, const T &r2c2, const T &r2c3,
|
|
|
|
const T &r3c0, const T &r3c1, const T &r3c2, const T &r3c3)
|
|
|
|
{
|
|
|
|
M[0] = r0c0;
|
|
|
|
M[1] = r0c1;
|
|
|
|
M[2] = r0c2;
|
|
|
|
M[3] = r0c3;
|
|
|
|
M[4] = r1c0;
|
|
|
|
M[5] = r1c1;
|
|
|
|
M[6] = r1c2;
|
|
|
|
M[7] = r1c3;
|
|
|
|
M[8] = r2c0;
|
|
|
|
M[9] = r2c1;
|
|
|
|
M[10] = r2c2;
|
|
|
|
M[11] = r2c3;
|
|
|
|
M[12] = r3c0;
|
|
|
|
M[13] = r3c1;
|
|
|
|
M[14] = r3c2;
|
|
|
|
M[15] = r3c3;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Copy constructor
|
|
|
|
/** \param other Other matrix to copy from
|
|
|
|
\param constructor Choose the initialization style */
|
|
|
|
CMatrix4(const CMatrix4<T> &other, eConstructor constructor = EM4CONST_COPY);
|
|
|
|
|
|
|
|
//! Simple operator for directly accessing every element of the matrix.
|
|
|
|
T &operator()(const s32 row, const s32 col)
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return M[row * 4 + col];
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Simple operator for directly accessing every element of the matrix.
|
|
|
|
const T &operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; }
|
|
|
|
|
|
|
|
//! Simple operator for linearly accessing every element of the matrix.
|
|
|
|
T &operator[](u32 index)
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return M[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Simple operator for linearly accessing every element of the matrix.
|
|
|
|
const T &operator[](u32 index) const { return M[index]; }
|
|
|
|
|
|
|
|
//! Sets this matrix equal to the other matrix.
|
|
|
|
CMatrix4<T> &operator=(const CMatrix4<T> &other) = default;
|
|
|
|
|
|
|
|
//! Sets all elements of this matrix to the value.
|
|
|
|
inline CMatrix4<T> &operator=(const T &scalar);
|
|
|
|
|
|
|
|
//! Returns pointer to internal array
|
|
|
|
const T *pointer() const { return M; }
|
|
|
|
T *pointer()
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return M;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Returns true if other matrix is equal to this matrix.
|
|
|
|
constexpr bool operator==(const CMatrix4<T> &other) const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
for (s32 i = 0; i < 16; ++i)
|
|
|
|
if (M[i] != other.M[i])
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Returns true if other matrix is not equal to this matrix.
|
|
|
|
constexpr bool operator!=(const CMatrix4<T> &other) const
|
|
|
|
{
|
|
|
|
return !(*this == other);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Add another matrix.
|
|
|
|
CMatrix4<T> operator+(const CMatrix4<T> &other) const;
|
|
|
|
|
|
|
|
//! Add another matrix.
|
|
|
|
CMatrix4<T> &operator+=(const CMatrix4<T> &other);
|
|
|
|
|
|
|
|
//! Subtract another matrix.
|
|
|
|
CMatrix4<T> operator-(const CMatrix4<T> &other) const;
|
|
|
|
|
|
|
|
//! Subtract another matrix.
|
|
|
|
CMatrix4<T> &operator-=(const CMatrix4<T> &other);
|
|
|
|
|
|
|
|
//! set this matrix to the product of two matrices
|
|
|
|
/** Calculate b*a */
|
|
|
|
inline CMatrix4<T> &setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
|
|
|
|
|
|
|
|
//! Set this matrix to the product of two matrices
|
|
|
|
/** Calculate b*a, no optimization used,
|
|
|
|
use it if you know you never have an identity matrix */
|
|
|
|
CMatrix4<T> &setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
|
|
|
|
|
|
|
|
//! Multiply by another matrix.
|
|
|
|
/** Calculate other*this */
|
|
|
|
CMatrix4<T> operator*(const CMatrix4<T> &other) const;
|
|
|
|
|
|
|
|
//! Multiply by another matrix.
|
|
|
|
/** Like calling: (*this) = (*this) * other
|
|
|
|
*/
|
|
|
|
CMatrix4<T> &operator*=(const CMatrix4<T> &other);
|
|
|
|
|
|
|
|
//! Multiply by scalar.
|
|
|
|
CMatrix4<T> operator*(const T &scalar) const;
|
|
|
|
|
|
|
|
//! Multiply by scalar.
|
|
|
|
CMatrix4<T> &operator*=(const T &scalar);
|
|
|
|
|
|
|
|
//! Set matrix to identity.
|
|
|
|
inline CMatrix4<T> &makeIdentity();
|
|
|
|
|
|
|
|
//! Returns true if the matrix is the identity matrix
|
|
|
|
inline bool isIdentity() const;
|
|
|
|
|
|
|
|
//! Returns true if the matrix is orthogonal
|
|
|
|
inline bool isOrthogonal() const;
|
|
|
|
|
|
|
|
//! Returns true if the matrix is the identity matrix
|
|
|
|
bool isIdentity_integer_base() const;
|
|
|
|
|
|
|
|
//! Set the translation of the current matrix. Will erase any previous values.
|
|
|
|
CMatrix4<T> &setTranslation(const vector3d<T> &translation);
|
|
|
|
|
|
|
|
//! Gets the current translation
|
|
|
|
vector3d<T> getTranslation() const;
|
|
|
|
|
|
|
|
//! Set the inverse translation of the current matrix. Will erase any previous values.
|
|
|
|
CMatrix4<T> &setInverseTranslation(const vector3d<T> &translation);
|
|
|
|
|
|
|
|
//! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
|
|
|
|
inline CMatrix4<T> &setRotationRadians(const vector3d<T> &rotation);
|
|
|
|
|
|
|
|
//! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
|
|
|
|
CMatrix4<T> &setRotationDegrees(const vector3d<T> &rotation);
|
|
|
|
|
|
|
|
//! Get the rotation, as set by setRotation() when you already know the scale used to create the matrix
|
|
|
|
/** NOTE: The scale needs to be the correct one used to create this matrix.
|
|
|
|
You can _not_ use the result of getScale(), but have to save your scale
|
|
|
|
variable in another place (like ISceneNode does).
|
|
|
|
NOTE: No scale value can be 0 or the result is undefined.
|
|
|
|
NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
|
|
|
|
but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
|
|
|
|
NOTE: It will (usually) give wrong results when further transformations have been added in the matrix (like shear).
|
|
|
|
WARNING: There have been troubles with this function over the years and we may still have missed some corner cases.
|
|
|
|
It's generally safer to keep the rotation and scale you used to create the matrix around and work with those.
|
|
|
|
*/
|
|
|
|
core::vector3d<T> getRotationDegrees(const vector3d<T> &scale) const;
|
|
|
|
|
|
|
|
//! Returns the rotation, as set by setRotation().
|
|
|
|
/** NOTE: You will have the same end-rotation as used in setRotation, but it might not use the same axis values.
|
|
|
|
NOTE: This only works correct if no other matrix operations have been done on the inner 3x3 matrix besides
|
|
|
|
setting rotation (so no scale/shear). Thought it (probably) works as long as scale doesn't flip handedness.
|
|
|
|
NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
|
|
|
|
but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
|
|
|
|
*/
|
|
|
|
core::vector3d<T> getRotationDegrees() const;
|
|
|
|
|
|
|
|
//! Make an inverted rotation matrix from Euler angles.
|
|
|
|
/** The 4th row and column are unmodified. */
|
|
|
|
inline CMatrix4<T> &setInverseRotationRadians(const vector3d<T> &rotation);
|
|
|
|
|
|
|
|
//! Make an inverted rotation matrix from Euler angles.
|
|
|
|
/** The 4th row and column are unmodified. */
|
|
|
|
inline CMatrix4<T> &setInverseRotationDegrees(const vector3d<T> &rotation);
|
|
|
|
|
|
|
|
//! Make a rotation matrix from angle and axis, assuming left handed rotation.
|
|
|
|
/** The 4th row and column are unmodified. */
|
|
|
|
inline CMatrix4<T> &setRotationAxisRadians(const T &angle, const vector3d<T> &axis);
|
|
|
|
|
|
|
|
//! Set Scale
|
|
|
|
CMatrix4<T> &setScale(const vector3d<T> &scale);
|
|
|
|
|
|
|
|
//! Set Scale
|
|
|
|
CMatrix4<T> &setScale(const T scale) { return setScale(core::vector3d<T>(scale, scale, scale)); }
|
|
|
|
|
|
|
|
//! Get Scale
|
|
|
|
core::vector3d<T> getScale() const;
|
|
|
|
|
|
|
|
//! Translate a vector by the inverse of the translation part of this matrix.
|
|
|
|
void inverseTranslateVect(vector3df &vect) const;
|
|
|
|
|
2024-05-14 23:48:36 +02:00
|
|
|
//! Scale a vector, then rotate by the inverse of the rotation part of this matrix.
|
|
|
|
[[nodiscard]] vector3d<T> scaleThenInvRotVect(const vector3d<T> &vect) const;
|
2024-03-21 20:13:15 +01:00
|
|
|
|
2024-05-14 23:48:36 +02:00
|
|
|
//! Rotate and scale a vector. Applies both rotation & scale part of the matrix.
|
|
|
|
[[nodiscard]] vector3d<T> rotateAndScaleVect(const vector3d<T> &vect) const;
|
2024-03-21 20:13:15 +01:00
|
|
|
|
|
|
|
//! Transforms the vector by this matrix
|
|
|
|
/** This operation is performed as if the vector was 4d with the 4th component =1 */
|
|
|
|
void transformVect(vector3df &vect) const;
|
|
|
|
|
|
|
|
//! Transforms input vector by this matrix and stores result in output vector
|
|
|
|
/** This operation is performed as if the vector was 4d with the 4th component =1 */
|
|
|
|
void transformVect(vector3df &out, const vector3df &in) const;
|
|
|
|
|
|
|
|
//! An alternate transform vector method, writing into an array of 4 floats
|
|
|
|
/** This operation is performed as if the vector was 4d with the 4th component =1.
|
|
|
|
NOTE: out[3] will be written to (4th vector component)*/
|
|
|
|
void transformVect(T *out, const core::vector3df &in) const;
|
|
|
|
|
|
|
|
//! An alternate transform vector method, reading from and writing to an array of 3 floats
|
|
|
|
/** This operation is performed as if the vector was 4d with the 4th component =1
|
|
|
|
NOTE: out[3] will be written to (4th vector component)*/
|
|
|
|
void transformVec3(T *out, const T *in) const;
|
|
|
|
|
|
|
|
//! An alternate transform vector method, reading from and writing to an array of 4 floats
|
|
|
|
void transformVec4(T *out, const T *in) const;
|
|
|
|
|
|
|
|
//! Translate a vector by the translation part of this matrix.
|
|
|
|
/** This operation is performed as if the vector was 4d with the 4th component =1 */
|
|
|
|
void translateVect(vector3df &vect) const;
|
|
|
|
|
|
|
|
//! Transforms a plane by this matrix
|
|
|
|
void transformPlane(core::plane3d<f32> &plane) const;
|
|
|
|
|
|
|
|
//! Transforms a plane by this matrix
|
|
|
|
void transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const;
|
|
|
|
|
|
|
|
//! Transforms a axis aligned bounding box
|
|
|
|
void transformBoxEx(core::aabbox3d<f32> &box) const;
|
|
|
|
|
|
|
|
//! Multiplies this matrix by a 1x4 matrix
|
|
|
|
void multiplyWith1x4Matrix(T *matrix) const;
|
|
|
|
|
|
|
|
//! Calculates inverse of matrix. Slow.
|
|
|
|
/** \return Returns false if there is no inverse matrix.*/
|
|
|
|
bool makeInverse();
|
|
|
|
|
|
|
|
//! Inverts a primitive matrix which only contains a translation and a rotation
|
|
|
|
/** \param out: where result matrix is written to. */
|
|
|
|
bool getInversePrimitive(CMatrix4<T> &out) const;
|
|
|
|
|
|
|
|
//! Gets the inverse matrix of this one
|
|
|
|
/** \param out: where result matrix is written to.
|
|
|
|
\return Returns false if there is no inverse matrix. */
|
|
|
|
bool getInverse(CMatrix4<T> &out) const;
|
|
|
|
|
|
|
|
//! Builds a right-handed perspective projection matrix based on a field of view
|
|
|
|
//\param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style).
|
|
|
|
CMatrix4<T> &buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a left-handed perspective projection matrix based on a field of view
|
|
|
|
CMatrix4<T> &buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a left-handed perspective projection matrix based on a field of view, with far plane at infinity
|
|
|
|
CMatrix4<T> &buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon = 0);
|
|
|
|
|
|
|
|
//! Builds a right-handed perspective projection matrix.
|
|
|
|
CMatrix4<T> &buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a left-handed perspective projection matrix.
|
|
|
|
CMatrix4<T> &buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a left-handed orthogonal projection matrix.
|
|
|
|
//\param zClipFromZero: Clipping of z can be projected from 0 to 1 when true (D3D style) and from -1 to 1 when false (OGL style).
|
|
|
|
CMatrix4<T> &buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a right-handed orthogonal projection matrix.
|
|
|
|
CMatrix4<T> &buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
|
|
|
|
|
|
|
|
//! Builds a left-handed look-at matrix.
|
|
|
|
CMatrix4<T> &buildCameraLookAtMatrixLH(
|
|
|
|
const vector3df &position,
|
|
|
|
const vector3df &target,
|
|
|
|
const vector3df &upVector);
|
|
|
|
|
|
|
|
//! Builds a right-handed look-at matrix.
|
|
|
|
CMatrix4<T> &buildCameraLookAtMatrixRH(
|
|
|
|
const vector3df &position,
|
|
|
|
const vector3df &target,
|
|
|
|
const vector3df &upVector);
|
|
|
|
|
|
|
|
//! Builds a matrix that flattens geometry into a plane.
|
|
|
|
/** \param light: light source
|
|
|
|
\param plane: plane into which the geometry if flattened into
|
|
|
|
\param point: value between 0 and 1, describing the light source.
|
|
|
|
If this is 1, it is a point light, if it is 0, it is a directional light. */
|
|
|
|
CMatrix4<T> &buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point = 1.0f);
|
|
|
|
|
|
|
|
//! Builds a matrix which transforms a normalized Device Coordinate to Device Coordinates.
|
|
|
|
/** Used to scale <-1,-1><1,1> to viewport, for example from <-1,-1> <1,1> to the viewport <0,0><0,640> */
|
|
|
|
CMatrix4<T> &buildNDCToDCMatrix(const core::rect<s32> &area, f32 zScale);
|
|
|
|
|
|
|
|
//! Creates a new matrix as interpolated matrix from two other ones.
|
|
|
|
/** \param b: other matrix to interpolate with
|
|
|
|
\param time: Must be a value between 0 and 1. */
|
|
|
|
CMatrix4<T> interpolate(const core::CMatrix4<T> &b, f32 time) const;
|
|
|
|
|
|
|
|
//! Gets transposed matrix
|
|
|
|
CMatrix4<T> getTransposed() const;
|
|
|
|
|
|
|
|
//! Gets transposed matrix
|
|
|
|
inline void getTransposed(CMatrix4<T> &dest) const;
|
|
|
|
|
|
|
|
//! Builds a matrix that rotates from one vector to another
|
|
|
|
/** \param from: vector to rotate from
|
|
|
|
\param to: vector to rotate to
|
|
|
|
*/
|
|
|
|
CMatrix4<T> &buildRotateFromTo(const core::vector3df &from, const core::vector3df &to);
|
|
|
|
|
|
|
|
//! Builds a combined matrix which translates to a center before rotation and translates from origin afterwards
|
|
|
|
/** \param center Position to rotate around
|
|
|
|
\param translate Translation applied after the rotation
|
|
|
|
*/
|
|
|
|
void setRotationCenter(const core::vector3df ¢er, const core::vector3df &translate);
|
|
|
|
|
|
|
|
//! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
|
|
|
|
/** \param camPos: viewer position in world coo
|
|
|
|
\param center: object position in world-coo and rotation pivot
|
|
|
|
\param translation: object final translation from center
|
|
|
|
\param axis: axis to rotate about
|
|
|
|
\param from: source vector to rotate from
|
|
|
|
*/
|
|
|
|
void buildAxisAlignedBillboard(const core::vector3df &camPos,
|
|
|
|
const core::vector3df ¢er,
|
|
|
|
const core::vector3df &translation,
|
|
|
|
const core::vector3df &axis,
|
|
|
|
const core::vector3df &from);
|
|
|
|
|
|
|
|
/*
|
|
|
|
construct 2D Texture transformations
|
|
|
|
rotate about center, scale, and transform.
|
|
|
|
*/
|
|
|
|
//! Set to a texture transformation matrix with the given parameters.
|
|
|
|
CMatrix4<T> &buildTextureTransform(f32 rotateRad,
|
|
|
|
const core::vector2df &rotatecenter,
|
|
|
|
const core::vector2df &translate,
|
|
|
|
const core::vector2df &scale);
|
|
|
|
|
|
|
|
//! Set texture transformation rotation
|
|
|
|
/** Rotate about z axis, recenter at (0.5,0.5).
|
|
|
|
Doesn't clear other elements than those affected
|
|
|
|
\param radAngle Angle in radians
|
|
|
|
\return Altered matrix */
|
|
|
|
CMatrix4<T> &setTextureRotationCenter(f32 radAngle);
|
|
|
|
|
|
|
|
//! Set texture transformation translation
|
|
|
|
/** Doesn't clear other elements than those affected.
|
|
|
|
\param x Offset on x axis
|
|
|
|
\param y Offset on y axis
|
|
|
|
\return Altered matrix */
|
|
|
|
CMatrix4<T> &setTextureTranslate(f32 x, f32 y);
|
|
|
|
|
|
|
|
//! Get texture transformation translation
|
|
|
|
/** \param x returns offset on x axis
|
|
|
|
\param y returns offset on y axis */
|
|
|
|
void getTextureTranslate(f32 &x, f32 &y) const;
|
|
|
|
|
|
|
|
//! Set texture transformation translation, using a transposed representation
|
|
|
|
/** Doesn't clear other elements than those affected.
|
|
|
|
\param x Offset on x axis
|
|
|
|
\param y Offset on y axis
|
|
|
|
\return Altered matrix */
|
|
|
|
CMatrix4<T> &setTextureTranslateTransposed(f32 x, f32 y);
|
|
|
|
|
|
|
|
//! Set texture transformation scale
|
|
|
|
/** Doesn't clear other elements than those affected.
|
|
|
|
\param sx Scale factor on x axis
|
|
|
|
\param sy Scale factor on y axis
|
|
|
|
\return Altered matrix. */
|
|
|
|
CMatrix4<T> &setTextureScale(f32 sx, f32 sy);
|
|
|
|
|
|
|
|
//! Get texture transformation scale
|
|
|
|
/** \param sx Returns x axis scale factor
|
|
|
|
\param sy Returns y axis scale factor */
|
|
|
|
void getTextureScale(f32 &sx, f32 &sy) const;
|
|
|
|
|
|
|
|
//! Set texture transformation scale, and recenter at (0.5,0.5)
|
|
|
|
/** Doesn't clear other elements than those affected.
|
|
|
|
\param sx Scale factor on x axis
|
|
|
|
\param sy Scale factor on y axis
|
|
|
|
\return Altered matrix. */
|
|
|
|
CMatrix4<T> &setTextureScaleCenter(f32 sx, f32 sy);
|
|
|
|
|
|
|
|
//! Sets all matrix data members at once
|
|
|
|
CMatrix4<T> &setM(const T *data);
|
|
|
|
|
|
|
|
//! Sets if the matrix is definitely identity matrix
|
|
|
|
void setDefinitelyIdentityMatrix(bool isDefinitelyIdentityMatrix);
|
|
|
|
|
|
|
|
//! Gets if the matrix is definitely identity matrix
|
|
|
|
bool getDefinitelyIdentityMatrix() const;
|
|
|
|
|
|
|
|
//! Compare two matrices using the equal method
|
|
|
|
bool equals(const core::CMatrix4<T> &other, const T tolerance = (T)ROUNDING_ERROR_f64) const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
//! Matrix data, stored in row-major order
|
|
|
|
T M[16];
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
//! Flag is this matrix is identity matrix
|
|
|
|
mutable u32 definitelyIdentityMatrix;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
// Default constructor
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T>::CMatrix4(eConstructor constructor)
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
:
|
|
|
|
definitelyIdentityMatrix(BIT_UNTESTED)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
switch (constructor) {
|
|
|
|
case EM4CONST_NOTHING:
|
|
|
|
case EM4CONST_COPY:
|
|
|
|
break;
|
|
|
|
case EM4CONST_IDENTITY:
|
|
|
|
case EM4CONST_INVERSE:
|
|
|
|
default:
|
|
|
|
makeIdentity();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy constructor
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T>::CMatrix4(const CMatrix4<T> &other, eConstructor constructor)
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
:
|
|
|
|
definitelyIdentityMatrix(BIT_UNTESTED)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
switch (constructor) {
|
|
|
|
case EM4CONST_IDENTITY:
|
|
|
|
makeIdentity();
|
|
|
|
break;
|
|
|
|
case EM4CONST_NOTHING:
|
|
|
|
break;
|
|
|
|
case EM4CONST_COPY:
|
|
|
|
*this = other;
|
|
|
|
break;
|
|
|
|
case EM4CONST_TRANSPOSED:
|
|
|
|
other.getTransposed(*this);
|
|
|
|
break;
|
|
|
|
case EM4CONST_INVERSE:
|
|
|
|
if (!other.getInverse(*this))
|
|
|
|
memset(M, 0, 16 * sizeof(T));
|
|
|
|
break;
|
|
|
|
case EM4CONST_INVERSE_TRANSPOSED:
|
|
|
|
if (!other.getInverse(*this))
|
|
|
|
memset(M, 0, 16 * sizeof(T));
|
|
|
|
else
|
|
|
|
*this = getTransposed();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Add another matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::operator+(const CMatrix4<T> &other) const
|
|
|
|
{
|
|
|
|
CMatrix4<T> temp(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
temp[0] = M[0] + other[0];
|
|
|
|
temp[1] = M[1] + other[1];
|
|
|
|
temp[2] = M[2] + other[2];
|
|
|
|
temp[3] = M[3] + other[3];
|
|
|
|
temp[4] = M[4] + other[4];
|
|
|
|
temp[5] = M[5] + other[5];
|
|
|
|
temp[6] = M[6] + other[6];
|
|
|
|
temp[7] = M[7] + other[7];
|
|
|
|
temp[8] = M[8] + other[8];
|
|
|
|
temp[9] = M[9] + other[9];
|
|
|
|
temp[10] = M[10] + other[10];
|
|
|
|
temp[11] = M[11] + other[11];
|
|
|
|
temp[12] = M[12] + other[12];
|
|
|
|
temp[13] = M[13] + other[13];
|
|
|
|
temp[14] = M[14] + other[14];
|
|
|
|
temp[15] = M[15] + other[15];
|
|
|
|
|
|
|
|
return temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Add another matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::operator+=(const CMatrix4<T> &other)
|
|
|
|
{
|
|
|
|
M[0] += other[0];
|
|
|
|
M[1] += other[1];
|
|
|
|
M[2] += other[2];
|
|
|
|
M[3] += other[3];
|
|
|
|
M[4] += other[4];
|
|
|
|
M[5] += other[5];
|
|
|
|
M[6] += other[6];
|
|
|
|
M[7] += other[7];
|
|
|
|
M[8] += other[8];
|
|
|
|
M[9] += other[9];
|
|
|
|
M[10] += other[10];
|
|
|
|
M[11] += other[11];
|
|
|
|
M[12] += other[12];
|
|
|
|
M[13] += other[13];
|
|
|
|
M[14] += other[14];
|
|
|
|
M[15] += other[15];
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Subtract another matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::operator-(const CMatrix4<T> &other) const
|
|
|
|
{
|
|
|
|
CMatrix4<T> temp(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
temp[0] = M[0] - other[0];
|
|
|
|
temp[1] = M[1] - other[1];
|
|
|
|
temp[2] = M[2] - other[2];
|
|
|
|
temp[3] = M[3] - other[3];
|
|
|
|
temp[4] = M[4] - other[4];
|
|
|
|
temp[5] = M[5] - other[5];
|
|
|
|
temp[6] = M[6] - other[6];
|
|
|
|
temp[7] = M[7] - other[7];
|
|
|
|
temp[8] = M[8] - other[8];
|
|
|
|
temp[9] = M[9] - other[9];
|
|
|
|
temp[10] = M[10] - other[10];
|
|
|
|
temp[11] = M[11] - other[11];
|
|
|
|
temp[12] = M[12] - other[12];
|
|
|
|
temp[13] = M[13] - other[13];
|
|
|
|
temp[14] = M[14] - other[14];
|
|
|
|
temp[15] = M[15] - other[15];
|
|
|
|
|
|
|
|
return temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Subtract another matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::operator-=(const CMatrix4<T> &other)
|
|
|
|
{
|
|
|
|
M[0] -= other[0];
|
|
|
|
M[1] -= other[1];
|
|
|
|
M[2] -= other[2];
|
|
|
|
M[3] -= other[3];
|
|
|
|
M[4] -= other[4];
|
|
|
|
M[5] -= other[5];
|
|
|
|
M[6] -= other[6];
|
|
|
|
M[7] -= other[7];
|
|
|
|
M[8] -= other[8];
|
|
|
|
M[9] -= other[9];
|
|
|
|
M[10] -= other[10];
|
|
|
|
M[11] -= other[11];
|
|
|
|
M[12] -= other[12];
|
|
|
|
M[13] -= other[13];
|
|
|
|
M[14] -= other[14];
|
|
|
|
M[15] -= other[15];
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Multiply by scalar.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::operator*(const T &scalar) const
|
|
|
|
{
|
|
|
|
CMatrix4<T> temp(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
temp[0] = M[0] * scalar;
|
|
|
|
temp[1] = M[1] * scalar;
|
|
|
|
temp[2] = M[2] * scalar;
|
|
|
|
temp[3] = M[3] * scalar;
|
|
|
|
temp[4] = M[4] * scalar;
|
|
|
|
temp[5] = M[5] * scalar;
|
|
|
|
temp[6] = M[6] * scalar;
|
|
|
|
temp[7] = M[7] * scalar;
|
|
|
|
temp[8] = M[8] * scalar;
|
|
|
|
temp[9] = M[9] * scalar;
|
|
|
|
temp[10] = M[10] * scalar;
|
|
|
|
temp[11] = M[11] * scalar;
|
|
|
|
temp[12] = M[12] * scalar;
|
|
|
|
temp[13] = M[13] * scalar;
|
|
|
|
temp[14] = M[14] * scalar;
|
|
|
|
temp[15] = M[15] * scalar;
|
|
|
|
|
|
|
|
return temp;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Multiply by scalar.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::operator*=(const T &scalar)
|
|
|
|
{
|
|
|
|
M[0] *= scalar;
|
|
|
|
M[1] *= scalar;
|
|
|
|
M[2] *= scalar;
|
|
|
|
M[3] *= scalar;
|
|
|
|
M[4] *= scalar;
|
|
|
|
M[5] *= scalar;
|
|
|
|
M[6] *= scalar;
|
|
|
|
M[7] *= scalar;
|
|
|
|
M[8] *= scalar;
|
|
|
|
M[9] *= scalar;
|
|
|
|
M[10] *= scalar;
|
|
|
|
M[11] *= scalar;
|
|
|
|
M[12] *= scalar;
|
|
|
|
M[13] *= scalar;
|
|
|
|
M[14] *= scalar;
|
|
|
|
M[15] *= scalar;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Multiply by another matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::operator*=(const CMatrix4<T> &other)
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
// do checks on your own in order to avoid copy creation
|
|
|
|
if (!other.isIdentity()) {
|
|
|
|
if (this->isIdentity()) {
|
|
|
|
return (*this = other);
|
|
|
|
} else {
|
|
|
|
CMatrix4<T> temp(*this);
|
|
|
|
return setbyproduct_nocheck(temp, other);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return *this;
|
|
|
|
#else
|
|
|
|
CMatrix4<T> temp(*this);
|
|
|
|
return setbyproduct_nocheck(temp, other);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//! multiply by another matrix
|
|
|
|
// set this matrix to the product of two other matrices
|
|
|
|
// goal is to reduce stack use and copy
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
|
|
|
|
{
|
|
|
|
const T *m1 = other_a.M;
|
|
|
|
const T *m2 = other_b.M;
|
|
|
|
|
|
|
|
M[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
|
|
|
|
M[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
|
|
|
|
M[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
|
|
|
|
M[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
|
|
|
|
|
|
|
|
M[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
|
|
|
|
M[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
|
|
|
|
M[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
|
|
|
|
M[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
|
|
|
|
|
|
|
|
M[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
|
|
|
|
M[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
|
|
|
|
M[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
|
|
|
|
M[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
|
|
|
|
|
|
|
|
M[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
|
|
|
|
M[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
|
|
|
|
M[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
|
|
|
|
M[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! multiply by another matrix
|
|
|
|
// set this matrix to the product of two other matrices
|
|
|
|
// goal is to reduce stack use and copy
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (other_a.isIdentity())
|
|
|
|
return (*this = other_b);
|
|
|
|
else if (other_b.isIdentity())
|
|
|
|
return (*this = other_a);
|
|
|
|
else
|
|
|
|
return setbyproduct_nocheck(other_a, other_b);
|
|
|
|
#else
|
|
|
|
return setbyproduct_nocheck(other_a, other_b);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//! multiply by another matrix
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::operator*(const CMatrix4<T> &m2) const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
// Testing purpose..
|
|
|
|
if (this->isIdentity())
|
|
|
|
return m2;
|
|
|
|
if (m2.isIdentity())
|
|
|
|
return *this;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
CMatrix4<T> m3(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
const T *m1 = M;
|
|
|
|
|
|
|
|
m3[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
|
|
|
|
m3[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
|
|
|
|
m3[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
|
|
|
|
m3[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
|
|
|
|
|
|
|
|
m3[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
|
|
|
|
m3[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
|
|
|
|
m3[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
|
|
|
|
m3[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
|
|
|
|
|
|
|
|
m3[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
|
|
|
|
m3[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
|
|
|
|
m3[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
|
|
|
|
m3[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
|
|
|
|
|
|
|
|
m3[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
|
|
|
|
m3[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
|
|
|
|
m3[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
|
|
|
|
m3[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
|
|
|
|
return m3;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline vector3d<T> CMatrix4<T>::getTranslation() const
|
|
|
|
{
|
|
|
|
return vector3d<T>(M[12], M[13], M[14]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTranslation(const vector3d<T> &translation)
|
|
|
|
{
|
|
|
|
M[12] = translation.X;
|
|
|
|
M[13] = translation.Y;
|
|
|
|
M[14] = translation.Z;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setInverseTranslation(const vector3d<T> &translation)
|
|
|
|
{
|
|
|
|
M[12] = -translation.X;
|
|
|
|
M[13] = -translation.Y;
|
|
|
|
M[14] = -translation.Z;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setScale(const vector3d<T> &scale)
|
|
|
|
{
|
|
|
|
M[0] = scale.X;
|
|
|
|
M[5] = scale.Y;
|
|
|
|
M[10] = scale.Z;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Returns the absolute values of the scales of the matrix.
|
|
|
|
/**
|
|
|
|
Note: You only get back original values if the matrix only set the scale.
|
|
|
|
Otherwise the result is a scale you can use to normalize the matrix axes,
|
|
|
|
but it's usually no longer what you did set with setScale.
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline vector3d<T> CMatrix4<T>::getScale() const
|
|
|
|
{
|
|
|
|
// See http://www.robertblum.com/articles/2005/02/14/decomposing-matrices
|
|
|
|
|
|
|
|
// Deal with the 0 rotation case first
|
|
|
|
// Prior to Irrlicht 1.6, we always returned this value.
|
|
|
|
if (core::iszero(M[1]) && core::iszero(M[2]) &&
|
|
|
|
core::iszero(M[4]) && core::iszero(M[6]) &&
|
|
|
|
core::iszero(M[8]) && core::iszero(M[9]))
|
|
|
|
return vector3d<T>(M[0], M[5], M[10]);
|
|
|
|
|
|
|
|
// We have to do the full calculation.
|
|
|
|
return vector3d<T>(sqrtf(M[0] * M[0] + M[1] * M[1] + M[2] * M[2]),
|
|
|
|
sqrtf(M[4] * M[4] + M[5] * M[5] + M[6] * M[6]),
|
|
|
|
sqrtf(M[8] * M[8] + M[9] * M[9] + M[10] * M[10]));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setRotationDegrees(const vector3d<T> &rotation)
|
|
|
|
{
|
|
|
|
return setRotationRadians(rotation * core::DEGTORAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setInverseRotationDegrees(const vector3d<T> &rotation)
|
|
|
|
{
|
|
|
|
return setInverseRotationRadians(rotation * core::DEGTORAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setRotationRadians(const vector3d<T> &rotation)
|
|
|
|
{
|
2024-11-19 13:38:19 +01:00
|
|
|
const f64 cPitch = cos(rotation.X);
|
|
|
|
const f64 sPitch = sin(rotation.X);
|
|
|
|
const f64 cYaw = cos(rotation.Y);
|
|
|
|
const f64 sYaw = sin(rotation.Y);
|
|
|
|
const f64 cRoll = cos(rotation.Z);
|
|
|
|
const f64 sRoll = sin(rotation.Z);
|
|
|
|
|
|
|
|
M[0] = (T)(cYaw * cRoll);
|
|
|
|
M[1] = (T)(cYaw * sRoll);
|
|
|
|
M[2] = (T)(-sYaw);
|
|
|
|
|
|
|
|
const f64 sPitch_sYaw = sPitch * sYaw;
|
|
|
|
const f64 cPitch_sYaw = cPitch * sYaw;
|
|
|
|
|
|
|
|
M[4] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
|
|
|
|
M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
|
|
|
|
M[6] = (T)(sPitch * cYaw);
|
|
|
|
|
|
|
|
M[8] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
|
|
|
|
M[9] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
|
|
|
|
M[10] = (T)(cPitch * cYaw);
|
2024-03-21 20:13:15 +01:00
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Returns a rotation which (mostly) works in combination with the given scale
|
|
|
|
/**
|
|
|
|
This code was originally written by by Chev (assuming no scaling back then,
|
|
|
|
we can be blamed for all problems added by regarding scale)
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline core::vector3d<T> CMatrix4<T>::getRotationDegrees(const vector3d<T> &scale_) const
|
|
|
|
{
|
|
|
|
const CMatrix4<T> &mat = *this;
|
|
|
|
const core::vector3d<f64> scale(core::iszero(scale_.X) ? FLT_MAX : scale_.X, core::iszero(scale_.Y) ? FLT_MAX : scale_.Y, core::iszero(scale_.Z) ? FLT_MAX : scale_.Z);
|
|
|
|
const core::vector3d<f64> invScale(core::reciprocal(scale.X), core::reciprocal(scale.Y), core::reciprocal(scale.Z));
|
|
|
|
|
|
|
|
f64 Y = -asin(core::clamp(mat[2] * invScale.X, -1.0, 1.0));
|
|
|
|
const f64 C = cos(Y);
|
|
|
|
Y *= RADTODEG64;
|
|
|
|
|
|
|
|
f64 rotx, roty, X, Z;
|
|
|
|
|
|
|
|
if (!core::iszero((T)C)) {
|
|
|
|
const f64 invC = core::reciprocal(C);
|
|
|
|
rotx = mat[10] * invC * invScale.Z;
|
|
|
|
roty = mat[6] * invC * invScale.Y;
|
|
|
|
X = atan2(roty, rotx) * RADTODEG64;
|
|
|
|
rotx = mat[0] * invC * invScale.X;
|
|
|
|
roty = mat[1] * invC * invScale.X;
|
|
|
|
Z = atan2(roty, rotx) * RADTODEG64;
|
|
|
|
} else {
|
|
|
|
X = 0.0;
|
|
|
|
rotx = mat[5] * invScale.Y;
|
|
|
|
roty = -mat[4] * invScale.Y;
|
|
|
|
Z = atan2(roty, rotx) * RADTODEG64;
|
|
|
|
}
|
|
|
|
|
|
|
|
// fix values that get below zero
|
|
|
|
if (X < 0.0)
|
|
|
|
X += 360.0;
|
|
|
|
if (Y < 0.0)
|
|
|
|
Y += 360.0;
|
|
|
|
if (Z < 0.0)
|
|
|
|
Z += 360.0;
|
|
|
|
|
|
|
|
return vector3d<T>((T)X, (T)Y, (T)Z);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Returns a rotation that is equivalent to that set by setRotationDegrees().
|
|
|
|
template <class T>
|
|
|
|
inline core::vector3d<T> CMatrix4<T>::getRotationDegrees() const
|
|
|
|
{
|
|
|
|
// Note: Using getScale() here make it look like it could do matrix decomposition.
|
|
|
|
// It can't! It works (or should work) as long as rotation doesn't flip the handedness
|
|
|
|
// aka scale swapping 1 or 3 axes. (I think we could catch that as well by comparing
|
|
|
|
// crossproduct of first 2 axes to direction of third axis, but TODO)
|
|
|
|
// And maybe it should also offer the solution for the simple calculation
|
|
|
|
// without regarding scaling as Irrlicht did before 1.7
|
|
|
|
core::vector3d<T> scale(getScale());
|
|
|
|
|
|
|
|
// We assume the matrix uses rotations instead of negative scaling 2 axes.
|
|
|
|
// Otherwise it fails even for some simple cases, like rotating around
|
|
|
|
// 2 axes by 180° which getScale thinks is a negative scaling.
|
|
|
|
if (scale.Y < 0 && scale.Z < 0) {
|
|
|
|
scale.Y = -scale.Y;
|
|
|
|
scale.Z = -scale.Z;
|
|
|
|
} else if (scale.X < 0 && scale.Z < 0) {
|
|
|
|
scale.X = -scale.X;
|
|
|
|
scale.Z = -scale.Z;
|
|
|
|
} else if (scale.X < 0 && scale.Y < 0) {
|
|
|
|
scale.X = -scale.X;
|
|
|
|
scale.Y = -scale.Y;
|
|
|
|
}
|
|
|
|
|
|
|
|
return getRotationDegrees(scale);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Sets matrix to rotation matrix of inverse angles given as parameters
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setInverseRotationRadians(const vector3d<T> &rotation)
|
|
|
|
{
|
2024-11-19 13:38:19 +01:00
|
|
|
f64 cPitch = cos(rotation.X);
|
|
|
|
f64 sPitch = sin(rotation.X);
|
|
|
|
f64 cYaw = cos(rotation.Y);
|
|
|
|
f64 sYaw = sin(rotation.Y);
|
|
|
|
f64 cRoll = cos(rotation.Z);
|
|
|
|
f64 sRoll = sin(rotation.Z);
|
|
|
|
|
|
|
|
M[0] = (T)(cYaw * cRoll);
|
|
|
|
M[4] = (T)(cYaw * sRoll);
|
|
|
|
M[8] = (T)(-sYaw);
|
|
|
|
|
|
|
|
f64 sPitch_sYaw = sPitch * sYaw;
|
|
|
|
f64 cPitch_sYaw = cPitch * sYaw;
|
|
|
|
|
|
|
|
M[1] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
|
|
|
|
M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
|
|
|
|
M[9] = (T)(sPitch * cYaw);
|
|
|
|
|
|
|
|
M[2] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
|
|
|
|
M[6] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
|
|
|
|
M[10] = (T)(cPitch * cYaw);
|
2024-03-21 20:13:15 +01:00
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Sets matrix to rotation matrix defined by axis and angle, assuming LH rotation
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setRotationAxisRadians(const T &angle, const vector3d<T> &axis)
|
|
|
|
{
|
|
|
|
const f64 c = cos(angle);
|
|
|
|
const f64 s = sin(angle);
|
|
|
|
const f64 t = 1.0 - c;
|
|
|
|
|
|
|
|
const f64 tx = t * axis.X;
|
|
|
|
const f64 ty = t * axis.Y;
|
|
|
|
const f64 tz = t * axis.Z;
|
|
|
|
|
|
|
|
const f64 sx = s * axis.X;
|
|
|
|
const f64 sy = s * axis.Y;
|
|
|
|
const f64 sz = s * axis.Z;
|
|
|
|
|
|
|
|
M[0] = (T)(tx * axis.X + c);
|
|
|
|
M[1] = (T)(tx * axis.Y + sz);
|
|
|
|
M[2] = (T)(tx * axis.Z - sy);
|
|
|
|
|
|
|
|
M[4] = (T)(ty * axis.X - sz);
|
|
|
|
M[5] = (T)(ty * axis.Y + c);
|
|
|
|
M[6] = (T)(ty * axis.Z + sx);
|
|
|
|
|
|
|
|
M[8] = (T)(tz * axis.X + sy);
|
|
|
|
M[9] = (T)(tz * axis.Y - sx);
|
|
|
|
M[10] = (T)(tz * axis.Z + c);
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::makeIdentity()
|
|
|
|
{
|
|
|
|
memset(M, 0, 16 * sizeof(T));
|
|
|
|
M[0] = M[5] = M[10] = M[15] = (T)1;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = true;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
check identity with epsilon
|
|
|
|
solve floating range problems..
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::isIdentity() const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (definitelyIdentityMatrix)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
if (!core::equals(M[12], (T)0) || !core::equals(M[13], (T)0) || !core::equals(M[14], (T)0) || !core::equals(M[15], (T)1))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!core::equals(M[0], (T)1) || !core::equals(M[1], (T)0) || !core::equals(M[2], (T)0) || !core::equals(M[3], (T)0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!core::equals(M[4], (T)0) || !core::equals(M[5], (T)1) || !core::equals(M[6], (T)0) || !core::equals(M[7], (T)0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (!core::equals(M[8], (T)0) || !core::equals(M[9], (T)0) || !core::equals(M[10], (T)1) || !core::equals(M[11], (T)0))
|
|
|
|
return false;
|
|
|
|
/*
|
|
|
|
if (!core::equals( M[ 0], (T)1 ) ||
|
|
|
|
!core::equals( M[ 5], (T)1 ) ||
|
|
|
|
!core::equals( M[10], (T)1 ) ||
|
|
|
|
!core::equals( M[15], (T)1 ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for (s32 i=0; i<4; ++i)
|
|
|
|
for (s32 j=0; j<4; ++j)
|
|
|
|
if ((j != i) && (!iszero((*this)(i,j))))
|
|
|
|
return false;
|
|
|
|
*/
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = true;
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check orthogonality of matrix. */
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::isOrthogonal() const
|
|
|
|
{
|
|
|
|
T dp = M[0] * M[4] + M[1] * M[5] + M[2] * M[6] + M[3] * M[7];
|
|
|
|
if (!iszero(dp))
|
|
|
|
return false;
|
|
|
|
dp = M[0] * M[8] + M[1] * M[9] + M[2] * M[10] + M[3] * M[11];
|
|
|
|
if (!iszero(dp))
|
|
|
|
return false;
|
|
|
|
dp = M[0] * M[12] + M[1] * M[13] + M[2] * M[14] + M[3] * M[15];
|
|
|
|
if (!iszero(dp))
|
|
|
|
return false;
|
|
|
|
dp = M[4] * M[8] + M[5] * M[9] + M[6] * M[10] + M[7] * M[11];
|
|
|
|
if (!iszero(dp))
|
|
|
|
return false;
|
|
|
|
dp = M[4] * M[12] + M[5] * M[13] + M[6] * M[14] + M[7] * M[15];
|
|
|
|
if (!iszero(dp))
|
|
|
|
return false;
|
|
|
|
dp = M[8] * M[12] + M[9] * M[13] + M[10] * M[14] + M[11] * M[15];
|
|
|
|
return (iszero(dp));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
doesn't solve floating range problems..
|
|
|
|
but takes care on +/- 0 on translation because we are changing it..
|
|
|
|
reducing floating point branches
|
|
|
|
but it needs the floats in memory..
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::isIdentity_integer_base() const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (definitelyIdentityMatrix)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
if (IR(M[0]) != F32_VALUE_1)
|
|
|
|
return false;
|
|
|
|
if (IR(M[1]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[2]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[3]) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (IR(M[4]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[5]) != F32_VALUE_1)
|
|
|
|
return false;
|
|
|
|
if (IR(M[6]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[7]) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (IR(M[8]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[9]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[10]) != F32_VALUE_1)
|
|
|
|
return false;
|
|
|
|
if (IR(M[11]) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (IR(M[12]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[13]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[13]) != 0)
|
|
|
|
return false;
|
|
|
|
if (IR(M[15]) != F32_VALUE_1)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = true;
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
2024-05-14 23:48:36 +02:00
|
|
|
inline vector3d<T> CMatrix4<T>::rotateAndScaleVect(const vector3d<T> &v) const
|
2024-03-21 20:13:15 +01:00
|
|
|
{
|
2024-05-14 23:48:36 +02:00
|
|
|
return {
|
|
|
|
v.X * M[0] + v.Y * M[4] + v.Z * M[8],
|
|
|
|
v.X * M[1] + v.Y * M[5] + v.Z * M[9],
|
|
|
|
v.X * M[2] + v.Y * M[6] + v.Z * M[10]
|
|
|
|
};
|
2024-03-21 20:13:15 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
2024-05-14 23:48:36 +02:00
|
|
|
inline vector3d<T> CMatrix4<T>::scaleThenInvRotVect(const vector3d<T> &v) const
|
2024-03-21 20:13:15 +01:00
|
|
|
{
|
2024-05-14 23:48:36 +02:00
|
|
|
return {
|
|
|
|
v.X * M[0] + v.Y * M[1] + v.Z * M[2],
|
|
|
|
v.X * M[4] + v.Y * M[5] + v.Z * M[6],
|
|
|
|
v.X * M[8] + v.Y * M[9] + v.Z * M[10]
|
|
|
|
};
|
2024-03-21 20:13:15 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformVect(vector3df &vect) const
|
|
|
|
{
|
|
|
|
T vector[3];
|
|
|
|
|
|
|
|
vector[0] = vect.X * M[0] + vect.Y * M[4] + vect.Z * M[8] + M[12];
|
|
|
|
vector[1] = vect.X * M[1] + vect.Y * M[5] + vect.Z * M[9] + M[13];
|
|
|
|
vector[2] = vect.X * M[2] + vect.Y * M[6] + vect.Z * M[10] + M[14];
|
|
|
|
|
|
|
|
vect.X = static_cast<f32>(vector[0]);
|
|
|
|
vect.Y = static_cast<f32>(vector[1]);
|
|
|
|
vect.Z = static_cast<f32>(vector[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformVect(vector3df &out, const vector3df &in) const
|
|
|
|
{
|
|
|
|
out.X = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
|
|
|
|
out.Y = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
|
|
|
|
out.Z = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
|
|
|
|
{
|
|
|
|
out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
|
|
|
|
out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
|
|
|
|
out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
|
|
|
|
out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformVec3(T *out, const T *in) const
|
|
|
|
{
|
|
|
|
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + M[12];
|
|
|
|
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + M[13];
|
|
|
|
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + M[14];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformVec4(T *out, const T *in) const
|
|
|
|
{
|
|
|
|
out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12];
|
|
|
|
out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13];
|
|
|
|
out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14];
|
|
|
|
out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15];
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Transforms a plane by this matrix
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformPlane(core::plane3d<f32> &plane) const
|
|
|
|
{
|
|
|
|
vector3df member;
|
|
|
|
// Transform the plane member point, i.e. rotate, translate and scale it.
|
|
|
|
transformVect(member, plane.getMemberPoint());
|
|
|
|
|
|
|
|
// Transform the normal by the transposed inverse of the matrix
|
|
|
|
CMatrix4<T> transposedInverse(*this, EM4CONST_INVERSE_TRANSPOSED);
|
2024-05-14 23:48:36 +02:00
|
|
|
vector3df normal = transposedInverse.rotateAndScaleVect(plane.Normal);
|
2024-03-21 20:13:15 +01:00
|
|
|
plane.setPlane(member, normal.normalize());
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Transforms a plane by this matrix
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const
|
|
|
|
{
|
|
|
|
out = in;
|
|
|
|
transformPlane(out);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Transforms a axis aligned bounding box more accurately than transformBox()
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::transformBoxEx(core::aabbox3d<f32> &box) const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (isIdentity())
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const f32 Amin[3] = {box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z};
|
|
|
|
const f32 Amax[3] = {box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z};
|
|
|
|
|
|
|
|
f32 Bmin[3];
|
|
|
|
f32 Bmax[3];
|
|
|
|
|
|
|
|
Bmin[0] = Bmax[0] = M[12];
|
|
|
|
Bmin[1] = Bmax[1] = M[13];
|
|
|
|
Bmin[2] = Bmax[2] = M[14];
|
|
|
|
|
|
|
|
const CMatrix4<T> &m = *this;
|
|
|
|
|
|
|
|
for (u32 i = 0; i < 3; ++i) {
|
|
|
|
for (u32 j = 0; j < 3; ++j) {
|
|
|
|
const f32 a = m(j, i) * Amin[j];
|
|
|
|
const f32 b = m(j, i) * Amax[j];
|
|
|
|
|
|
|
|
if (a < b) {
|
|
|
|
Bmin[i] += a;
|
|
|
|
Bmax[i] += b;
|
|
|
|
} else {
|
|
|
|
Bmin[i] += b;
|
|
|
|
Bmax[i] += a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
box.MinEdge.X = Bmin[0];
|
|
|
|
box.MinEdge.Y = Bmin[1];
|
|
|
|
box.MinEdge.Z = Bmin[2];
|
|
|
|
|
|
|
|
box.MaxEdge.X = Bmax[0];
|
|
|
|
box.MaxEdge.Y = Bmax[1];
|
|
|
|
box.MaxEdge.Z = Bmax[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Multiplies this matrix by a 1x4 matrix
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::multiplyWith1x4Matrix(T *matrix) const
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
0 1 2 3
|
|
|
|
4 5 6 7
|
|
|
|
8 9 10 11
|
|
|
|
12 13 14 15
|
|
|
|
*/
|
|
|
|
|
|
|
|
T mat[4];
|
|
|
|
mat[0] = matrix[0];
|
|
|
|
mat[1] = matrix[1];
|
|
|
|
mat[2] = matrix[2];
|
|
|
|
mat[3] = matrix[3];
|
|
|
|
|
|
|
|
matrix[0] = M[0] * mat[0] + M[4] * mat[1] + M[8] * mat[2] + M[12] * mat[3];
|
|
|
|
matrix[1] = M[1] * mat[0] + M[5] * mat[1] + M[9] * mat[2] + M[13] * mat[3];
|
|
|
|
matrix[2] = M[2] * mat[0] + M[6] * mat[1] + M[10] * mat[2] + M[14] * mat[3];
|
|
|
|
matrix[3] = M[3] * mat[0] + M[7] * mat[1] + M[11] * mat[2] + M[15] * mat[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::inverseTranslateVect(vector3df &vect) const
|
|
|
|
{
|
|
|
|
vect.X = vect.X - M[12];
|
|
|
|
vect.Y = vect.Y - M[13];
|
|
|
|
vect.Z = vect.Z - M[14];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::translateVect(vector3df &vect) const
|
|
|
|
{
|
|
|
|
vect.X = vect.X + M[12];
|
|
|
|
vect.Y = vect.Y + M[13];
|
|
|
|
vect.Z = vect.Z + M[14];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::getInverse(CMatrix4<T> &out) const
|
|
|
|
{
|
|
|
|
/// Calculates the inverse of this Matrix
|
|
|
|
/// The inverse is calculated using Cramers rule.
|
|
|
|
/// If no inverse exists then 'false' is returned.
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (this->isIdentity()) {
|
|
|
|
out = *this;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
const CMatrix4<T> &m = *this;
|
|
|
|
|
|
|
|
f32 d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
|
|
|
|
(m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
|
|
|
|
(m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
|
|
|
|
(m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
|
|
|
|
(m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
|
|
|
|
(m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
|
|
|
|
|
|
|
|
if (core::iszero(d, FLT_MIN))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
d = core::reciprocal(d);
|
|
|
|
|
|
|
|
out[0] = d * (m[5] * (m[10] * m[15] - m[11] * m[14]) +
|
|
|
|
m[6] * (m[11] * m[13] - m[9] * m[15]) +
|
|
|
|
m[7] * (m[9] * m[14] - m[10] * m[13]));
|
|
|
|
out[1] = d * (m[9] * (m[2] * m[15] - m[3] * m[14]) +
|
|
|
|
m[10] * (m[3] * m[13] - m[1] * m[15]) +
|
|
|
|
m[11] * (m[1] * m[14] - m[2] * m[13]));
|
|
|
|
out[2] = d * (m[13] * (m[2] * m[7] - m[3] * m[6]) +
|
|
|
|
m[14] * (m[3] * m[5] - m[1] * m[7]) +
|
|
|
|
m[15] * (m[1] * m[6] - m[2] * m[5]));
|
|
|
|
out[3] = d * (m[1] * (m[7] * m[10] - m[6] * m[11]) +
|
|
|
|
m[2] * (m[5] * m[11] - m[7] * m[9]) +
|
|
|
|
m[3] * (m[6] * m[9] - m[5] * m[10]));
|
|
|
|
out[4] = d * (m[6] * (m[8] * m[15] - m[11] * m[12]) +
|
|
|
|
m[7] * (m[10] * m[12] - m[8] * m[14]) +
|
|
|
|
m[4] * (m[11] * m[14] - m[10] * m[15]));
|
|
|
|
out[5] = d * (m[10] * (m[0] * m[15] - m[3] * m[12]) +
|
|
|
|
m[11] * (m[2] * m[12] - m[0] * m[14]) +
|
|
|
|
m[8] * (m[3] * m[14] - m[2] * m[15]));
|
|
|
|
out[6] = d * (m[14] * (m[0] * m[7] - m[3] * m[4]) +
|
|
|
|
m[15] * (m[2] * m[4] - m[0] * m[6]) +
|
|
|
|
m[12] * (m[3] * m[6] - m[2] * m[7]));
|
|
|
|
out[7] = d * (m[2] * (m[7] * m[8] - m[4] * m[11]) +
|
|
|
|
m[3] * (m[4] * m[10] - m[6] * m[8]) +
|
|
|
|
m[0] * (m[6] * m[11] - m[7] * m[10]));
|
|
|
|
out[8] = d * (m[7] * (m[8] * m[13] - m[9] * m[12]) +
|
|
|
|
m[4] * (m[9] * m[15] - m[11] * m[13]) +
|
|
|
|
m[5] * (m[11] * m[12] - m[8] * m[15]));
|
|
|
|
out[9] = d * (m[11] * (m[0] * m[13] - m[1] * m[12]) +
|
|
|
|
m[8] * (m[1] * m[15] - m[3] * m[13]) +
|
|
|
|
m[9] * (m[3] * m[12] - m[0] * m[15]));
|
|
|
|
out[10] = d * (m[15] * (m[0] * m[5] - m[1] * m[4]) +
|
|
|
|
m[12] * (m[1] * m[7] - m[3] * m[5]) +
|
|
|
|
m[13] * (m[3] * m[4] - m[0] * m[7]));
|
|
|
|
out[11] = d * (m[3] * (m[5] * m[8] - m[4] * m[9]) +
|
|
|
|
m[0] * (m[7] * m[9] - m[5] * m[11]) +
|
|
|
|
m[1] * (m[4] * m[11] - m[7] * m[8]));
|
|
|
|
out[12] = d * (m[4] * (m[10] * m[13] - m[9] * m[14]) +
|
|
|
|
m[5] * (m[8] * m[14] - m[10] * m[12]) +
|
|
|
|
m[6] * (m[9] * m[12] - m[8] * m[13]));
|
|
|
|
out[13] = d * (m[8] * (m[2] * m[13] - m[1] * m[14]) +
|
|
|
|
m[9] * (m[0] * m[14] - m[2] * m[12]) +
|
|
|
|
m[10] * (m[1] * m[12] - m[0] * m[13]));
|
|
|
|
out[14] = d * (m[12] * (m[2] * m[5] - m[1] * m[6]) +
|
|
|
|
m[13] * (m[0] * m[6] - m[2] * m[4]) +
|
|
|
|
m[14] * (m[1] * m[4] - m[0] * m[5]));
|
|
|
|
out[15] = d * (m[0] * (m[5] * m[10] - m[6] * m[9]) +
|
|
|
|
m[1] * (m[6] * m[8] - m[4] * m[10]) +
|
|
|
|
m[2] * (m[4] * m[9] - m[5] * m[8]));
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
out.definitelyIdentityMatrix = definitelyIdentityMatrix;
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Inverts a primitive matrix which only contains a translation and a rotation
|
|
|
|
//! \param out: where result matrix is written to.
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::getInversePrimitive(CMatrix4<T> &out) const
|
|
|
|
{
|
|
|
|
out.M[0] = M[0];
|
|
|
|
out.M[1] = M[4];
|
|
|
|
out.M[2] = M[8];
|
|
|
|
out.M[3] = 0;
|
|
|
|
|
|
|
|
out.M[4] = M[1];
|
|
|
|
out.M[5] = M[5];
|
|
|
|
out.M[6] = M[9];
|
|
|
|
out.M[7] = 0;
|
|
|
|
|
|
|
|
out.M[8] = M[2];
|
|
|
|
out.M[9] = M[6];
|
|
|
|
out.M[10] = M[10];
|
|
|
|
out.M[11] = 0;
|
|
|
|
|
|
|
|
out.M[12] = (T) - (M[12] * M[0] + M[13] * M[1] + M[14] * M[2]);
|
|
|
|
out.M[13] = (T) - (M[12] * M[4] + M[13] * M[5] + M[14] * M[6]);
|
|
|
|
out.M[14] = (T) - (M[12] * M[8] + M[13] * M[9] + M[14] * M[10]);
|
|
|
|
out.M[15] = 1;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
out.definitelyIdentityMatrix = definitelyIdentityMatrix;
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::makeInverse()
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (definitelyIdentityMatrix)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
CMatrix4<T> temp(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
if (getInverse(temp)) {
|
|
|
|
*this = temp;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::operator=(const T &scalar)
|
|
|
|
{
|
|
|
|
for (s32 i = 0; i < 16; ++i)
|
|
|
|
M[i] = scalar;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a right-handed perspective projection matrix based on a field of view
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
|
|
|
|
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
|
|
|
|
_IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
|
|
|
|
const T w = static_cast<T>(h / aspectRatio);
|
|
|
|
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = w;
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)h;
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = -1;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14]
|
|
|
|
M[15] = 0;
|
|
|
|
|
|
|
|
if (zClipFromZero) { // DirectX version
|
|
|
|
M[10] = (T)(zFar / (zNear - zFar));
|
|
|
|
M[14] = (T)(zNear * zFar / (zNear - zFar));
|
|
|
|
} else // OpenGL version
|
|
|
|
{
|
|
|
|
M[10] = (T)((zFar + zNear) / (zNear - zFar));
|
|
|
|
M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a left-handed perspective projection matrix based on a field of view
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
|
|
|
|
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
|
|
|
|
_IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
|
|
|
|
const T w = static_cast<T>(h / aspectRatio);
|
|
|
|
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = w;
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)h;
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = 1;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14]
|
|
|
|
M[15] = 0;
|
|
|
|
|
|
|
|
if (zClipFromZero) { // DirectX version
|
|
|
|
M[10] = (T)(zFar / (zFar - zNear));
|
|
|
|
M[14] = (T)(-zNear * zFar / (zFar - zNear));
|
|
|
|
} else // OpenGL version
|
|
|
|
{
|
|
|
|
M[10] = (T)((zFar + zNear) / (zFar - zNear));
|
|
|
|
M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
|
|
|
|
f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon)
|
|
|
|
{
|
|
|
|
const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
|
|
|
|
_IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
|
|
|
|
const T w = static_cast<T>(h / aspectRatio);
|
|
|
|
|
|
|
|
M[0] = w;
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)h;
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
M[10] = (T)(1.f - epsilon);
|
|
|
|
M[11] = 1;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
M[14] = (T)(zNear * (epsilon - 1.f));
|
|
|
|
M[15] = 0;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a left-handed orthogonal projection matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoLH(
|
|
|
|
f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
_IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = (T)(2 / widthOfViewVolume);
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)(2 / heightOfViewVolume);
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14]
|
|
|
|
M[15] = 1;
|
|
|
|
|
|
|
|
if (zClipFromZero) {
|
|
|
|
M[10] = (T)(1 / (zFar - zNear));
|
|
|
|
M[14] = (T)(zNear / (zNear - zFar));
|
|
|
|
} else {
|
|
|
|
M[10] = (T)(2 / (zFar - zNear));
|
|
|
|
M[14] = (T) - (zFar + zNear) / (zFar - zNear);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a right-handed orthogonal projection matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoRH(
|
|
|
|
f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
_IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = (T)(2 / widthOfViewVolume);
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)(2 / heightOfViewVolume);
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14]
|
|
|
|
M[15] = 1;
|
|
|
|
|
|
|
|
if (zClipFromZero) {
|
|
|
|
M[10] = (T)(1 / (zNear - zFar));
|
|
|
|
M[14] = (T)(zNear / (zNear - zFar));
|
|
|
|
} else {
|
|
|
|
M[10] = (T)(2 / (zNear - zFar));
|
|
|
|
M[14] = (T) - (zFar + zNear) / (zFar - zNear);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a right-handed perspective projection matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
|
|
|
|
f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
_IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = (T)(2 * zNear / widthOfViewVolume);
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)(2 * zNear / heightOfViewVolume);
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = -1;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14]
|
|
|
|
M[15] = 0;
|
|
|
|
|
|
|
|
if (zClipFromZero) { // DirectX version
|
|
|
|
M[10] = (T)(zFar / (zNear - zFar));
|
|
|
|
M[14] = (T)(zNear * zFar / (zNear - zFar));
|
|
|
|
} else // OpenGL version
|
|
|
|
{
|
|
|
|
M[10] = (T)((zFar + zNear) / (zNear - zFar));
|
|
|
|
M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a left-handed perspective projection matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
|
|
|
|
f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
|
|
|
|
{
|
|
|
|
_IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
|
|
|
|
_IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
|
|
|
|
M[0] = (T)(2 * zNear / widthOfViewVolume);
|
|
|
|
M[1] = 0;
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = 0;
|
|
|
|
M[5] = (T)(2 * zNear / heightOfViewVolume);
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = 0;
|
|
|
|
M[9] = 0;
|
|
|
|
// M[10]
|
|
|
|
M[11] = 1;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
// M[14] = (T)(zNear*zFar/(zNear-zFar));
|
|
|
|
M[15] = 0;
|
|
|
|
|
|
|
|
if (zClipFromZero) { // DirectX version
|
|
|
|
M[10] = (T)(zFar / (zFar - zNear));
|
|
|
|
M[14] = (T)(zNear * zFar / (zNear - zFar));
|
|
|
|
} else // OpenGL version
|
|
|
|
{
|
|
|
|
M[10] = (T)((zFar + zNear) / (zFar - zNear));
|
|
|
|
M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a matrix that flattens geometry into a plane.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point)
|
|
|
|
{
|
|
|
|
plane.Normal.normalize();
|
|
|
|
const f32 d = plane.Normal.dotProduct(light);
|
|
|
|
|
|
|
|
M[0] = (T)(-plane.Normal.X * light.X + d);
|
|
|
|
M[1] = (T)(-plane.Normal.X * light.Y);
|
|
|
|
M[2] = (T)(-plane.Normal.X * light.Z);
|
|
|
|
M[3] = (T)(-plane.Normal.X * point);
|
|
|
|
|
|
|
|
M[4] = (T)(-plane.Normal.Y * light.X);
|
|
|
|
M[5] = (T)(-plane.Normal.Y * light.Y + d);
|
|
|
|
M[6] = (T)(-plane.Normal.Y * light.Z);
|
|
|
|
M[7] = (T)(-plane.Normal.Y * point);
|
|
|
|
|
|
|
|
M[8] = (T)(-plane.Normal.Z * light.X);
|
|
|
|
M[9] = (T)(-plane.Normal.Z * light.Y);
|
|
|
|
M[10] = (T)(-plane.Normal.Z * light.Z + d);
|
|
|
|
M[11] = (T)(-plane.Normal.Z * point);
|
|
|
|
|
|
|
|
M[12] = (T)(-plane.D * light.X);
|
|
|
|
M[13] = (T)(-plane.D * light.Y);
|
|
|
|
M[14] = (T)(-plane.D * light.Z);
|
|
|
|
M[15] = (T)(-plane.D * point + d);
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a left-handed look-at matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixLH(
|
|
|
|
const vector3df &position,
|
|
|
|
const vector3df &target,
|
|
|
|
const vector3df &upVector)
|
|
|
|
{
|
|
|
|
vector3df zaxis = target - position;
|
|
|
|
zaxis.normalize();
|
|
|
|
|
|
|
|
vector3df xaxis = upVector.crossProduct(zaxis);
|
|
|
|
xaxis.normalize();
|
|
|
|
|
|
|
|
vector3df yaxis = zaxis.crossProduct(xaxis);
|
|
|
|
|
|
|
|
M[0] = (T)xaxis.X;
|
|
|
|
M[1] = (T)yaxis.X;
|
|
|
|
M[2] = (T)zaxis.X;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = (T)xaxis.Y;
|
|
|
|
M[5] = (T)yaxis.Y;
|
|
|
|
M[6] = (T)zaxis.Y;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = (T)xaxis.Z;
|
|
|
|
M[9] = (T)yaxis.Z;
|
|
|
|
M[10] = (T)zaxis.Z;
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = (T)-xaxis.dotProduct(position);
|
|
|
|
M[13] = (T)-yaxis.dotProduct(position);
|
|
|
|
M[14] = (T)-zaxis.dotProduct(position);
|
|
|
|
M[15] = 1;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Builds a right-handed look-at matrix.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixRH(
|
|
|
|
const vector3df &position,
|
|
|
|
const vector3df &target,
|
|
|
|
const vector3df &upVector)
|
|
|
|
{
|
|
|
|
vector3df zaxis = position - target;
|
|
|
|
zaxis.normalize();
|
|
|
|
|
|
|
|
vector3df xaxis = upVector.crossProduct(zaxis);
|
|
|
|
xaxis.normalize();
|
|
|
|
|
|
|
|
vector3df yaxis = zaxis.crossProduct(xaxis);
|
|
|
|
|
|
|
|
M[0] = (T)xaxis.X;
|
|
|
|
M[1] = (T)yaxis.X;
|
|
|
|
M[2] = (T)zaxis.X;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = (T)xaxis.Y;
|
|
|
|
M[5] = (T)yaxis.Y;
|
|
|
|
M[6] = (T)zaxis.Y;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = (T)xaxis.Z;
|
|
|
|
M[9] = (T)yaxis.Z;
|
|
|
|
M[10] = (T)zaxis.Z;
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = (T)-xaxis.dotProduct(position);
|
|
|
|
M[13] = (T)-yaxis.dotProduct(position);
|
|
|
|
M[14] = (T)-zaxis.dotProduct(position);
|
|
|
|
M[15] = 1;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// creates a new matrix as interpolated matrix from this and the passed one.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::interpolate(const core::CMatrix4<T> &b, f32 time) const
|
|
|
|
{
|
|
|
|
CMatrix4<T> mat(EM4CONST_NOTHING);
|
|
|
|
|
|
|
|
for (u32 i = 0; i < 16; i += 4) {
|
|
|
|
mat.M[i + 0] = (T)(M[i + 0] + (b.M[i + 0] - M[i + 0]) * time);
|
|
|
|
mat.M[i + 1] = (T)(M[i + 1] + (b.M[i + 1] - M[i + 1]) * time);
|
|
|
|
mat.M[i + 2] = (T)(M[i + 2] + (b.M[i + 2] - M[i + 2]) * time);
|
|
|
|
mat.M[i + 3] = (T)(M[i + 3] + (b.M[i + 3] - M[i + 3]) * time);
|
|
|
|
}
|
|
|
|
return mat;
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns transposed matrix
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> CMatrix4<T>::getTransposed() const
|
|
|
|
{
|
|
|
|
CMatrix4<T> t(EM4CONST_NOTHING);
|
|
|
|
getTransposed(t);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns transposed matrix
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::getTransposed(CMatrix4<T> &o) const
|
|
|
|
{
|
|
|
|
o[0] = M[0];
|
|
|
|
o[1] = M[4];
|
|
|
|
o[2] = M[8];
|
|
|
|
o[3] = M[12];
|
|
|
|
|
|
|
|
o[4] = M[1];
|
|
|
|
o[5] = M[5];
|
|
|
|
o[6] = M[9];
|
|
|
|
o[7] = M[13];
|
|
|
|
|
|
|
|
o[8] = M[2];
|
|
|
|
o[9] = M[6];
|
|
|
|
o[10] = M[10];
|
|
|
|
o[11] = M[14];
|
|
|
|
|
|
|
|
o[12] = M[3];
|
|
|
|
o[13] = M[7];
|
|
|
|
o[14] = M[11];
|
|
|
|
o[15] = M[15];
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
o.definitelyIdentityMatrix = definitelyIdentityMatrix;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// used to scale <-1,-1><1,1> to viewport
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildNDCToDCMatrix(const core::rect<s32> &viewport, f32 zScale)
|
|
|
|
{
|
|
|
|
const f32 scaleX = (viewport.getWidth() - 0.75f) * 0.5f;
|
|
|
|
const f32 scaleY = -(viewport.getHeight() - 0.75f) * 0.5f;
|
|
|
|
|
|
|
|
const f32 dx = -0.5f + ((viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X) * 0.5f);
|
|
|
|
const f32 dy = -0.5f + ((viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y) * 0.5f);
|
|
|
|
|
|
|
|
makeIdentity();
|
|
|
|
M[12] = (T)dx;
|
|
|
|
M[13] = (T)dy;
|
|
|
|
return setScale(core::vector3d<T>((T)scaleX, (T)scaleY, (T)zScale));
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Builds a matrix that rotates from one vector to another
|
|
|
|
/** \param from: vector to rotate from
|
|
|
|
\param to: vector to rotate to
|
|
|
|
|
|
|
|
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildRotateFromTo(const core::vector3df &from, const core::vector3df &to)
|
|
|
|
{
|
|
|
|
// unit vectors
|
|
|
|
core::vector3df f(from);
|
|
|
|
core::vector3df t(to);
|
|
|
|
f.normalize();
|
|
|
|
t.normalize();
|
|
|
|
|
|
|
|
// axis multiplication by sin
|
|
|
|
core::vector3df vs(t.crossProduct(f));
|
|
|
|
|
|
|
|
// axis of rotation
|
|
|
|
core::vector3df v(vs);
|
|
|
|
v.normalize();
|
|
|
|
|
|
|
|
// cosine angle
|
|
|
|
T ca = f.dotProduct(t);
|
|
|
|
|
|
|
|
core::vector3df vt(v * (1 - ca));
|
|
|
|
|
|
|
|
M[0] = vt.X * v.X + ca;
|
|
|
|
M[5] = vt.Y * v.Y + ca;
|
|
|
|
M[10] = vt.Z * v.Z + ca;
|
|
|
|
|
|
|
|
vt.X *= v.Y;
|
|
|
|
vt.Z *= v.X;
|
|
|
|
vt.Y *= v.Z;
|
|
|
|
|
|
|
|
M[1] = vt.X - vs.Z;
|
|
|
|
M[2] = vt.Z + vs.Y;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = vt.X + vs.Z;
|
|
|
|
M[6] = vt.Y - vs.X;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = vt.Z - vs.Y;
|
|
|
|
M[9] = vt.Y + vs.X;
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
M[14] = 0;
|
|
|
|
M[15] = 1;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
|
|
|
|
/** \param camPos: viewer position in world coord
|
|
|
|
\param center: object position in world-coord, rotation pivot
|
|
|
|
\param translation: object final translation from center
|
|
|
|
\param axis: axis to rotate about
|
|
|
|
\param from: source vector to rotate from
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::buildAxisAlignedBillboard(
|
|
|
|
const core::vector3df &camPos,
|
|
|
|
const core::vector3df ¢er,
|
|
|
|
const core::vector3df &translation,
|
|
|
|
const core::vector3df &axis,
|
|
|
|
const core::vector3df &from)
|
|
|
|
{
|
|
|
|
// axis of rotation
|
|
|
|
core::vector3df up = axis;
|
|
|
|
up.normalize();
|
|
|
|
const core::vector3df forward = (camPos - center).normalize();
|
|
|
|
const core::vector3df right = up.crossProduct(forward).normalize();
|
|
|
|
|
|
|
|
// correct look vector
|
|
|
|
const core::vector3df look = right.crossProduct(up);
|
|
|
|
|
|
|
|
// rotate from to
|
|
|
|
// axis multiplication by sin
|
|
|
|
const core::vector3df vs = look.crossProduct(from);
|
|
|
|
|
|
|
|
// cosine angle
|
|
|
|
const f32 ca = from.dotProduct(look);
|
|
|
|
|
|
|
|
core::vector3df vt(up * (1.f - ca));
|
|
|
|
|
|
|
|
M[0] = static_cast<T>(vt.X * up.X + ca);
|
|
|
|
M[5] = static_cast<T>(vt.Y * up.Y + ca);
|
|
|
|
M[10] = static_cast<T>(vt.Z * up.Z + ca);
|
|
|
|
|
|
|
|
vt.X *= up.Y;
|
|
|
|
vt.Z *= up.X;
|
|
|
|
vt.Y *= up.Z;
|
|
|
|
|
|
|
|
M[1] = static_cast<T>(vt.X - vs.Z);
|
|
|
|
M[2] = static_cast<T>(vt.Z + vs.Y);
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = static_cast<T>(vt.X + vs.Z);
|
|
|
|
M[6] = static_cast<T>(vt.Y - vs.X);
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = static_cast<T>(vt.Z - vs.Y);
|
|
|
|
M[9] = static_cast<T>(vt.Y + vs.X);
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
setRotationCenter(center, translation);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Builds a combined matrix which translate to a center before rotation and translate afterward
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::setRotationCenter(const core::vector3df ¢er, const core::vector3df &translation)
|
|
|
|
{
|
|
|
|
M[12] = -M[0] * center.X - M[4] * center.Y - M[8] * center.Z + (center.X - translation.X);
|
|
|
|
M[13] = -M[1] * center.X - M[5] * center.Y - M[9] * center.Z + (center.Y - translation.Y);
|
|
|
|
M[14] = -M[2] * center.X - M[6] * center.Y - M[10] * center.Z + (center.Z - translation.Z);
|
|
|
|
M[15] = (T)1.0;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
Generate texture coordinates as linear functions so that:
|
|
|
|
u = Ux*x + Uy*y + Uz*z + Uw
|
|
|
|
v = Vx*x + Vy*y + Vz*z + Vw
|
|
|
|
The matrix M for this case is:
|
|
|
|
Ux Vx 0 0
|
|
|
|
Uy Vy 0 0
|
|
|
|
Uz Vz 0 0
|
|
|
|
Uw Vw 0 0
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::buildTextureTransform(f32 rotateRad,
|
|
|
|
const core::vector2df &rotatecenter,
|
|
|
|
const core::vector2df &translate,
|
|
|
|
const core::vector2df &scale)
|
|
|
|
{
|
|
|
|
const f32 c = cosf(rotateRad);
|
|
|
|
const f32 s = sinf(rotateRad);
|
|
|
|
|
|
|
|
M[0] = (T)(c * scale.X);
|
|
|
|
M[1] = (T)(s * scale.Y);
|
|
|
|
M[2] = 0;
|
|
|
|
M[3] = 0;
|
|
|
|
|
|
|
|
M[4] = (T)(-s * scale.X);
|
|
|
|
M[5] = (T)(c * scale.Y);
|
|
|
|
M[6] = 0;
|
|
|
|
M[7] = 0;
|
|
|
|
|
|
|
|
M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X);
|
|
|
|
M[9] = (T)(s * scale.Y * rotatecenter.X + c * rotatecenter.Y + translate.Y);
|
|
|
|
M[10] = 1;
|
|
|
|
M[11] = 0;
|
|
|
|
|
|
|
|
M[12] = 0;
|
|
|
|
M[13] = 0;
|
|
|
|
M[14] = 0;
|
|
|
|
M[15] = 1;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// rotate about z axis, center ( 0.5, 0.5 )
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTextureRotationCenter(f32 rotateRad)
|
|
|
|
{
|
|
|
|
const f32 c = cosf(rotateRad);
|
|
|
|
const f32 s = sinf(rotateRad);
|
|
|
|
M[0] = (T)c;
|
|
|
|
M[1] = (T)s;
|
|
|
|
|
|
|
|
M[4] = (T)-s;
|
|
|
|
M[5] = (T)c;
|
|
|
|
|
|
|
|
M[8] = (T)(0.5f * (s - c) + 0.5f);
|
|
|
|
M[9] = (T)(-0.5f * (s + c) + 0.5f);
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = definitelyIdentityMatrix && (rotateRad == 0.0f);
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTextureTranslate(f32 x, f32 y)
|
|
|
|
{
|
|
|
|
M[8] = (T)x;
|
|
|
|
M[9] = (T)y;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = definitelyIdentityMatrix && (x == 0.0f) && (y == 0.0f);
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::getTextureTranslate(f32 &x, f32 &y) const
|
|
|
|
{
|
|
|
|
x = (f32)M[8];
|
|
|
|
y = (f32)M[9];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTextureTranslateTransposed(f32 x, f32 y)
|
|
|
|
{
|
|
|
|
M[2] = (T)x;
|
|
|
|
M[6] = (T)y;
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = definitelyIdentityMatrix && (x == 0.0f) && (y == 0.0f);
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTextureScale(f32 sx, f32 sy)
|
|
|
|
{
|
|
|
|
M[0] = (T)sx;
|
|
|
|
M[5] = (T)sy;
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = definitelyIdentityMatrix && (sx == 1.0f) && (sy == 1.0f);
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::getTextureScale(f32 &sx, f32 &sy) const
|
|
|
|
{
|
|
|
|
sx = (f32)M[0];
|
|
|
|
sy = (f32)M[5];
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setTextureScaleCenter(f32 sx, f32 sy)
|
|
|
|
{
|
|
|
|
M[0] = (T)sx;
|
|
|
|
M[5] = (T)sy;
|
|
|
|
M[8] = (T)(0.5f - 0.5f * sx);
|
|
|
|
M[9] = (T)(0.5f - 0.5f * sy);
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = definitelyIdentityMatrix && (sx == 1.0f) && (sy == 1.0f);
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// sets all matrix data members at once
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> &CMatrix4<T>::setM(const T *data)
|
|
|
|
{
|
|
|
|
memcpy(M, data, 16 * sizeof(T));
|
|
|
|
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = false;
|
|
|
|
#endif
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
// sets if the matrix is definitely identity matrix
|
|
|
|
template <class T>
|
|
|
|
inline void CMatrix4<T>::setDefinitelyIdentityMatrix(bool isDefinitelyIdentityMatrix)
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
definitelyIdentityMatrix = isDefinitelyIdentityMatrix;
|
|
|
|
#else
|
|
|
|
(void)isDefinitelyIdentityMatrix; // prevent compiler warning
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// gets if the matrix is definitely identity matrix
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::getDefinitelyIdentityMatrix() const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
return definitelyIdentityMatrix;
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Compare two matrices using the equal method
|
|
|
|
template <class T>
|
|
|
|
inline bool CMatrix4<T>::equals(const core::CMatrix4<T> &other, const T tolerance) const
|
|
|
|
{
|
|
|
|
#if defined(USE_MATRIX_TEST)
|
|
|
|
if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
|
|
|
|
return true;
|
|
|
|
#endif
|
|
|
|
for (s32 i = 0; i < 16; ++i)
|
|
|
|
if (!core::equals(M[i], other.M[i], tolerance))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Multiply by scalar.
|
|
|
|
template <class T>
|
|
|
|
inline CMatrix4<T> operator*(const T scalar, const CMatrix4<T> &mat)
|
|
|
|
{
|
|
|
|
return mat * scalar;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Typedef for f32 matrix
|
|
|
|
typedef CMatrix4<f32> matrix4;
|
|
|
|
|
|
|
|
//! global const identity matrix
|
|
|
|
IRRLICHT_API extern const matrix4 IdentityMatrix;
|
|
|
|
|
|
|
|
} // end namespace core
|
|
|
|
} // end namespace irr
|