minetest/irr/src/CGLTFMeshFileLoader.cpp

696 lines
23 KiB
C++
Raw Normal View History

// Minetest
// SPDX-License-Identifier: LGPL-2.1-or-later
#include "CGLTFMeshFileLoader.h"
#include "coreutil.h"
#include "CSkinnedMesh.h"
#include "ISkinnedMesh.h"
#include "irrTypes.h"
#include "IReadFile.h"
#include "matrix4.h"
#include "path.h"
#include "quaternion.h"
#include "vector3d.h"
#include "os.h"
#include "tiniergltf.hpp"
#include <array>
#include <cstddef>
#include <cstring>
#include <limits>
#include <memory>
#include <optional>
#include <stdexcept>
#include <utility>
#include <variant>
#include <vector>
namespace irr {
/* Notes on the coordinate system.
*
* glTF uses a right-handed coordinate system where +Z is the
* front-facing axis, and Irrlicht uses a left-handed coordinate
* system where -Z is the front-facing axis.
* We convert between them by mirroring the mesh across the X axis.
* Doing this correctly requires negating the Z coordinate on
* vertex positions and normals, and reversing the winding order
* of the vertex indices.
*/
// Right-to-left handedness conversions
template <typename T>
static inline T convertHandedness(const T &t);
template <>
core::vector3df convertHandedness(const core::vector3df &p)
{
return core::vector3df(p.X, p.Y, -p.Z);
}
namespace scene {
using SelfType = CGLTFMeshFileLoader;
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::sparseIndices(const tiniergltf::GlTF &model,
const tiniergltf::AccessorSparseIndices &indices,
const std::size_t count)
{
const auto &view = model.bufferViews->at(indices.bufferView);
const auto byteStride = view.byteStride.value_or(indices.elementSize());
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + indices.byteOffset;
return SelfType::Accessor<T>(source, byteStride, count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::sparseValues(const tiniergltf::GlTF &model,
const tiniergltf::AccessorSparseValues &values,
const std::size_t count,
const std::size_t defaultByteStride)
{
const auto &view = model.bufferViews->at(values.bufferView);
const auto byteStride = view.byteStride.value_or(defaultByteStride);
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + values.byteOffset;
return SelfType::Accessor<T>(source, byteStride, count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::base(const tiniergltf::GlTF &model, std::size_t accessorIdx)
{
const auto &accessor = model.accessors->at(accessorIdx);
if (!accessor.bufferView.has_value()) {
return Accessor<T>(accessor.count);
}
const auto &view = model.bufferViews->at(accessor.bufferView.value());
const auto byteStride = view.byteStride.value_or(accessor.elementSize());
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + accessor.byteOffset;
return Accessor<T>(source, byteStride, accessor.count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::make(const tiniergltf::GlTF &model, std::size_t accessorIdx)
{
const auto &accessor = model.accessors->at(accessorIdx);
if (accessor.componentType != getComponentType() || accessor.type != getType())
throw std::runtime_error("invalid accessor");
const auto base = Accessor<T>::base(model, accessorIdx);
if (accessor.sparse.has_value()) {
std::vector<T> vec(accessor.count);
for (std::size_t i = 0; i < accessor.count; ++i) {
vec[i] = base.get(i);
}
const auto overriddenCount = accessor.sparse->count;
const auto indicesAccessor = ([&]() -> AccessorVariant<u8, u16, u32> {
switch (accessor.sparse->indices.componentType) {
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_BYTE:
return Accessor<u8>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_SHORT:
return Accessor<u16>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_INT:
return Accessor<u32>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
}
throw std::logic_error("invalid enum value");
})();
const auto valuesAccessor = Accessor<T>::sparseValues(model,
accessor.sparse->values, overriddenCount,
accessor.bufferView.has_value()
? model.bufferViews->at(*accessor.bufferView).byteStride.value_or(accessor.elementSize())
: accessor.elementSize());
for (std::size_t i = 0; i < overriddenCount; ++i) {
u32 index;
std::visit([&](auto &&acc) { index = acc.get(i); }, indicesAccessor);
if (index >= accessor.count)
throw std::runtime_error("index out of bounds");
vec[index] = valuesAccessor.get(i);
}
return Accessor<T>(vec, accessor.count);
}
return base;
}
#define ACCESSOR_TYPES(T, U, V) \
template <> \
constexpr tiniergltf::Accessor::Type SelfType::Accessor<T>::getType() \
{ \
return tiniergltf::Accessor::Type::U; \
} \
template <> \
constexpr tiniergltf::Accessor::ComponentType SelfType::Accessor<T>::getComponentType() \
{ \
return tiniergltf::Accessor::ComponentType::V; \
}
#define VEC_ACCESSOR_TYPES(T, U, N) \
template <> \
constexpr tiniergltf::Accessor::Type SelfType::Accessor<std::array<T, N>>::getType() \
{ \
return tiniergltf::Accessor::Type::VEC##N; \
} \
template <> \
constexpr tiniergltf::Accessor::ComponentType SelfType::Accessor<std::array<T, N>>::getComponentType() \
{ \
return tiniergltf::Accessor::ComponentType::U; \
} \
template <> \
std::array<T, N> SelfType::rawget(const char *ptr) \
{ \
std::array<T, N> res; \
for (int i = 0; i < N; ++i) \
res[i] = rawget<T>(ptr + sizeof(T) * i); \
return res; \
}
#define ACCESSOR_PRIMITIVE(T, U) \
ACCESSOR_TYPES(T, SCALAR, U) \
VEC_ACCESSOR_TYPES(T, U, 2) \
VEC_ACCESSOR_TYPES(T, U, 3) \
VEC_ACCESSOR_TYPES(T, U, 4)
ACCESSOR_PRIMITIVE(f32, FLOAT)
ACCESSOR_PRIMITIVE(u8, UNSIGNED_BYTE)
ACCESSOR_PRIMITIVE(u16, UNSIGNED_SHORT)
ACCESSOR_PRIMITIVE(u32, UNSIGNED_INT)
ACCESSOR_TYPES(core::vector3df, VEC3, FLOAT)
template <class T>
T SelfType::Accessor<T>::get(std::size_t i) const
{
// Buffer-based accessor: Read directly from the buffer.
if (std::holds_alternative<BufferSource>(source)) {
const auto bufsrc = std::get<BufferSource>(source);
return rawget<T>(bufsrc.ptr + i * bufsrc.byteStride);
}
// Array-based accessor (used for sparse accessors): Read from array.
if (std::holds_alternative<std::vector<T>>(source)) {
return std::get<std::vector<T>>(source)[i];
}
// Default-initialized accessor.
// We differ slightly from glTF here in that
// we default-initialize quaternions and matrices properly,
// but this does not cause any discrepancies for valid glTF models.
std::get<std::tuple<>>(source);
return T();
}
template <typename T>
T SelfType::rawget(const char *ptr)
{
T dest;
std::memcpy(&dest, ptr, sizeof(dest));
#ifdef __BIG_ENDIAN__
return os::Byteswap::byteswap(dest);
#else
return dest;
#endif
}
// Note that these "more specialized templates" should win.
template <>
core::matrix4 SelfType::rawget(const char *ptr)
{
core::matrix4 mat;
for (u8 i = 0; i < 16; ++i) {
mat[i] = rawget<f32>(ptr + i * sizeof(f32));
}
return mat;
}
template <>
core::vector3df SelfType::rawget(const char *ptr)
{
return core::vector3df(
rawget<f32>(ptr),
rawget<f32>(ptr + sizeof(f32)),
rawget<f32>(ptr + 2 * sizeof(f32)));
}
template <>
core::quaternion SelfType::rawget(const char *ptr)
{
return core::quaternion(
rawget<f32>(ptr),
rawget<f32>(ptr + sizeof(f32)),
rawget<f32>(ptr + 2 * sizeof(f32)),
rawget<f32>(ptr + 3 * sizeof(f32)));
}
template <std::size_t N>
SelfType::NormalizedValuesAccessor<N>
SelfType::createNormalizedValuesAccessor(
const tiniergltf::GlTF &model,
const std::size_t accessorIdx)
{
const auto &acc = model.accessors->at(accessorIdx);
switch (acc.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE:
return Accessor<std::array<u8, N>>::make(model, accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT:
return Accessor<std::array<u16, N>>::make(model, accessorIdx);
case tiniergltf::Accessor::ComponentType::FLOAT:
return Accessor<std::array<f32, N>>::make(model, accessorIdx);
default:
throw std::runtime_error("invalid component type");
}
}
template <std::size_t N>
std::array<f32, N> SelfType::getNormalizedValues(
const NormalizedValuesAccessor<N> &accessor,
const std::size_t i)
{
std::array<f32, N> values;
if (std::holds_alternative<Accessor<std::array<u8, N>>>(accessor)) {
const auto u8s = std::get<Accessor<std::array<u8, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i)
values[i] = static_cast<f32>(u8s[i]) / std::numeric_limits<u8>::max();
} else if (std::holds_alternative<Accessor<std::array<u16, N>>>(accessor)) {
const auto u16s = std::get<Accessor<std::array<u16, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i)
values[i] = static_cast<f32>(u16s[i]) / std::numeric_limits<u16>::max();
} else {
values = std::get<Accessor<std::array<f32, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i) {
if (values[i] < 0 || values[i] > 1)
throw std::runtime_error("invalid normalized value");
}
}
return values;
}
/**
* The most basic portion of the code base. This tells irllicht if this file has a .gltf extension.
*/
bool SelfType::isALoadableFileExtension(
const io::path& filename) const
{
return core::hasFileExtension(filename, "gltf");
}
/**
* Entry point into loading a GLTF model.
*/
IAnimatedMesh* SelfType::createMesh(io::IReadFile* file)
{
if (file->getSize() <= 0) {
return nullptr;
}
std::optional<tiniergltf::GlTF> model = tryParseGLTF(file);
if (!model.has_value()) {
return nullptr;
}
if (!(model->buffers.has_value()
&& model->bufferViews.has_value()
&& model->accessors.has_value()
&& model->meshes.has_value()
&& model->nodes.has_value())) {
os::Printer::log("glTF loader", "missing required fields", ELL_ERROR);
return nullptr;
}
auto *mesh = new CSkinnedMesh();
MeshExtractor parser(std::move(model.value()), mesh);
try {
parser.loadNodes();
} catch (std::runtime_error &e) {
os::Printer::log("glTF loader", e.what(), ELL_ERROR);
mesh->drop();
return nullptr;
}
if (model->images.has_value())
os::Printer::log("glTF loader", "embedded images are not supported", ELL_WARNING);
return mesh;
}
static void transformVertices(std::vector<video::S3DVertex> &vertices, const core::matrix4 &transform)
{
for (auto &vertex : vertices) {
// Apply scaling, rotation and rotation (in that order) to the position.
transform.transformVect(vertex.Pos);
// For the normal, we do not want to apply the translation.
// TODO note that this also applies scaling; the Irrlicht method is misnamed.
transform.rotateVect(vertex.Normal);
// Renormalize (length might have been affected by scaling).
vertex.Normal.normalize();
}
}
static void checkIndices(const std::vector<u16> &indices, const std::size_t nVerts)
{
for (u16 index : indices) {
if (index >= nVerts)
throw std::runtime_error("index out of bounds");
}
}
static std::vector<u16> generateIndices(const std::size_t nVerts)
{
std::vector<u16> indices(nVerts);
for (std::size_t i = 0; i < nVerts; i += 3) {
// Reverse winding order per triangle
indices[i] = i + 2;
indices[i + 1] = i + 1;
indices[i + 2] = i;
}
return indices;
}
/**
* Load up the rawest form of the model. The vertex positions and indices.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes
* If material is undefined, then a default material MUST be used.
*/
void SelfType::MeshExtractor::loadMesh(
const std::size_t meshIdx,
ISkinnedMesh::SJoint *parent) const
{
for (std::size_t pi = 0; pi < getPrimitiveCount(meshIdx); ++pi) {
const auto &primitive = m_gltf_model.meshes->at(meshIdx).primitives.at(pi);
auto vertices = getVertices(primitive);
if (!vertices.has_value())
continue; // "When positions are not specified, client implementations SHOULD skip primitives rendering"
// Excludes the max value for consistency.
if (vertices->size() >= std::numeric_limits<u16>::max())
throw std::runtime_error("too many vertices");
// Apply the global transform along the parent chain.
transformVertices(*vertices, parent->GlobalMatrix);
auto maybeIndices = getIndices(primitive);
std::vector<u16> indices;
if (maybeIndices.has_value()) {
indices = std::move(*maybeIndices);
checkIndices(indices, vertices->size());
} else {
// Non-indexed geometry
indices = generateIndices(vertices->size());
}
m_irr_model->addMeshBuffer(
new SSkinMeshBuffer(std::move(*vertices), std::move(indices)));
if (primitive.material.has_value()) {
const auto &material = m_gltf_model.materials->at(*primitive.material);
if (material.pbrMetallicRoughness.has_value()) {
const auto &texture = material.pbrMetallicRoughness->baseColorTexture;
if (texture.has_value()) {
const auto meshbufNr = m_irr_model->getMeshBufferCount() - 1;
m_irr_model->setTextureSlot(meshbufNr, static_cast<u32>(texture->index));
}
}
}
}
}
// Base transformation between left & right handed coordinate systems.
// This just inverts the Z axis.
static const core::matrix4 leftToRight = core::matrix4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, -1, 0,
0, 0, 0, 1
);
static const core::matrix4 rightToLeft = leftToRight;
static core::matrix4 loadTransform(const tiniergltf::Node::Matrix &m)
{
// Note: Under the hood, this casts these doubles to floats.
return core::matrix4(
m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15]);
}
static core::matrix4 loadTransform(const tiniergltf::Node::TRS &trs)
{
const auto &trans = trs.translation;
const auto &rot = trs.rotation;
const auto &scale = trs.scale;
core::matrix4 transMat;
transMat.setTranslation(core::vector3df(trans[0], trans[1], trans[2]));
core::matrix4 rotMat = core::quaternion(rot[0], rot[1], rot[2], rot[3]).getMatrix();
core::matrix4 scaleMat;
scaleMat.setScale(core::vector3df(scale[0], scale[1], scale[2]));
return transMat * rotMat * scaleMat;
}
static core::matrix4 loadTransform(std::optional<std::variant<tiniergltf::Node::Matrix, tiniergltf::Node::TRS>> transform) {
if (!transform.has_value()) {
return core::matrix4();
}
core::matrix4 mat = std::visit([](const auto &t) { return loadTransform(t); }, *transform);
return rightToLeft * mat * leftToRight;
}
void SelfType::MeshExtractor::loadNode(
const std::size_t nodeIdx,
ISkinnedMesh::SJoint *parent) const
{
const auto &node = m_gltf_model.nodes->at(nodeIdx);
auto *joint = m_irr_model->addJoint(parent);
const core::matrix4 transform = loadTransform(node.transform);
joint->LocalMatrix = transform;
joint->GlobalMatrix = parent ? parent->GlobalMatrix * joint->LocalMatrix : joint->LocalMatrix;
if (node.name.has_value()) {
joint->Name = node.name->c_str();
}
if (node.mesh.has_value()) {
loadMesh(*node.mesh, joint);
}
if (node.children.has_value()) {
for (const auto &child : *node.children) {
loadNode(child, joint);
}
}
}
void SelfType::MeshExtractor::loadNodes() const
{
std::vector<bool> isChild(m_gltf_model.nodes->size());
for (const auto &node : *m_gltf_model.nodes) {
if (!node.children.has_value())
continue;
for (const auto &child : *node.children) {
isChild[child] = true;
}
}
// Load all nodes that aren't children.
// Children will be loaded by their parent nodes.
for (std::size_t i = 0; i < m_gltf_model.nodes->size(); ++i) {
if (!isChild[i]) {
loadNode(i, nullptr);
}
}
}
/**
* Extracts GLTF mesh indices.
*/
std::optional<std::vector<u16>> SelfType::MeshExtractor::getIndices(
const tiniergltf::MeshPrimitive &primitive) const
{
const auto accessorIdx = primitive.indices;
if (!accessorIdx.has_value())
return std::nullopt; // non-indexed geometry
const auto accessor = ([&]() -> AccessorVariant<u8, u16, u32> {
const auto &acc = m_gltf_model.accessors->at(*accessorIdx);
switch (acc.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE:
return Accessor<u8>::make(m_gltf_model, *accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT:
return Accessor<u16>::make(m_gltf_model, *accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_INT:
return Accessor<u32>::make(m_gltf_model, *accessorIdx);
default:
throw std::runtime_error("invalid component type");
}
})();
const auto count = std::visit([](auto &&a) { return a.getCount(); }, accessor);
std::vector<u16> indices;
for (std::size_t i = 0; i < count; ++i) {
// TODO (low-priority, maybe never) also reverse winding order based on determinant of global transform
// FIXME this hack also reverses triangle draw order
std::size_t elemIdx = count - i - 1; // reverse index order
u16 index;
// Note: glTF forbids the max value for each component type.
if (std::holds_alternative<Accessor<u8>>(accessor)) {
index = std::get<Accessor<u8>>(accessor).get(elemIdx);
if (index == std::numeric_limits<u8>::max())
throw std::runtime_error("invalid index");
} else if (std::holds_alternative<Accessor<u16>>(accessor)) {
index = std::get<Accessor<u16>>(accessor).get(elemIdx);
if (index == std::numeric_limits<u16>::max())
throw std::runtime_error("invalid index");
} else if (std::holds_alternative<Accessor<u32>>(accessor)) {
u32 indexWide = std::get<Accessor<u32>>(accessor).get(elemIdx);
// Use >= here for consistency.
if (indexWide >= std::numeric_limits<u16>::max())
throw std::runtime_error("index too large (>= 65536)");
index = static_cast<u16>(indexWide);
}
indices.push_back(index);
}
return indices;
}
/**
* Create a vector of video::S3DVertex (model data) from a mesh & primitive index.
*/
std::optional<std::vector<video::S3DVertex>> SelfType::MeshExtractor::getVertices(
const tiniergltf::MeshPrimitive &primitive) const
{
const auto &attributes = primitive.attributes;
const auto positionAccessorIdx = attributes.position;
if (!positionAccessorIdx.has_value()) {
// "When positions are not specified, client implementations SHOULD skip primitive's rendering"
return std::nullopt;
}
std::vector<video::S3DVertex> vertices;
const auto vertexCount = m_gltf_model.accessors->at(*positionAccessorIdx).count;
vertices.resize(vertexCount);
copyPositions(*positionAccessorIdx, vertices);
const auto normalAccessorIdx = attributes.normal;
if (normalAccessorIdx.has_value()) {
copyNormals(normalAccessorIdx.value(), vertices);
}
// TODO verify that the automatic normal recalculation done in Minetest indeed works correctly
const auto &texcoords = attributes.texcoord;
if (texcoords.has_value()) {
const auto tCoordAccessorIdx = texcoords->at(0);
copyTCoords(tCoordAccessorIdx, vertices);
}
return vertices;
}
/**
* Get the amount of meshes that a model contains.
*/
std::size_t SelfType::MeshExtractor::getMeshCount() const
{
return m_gltf_model.meshes->size();
}
/**
* Get the amount of primitives that a mesh in a model contains.
*/
std::size_t SelfType::MeshExtractor::getPrimitiveCount(
const std::size_t meshIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives.size();
}
/**
* Streams vertex positions raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyPositions(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto accessor = Accessor<core::vector3df>::make(m_gltf_model, accessorIdx);
for (std::size_t i = 0; i < accessor.getCount(); i++) {
vertices[i].Pos = convertHandedness(accessor.get(i));
}
}
/**
* Streams normals raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyNormals(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto accessor = Accessor<core::vector3df>::make(m_gltf_model, accessorIdx);
for (std::size_t i = 0; i < accessor.getCount(); ++i) {
vertices[i].Normal = convertHandedness(accessor.get(i));
}
}
/**
* Streams texture coordinate raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyTCoords(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto accessor = createNormalizedValuesAccessor<2>(m_gltf_model, accessorIdx);
const auto count = std::visit([](auto &&a) { return a.getCount(); }, accessor);
for (std::size_t i = 0; i < count; ++i) {
const auto vals = getNormalizedValues(accessor, i);
vertices[i].TCoords = core::vector2df(vals[0], vals[1]);
}
}
/**
* This is where the actual model's GLTF file is loaded and parsed by tiniergltf.
*/
std::optional<tiniergltf::GlTF> SelfType::tryParseGLTF(io::IReadFile* file)
{
auto size = file->getSize();
if (size < 0) // this can happen if `ftell` fails
return std::nullopt;
std::unique_ptr<char[]> buf(new char[size + 1]);
if (file->read(buf.get(), size) != static_cast<std::size_t>(size))
return std::nullopt;
// We probably don't need this, but add it just to be sure.
buf[size] = '\0';
Json::CharReaderBuilder builder;
const std::unique_ptr<Json::CharReader> reader(builder.newCharReader());
Json::Value json;
JSONCPP_STRING err;
if (!reader->parse(buf.get(), buf.get() + size, &json, &err)) {
return std::nullopt;
}
try {
return tiniergltf::GlTF(json);
} catch (const std::runtime_error &e) {
os::Printer::log("glTF loader", e.what(), ELL_ERROR);
return std::nullopt;
} catch (const std::out_of_range &e) {
os::Printer::log("glTF loader", e.what(), ELL_ERROR);
return std::nullopt;
}
}
} // namespace scene
} // namespace irr