Custom boxy nodes (stairs, slabs) and collision changes

This commit is contained in:
Kahrl 2012-03-19 04:25:09 +01:00 committed by Perttu Ahola
parent 9f031a6759
commit 1575448b1a
19 changed files with 1105 additions and 646 deletions

@ -926,7 +926,7 @@ minetest.register_node("default:rail", {
walkable = false,
selection_box = {
type = "fixed",
--fixed = <default>
fixed = {-1/2, -1/2, -1/2, 1/2, -1/2+1/16, 1/2},
},
groups = {bendy=2,snappy=1,dig_immediate=2},
})

@ -0,0 +1 @@
default

@ -0,0 +1,93 @@
stairs = {}
-- Node will be called stairs:stair_<subname>
function stairs.register_stair(subname, recipeitem, groups, images, description)
minetest.register_node("stairs:stair_" .. subname, {
description = description,
drawtype = "nodebox",
tile_images = images,
paramtype = "light",
paramtype2 = "facedir",
is_ground_content = true,
groups = groups,
node_box = {
type = "fixed",
fixed = {
{-0.5, -0.5, -0.5, 0.5, 0, 0.5},
{-0.5, 0, 0, 0.5, 0.5, 0.5},
},
},
})
minetest.register_craft({
output = 'stairs:stair_' .. subname .. ' 4',
recipe = {
{recipeitem, "", ""},
{recipeitem, recipeitem, ""},
{recipeitem, recipeitem, recipeitem},
},
})
end
-- Node will be called stairs:slab_<subname>
function stairs.register_slab(subname, recipeitem, groups, images, description)
minetest.register_node("stairs:slab_" .. subname, {
description = description,
drawtype = "nodebox",
tile_images = images,
paramtype = "light",
is_ground_content = true,
groups = groups,
node_box = {
type = "fixed",
fixed = {-0.5, -0.5, -0.5, 0.5, 0, 0.5},
},
selection_box = {
type = "fixed",
fixed = {-0.5, -0.5, -0.5, 0.5, 0, 0.5},
},
})
minetest.register_craft({
output = 'stairs:slab_' .. subname .. ' 3',
recipe = {
{recipeitem, recipeitem, recipeitem},
},
})
end
-- Nodes will be called stairs:{stair,slab}_<subname>
function stairs.register_stair_and_slab(subname, recipeitem, groups, images, desc_stair, desc_slab)
stairs.register_stair(subname, recipeitem, groups, images, desc_stair)
stairs.register_slab(subname, recipeitem, groups, images, desc_slab)
end
stairs.register_stair_and_slab("wood", "default:wood",
{snappy=2,choppy=2,oddly_breakable_by_hand=2},
{"default_wood.png"},
"Wooden stair",
"Wooden slab")
stairs.register_stair_and_slab("stone", "default:stone",
{cracky=3},
{"default_stone.png"},
"Stone stair",
"Stone slab")
stairs.register_stair_and_slab("cobble", "default:cobble",
{cracky=3},
{"default_cobble.png"},
"Cobble stair",
"Cobble slab")
stairs.register_stair_and_slab("brick", "default:brick",
{cracky=3},
{"default_brick.png"},
"Brick stair",
"Brick slab")
stairs.register_stair_and_slab("sandstone", "default:sandstone",
{crumbly=2,cracky=2},
{"default_sandstone.png"},
"Sandstone stair",
"Sandstone slab")

@ -213,8 +213,22 @@ void Camera::step(f32 dtime)
void Camera::update(LocalPlayer* player, f32 frametime, v2u32 screensize,
f32 tool_reload_ratio)
{
// Get player position
// Smooth the movement when walking up stairs
v3f old_player_position = m_playernode->getPosition();
v3f player_position = player->getPosition();
//if(player->touching_ground && player_position.Y > old_player_position.Y)
if(player->touching_ground &&
player_position.Y > old_player_position.Y)
{
f32 oldy = old_player_position.Y;
f32 newy = player_position.Y;
f32 t = exp(-23*frametime);
player_position.Y = oldy * t + newy * (1-t);
}
// Set player node transformation
m_playernode->setPosition(player->getPosition());
m_playernode->setPosition(player_position);
m_playernode->setRotation(v3f(0, -1 * player->getYaw(), 0));
m_playernode->updateAbsolutePosition();

@ -22,32 +22,249 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include "map.h"
#include "nodedef.h"
#include "gamedef.h"
#include "log.h"
#include <vector>
#include "util/timetaker.h"
#include "main.h" // g_profiler
#include "profiler.h"
// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
int axisAlignedCollision(
const aabb3f &staticbox, const aabb3f &movingbox,
const v3f &speed, f32 d, f32 &dtime)
{
//TimeTaker tt("axisAlignedCollision");
f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X);
f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y);
f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z);
aabb3f relbox(
movingbox.MinEdge.X - staticbox.MinEdge.X,
movingbox.MinEdge.Y - staticbox.MinEdge.Y,
movingbox.MinEdge.Z - staticbox.MinEdge.Z,
movingbox.MaxEdge.X - staticbox.MinEdge.X,
movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
movingbox.MaxEdge.Z - staticbox.MinEdge.Z
);
if(speed.X > 0) // Check for collision with X- plane
{
if(relbox.MaxEdge.X <= d)
{
dtime = - relbox.MaxEdge.X / speed.X;
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 0;
}
else if(relbox.MinEdge.X > xsize)
{
return -1;
}
}
else if(speed.X < 0) // Check for collision with X+ plane
{
if(relbox.MinEdge.X >= xsize - d)
{
dtime = (xsize - relbox.MinEdge.X) / speed.X;
if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 0;
}
else if(relbox.MaxEdge.X < 0)
{
return -1;
}
}
// NO else if here
if(speed.Y > 0) // Check for collision with Y- plane
{
if(relbox.MaxEdge.Y <= d)
{
dtime = - relbox.MaxEdge.Y / speed.Y;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 1;
}
else if(relbox.MinEdge.Y > ysize)
{
return -1;
}
}
else if(speed.Y < 0) // Check for collision with Y+ plane
{
if(relbox.MinEdge.Y >= ysize - d)
{
dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
(relbox.MaxEdge.Z + speed.Z * dtime > 0))
return 1;
}
else if(relbox.MaxEdge.Y < 0)
{
return -1;
}
}
// NO else if here
if(speed.Z > 0) // Check for collision with Z- plane
{
if(relbox.MaxEdge.Z <= d)
{
dtime = - relbox.MaxEdge.Z / speed.Z;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
return 2;
}
//else if(relbox.MinEdge.Z > zsize)
//{
// return -1;
//}
}
else if(speed.Z < 0) // Check for collision with Z+ plane
{
if(relbox.MinEdge.Z >= zsize - d)
{
dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
(relbox.MaxEdge.X + speed.X * dtime > 0) &&
(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
(relbox.MaxEdge.Y + speed.Y * dtime > 0))
return 2;
}
//else if(relbox.MaxEdge.Z < 0)
//{
// return -1;
//}
}
return -1;
}
// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
const std::vector<aabb3f> &staticboxes,
const aabb3f &movingbox,
f32 y_increase, f32 d)
{
//TimeTaker tt("wouldCollideWithCeiling");
assert(y_increase >= 0);
for(std::vector<aabb3f>::const_iterator
i = staticboxes.begin();
i != staticboxes.end(); i++)
{
const aabb3f& staticbox = *i;
if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
return true;
}
return false;
}
collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
f32 pos_max_d, const core::aabbox3d<f32> &box_0,
f32 dtime, v3f &pos_f, v3f &speed_f)
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f &pos_f, v3f &speed_f, v3f &accel_f)
{
//TimeTaker tt("collisionMoveSimple");
ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
collisionMoveResult result;
/*
Calculate new velocity
*/
speed_f += accel_f * dtime;
// If there is no speed, there are no collisions
if(speed_f.getLength() == 0)
return result;
v3f oldpos_f = pos_f;
v3s16 oldpos_i = floatToInt(oldpos_f, BS);
/*
Calculate new position
Collect node boxes in movement range
*/
pos_f += speed_f * dtime;
std::vector<aabb3f> cboxes;
std::vector<bool> is_unloaded;
std::vector<bool> is_step_up;
{
//TimeTaker tt2("collisionMoveSimple collect boxes");
ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
v3s16 oldpos_i = floatToInt(pos_f, BS);
v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
for(s16 x = min_x; x <= max_x; x++)
for(s16 y = min_y; y <= max_y; y++)
for(s16 z = min_z; z <= max_z; z++)
{
try{
// Object collides into walkable nodes
MapNode n = map->getNode(v3s16(x,y,z));
if(gamedef->getNodeDefManager()->get(n).walkable == false)
continue;
std::vector<aabb3f> nodeboxes = n.getNodeBoxes(gamedef->ndef());
for(std::vector<aabb3f>::iterator
i = nodeboxes.begin();
i != nodeboxes.end(); i++)
{
aabb3f box = *i;
box.MinEdge += v3f(x, y, z)*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cboxes.push_back(box);
is_unloaded.push_back(false);
is_step_up.push_back(false);
}
}
catch(InvalidPositionException &e)
{
// Collide with unloaded nodes
aabb3f box = getNodeBox(v3s16(x,y,z), BS);
cboxes.push_back(box);
is_unloaded.push_back(true);
is_step_up.push_back(false);
}
}
} // tt2
assert(cboxes.size() == is_unloaded.size());
assert(cboxes.size() == is_step_up.size());
/*
Collision detection
*/
// position in nodes
v3s16 pos_i = floatToInt(pos_f, BS);
/*
Collision uncertainty radius
Make it a bit larger than the maximum distance of movement
@ -59,47 +276,127 @@ collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
// This should always apply, otherwise there are glitches
assert(d > pos_max_d);
/*
Calculate collision box
*/
core::aabbox3d<f32> box = box_0;
box.MaxEdge += pos_f;
box.MinEdge += pos_f;
core::aabbox3d<f32> oldbox = box_0;
oldbox.MaxEdge += oldpos_f;
oldbox.MinEdge += oldpos_f;
int loopcount = 0;
/*
If the object lies on a walkable node, this is set to true.
*/
result.touching_ground = false;
/*
Go through every node around the object
*/
s16 min_x = (box_0.MinEdge.X / BS) - 2;
s16 min_y = (box_0.MinEdge.Y / BS) - 2;
s16 min_z = (box_0.MinEdge.Z / BS) - 2;
s16 max_x = (box_0.MaxEdge.X / BS) + 1;
s16 max_y = (box_0.MaxEdge.Y / BS) + 1;
s16 max_z = (box_0.MaxEdge.Z / BS) + 1;
for(s16 y = oldpos_i.Y + min_y; y <= oldpos_i.Y + max_y; y++)
for(s16 z = oldpos_i.Z + min_z; z <= oldpos_i.Z + max_z; z++)
for(s16 x = oldpos_i.X + min_x; x <= oldpos_i.X + max_x; x++)
while(dtime > BS*1e-10)
{
try{
// Object collides into walkable nodes
MapNode n = map->getNode(v3s16(x,y,z));
if(gamedef->getNodeDefManager()->get(n).walkable == false)
//TimeTaker tt3("collisionMoveSimple dtime loop");
ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
// Avoid infinite loop
loopcount++;
if(loopcount >= 100)
{
infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl;
dtime = 0;
break;
}
aabb3f movingbox = box_0;
movingbox.MinEdge += pos_f;
movingbox.MaxEdge += pos_f;
int nearest_collided = -1;
f32 nearest_dtime = dtime;
u32 nearest_boxindex = -1;
/*
Go through every nodebox, find nearest collision
*/
for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
{
// Ignore if already stepped up this nodebox.
if(is_step_up[boxindex])
continue;
}
catch(InvalidPositionException &e)
{
// Doing nothing here will block the object from
// walking over map borders
// Find nearest collision of the two boxes (raytracing-like)
f32 dtime_tmp;
int collided = axisAlignedCollision(
cboxes[boxindex], movingbox, speed_f, d, dtime_tmp);
if(collided == -1 || dtime_tmp >= nearest_dtime)
continue;
nearest_dtime = dtime_tmp;
nearest_collided = collided;
nearest_boxindex = boxindex;
}
core::aabbox3d<f32> nodebox = getNodeBox(v3s16(x,y,z), BS);
if(nearest_collided == -1)
{
// No collision with any collision box.
pos_f += speed_f * dtime;
dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers
}
else
{
// Otherwise, a collision occurred.
const aabb3f& cbox = cboxes[nearest_boxindex];
// Check for stairs.
bool step_up = (nearest_collided != 1) && // must not be Y direction
(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
(!wouldCollideWithCeiling(cboxes, movingbox,
cbox.MaxEdge.Y - movingbox.MinEdge.Y,
d));
// Move to the point of collision and reduce dtime by nearest_dtime
if(nearest_dtime < 0)
{
// Handle negative nearest_dtime (can be caused by the d allowance)
if(!step_up)
{
if(nearest_collided == 0)
pos_f.X += speed_f.X * nearest_dtime;
if(nearest_collided == 1)
pos_f.Y += speed_f.Y * nearest_dtime;
if(nearest_collided == 2)
pos_f.Z += speed_f.Z * nearest_dtime;
}
}
else
{
pos_f += speed_f * nearest_dtime;
dtime -= nearest_dtime;
}
// Set the speed component that caused the collision to zero
if(step_up)
{
// Special case: Handle stairs
is_step_up[nearest_boxindex] = true;
}
else if(nearest_collided == 0) // X
{
speed_f.X = 0;
result.collides = true;
result.collides_xz = true;
}
else if(nearest_collided == 1) // Y
{
speed_f.Y = 0;
result.collides = true;
}
else if(nearest_collided == 2) // Z
{
speed_f.Z = 0;
result.collides = true;
result.collides_xz = true;
}
}
}
/*
Final touches: Check if standing on ground, step up stairs.
*/
aabb3f box = box_0;
box.MinEdge += pos_f;
box.MaxEdge += pos_f;
for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
{
const aabb3f& cbox = cboxes[boxindex];
/*
See if the object is touching ground.
@ -111,108 +408,46 @@ collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
Use 0.15*BS so that it is easier to get on a node.
*/
if(
//fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < d
fabs(nodebox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS
&& nodebox.MaxEdge.X-d > box.MinEdge.X
&& nodebox.MinEdge.X+d < box.MaxEdge.X
&& nodebox.MaxEdge.Z-d > box.MinEdge.Z
&& nodebox.MinEdge.Z+d < box.MaxEdge.Z
cbox.MaxEdge.X-d > box.MinEdge.X &&
cbox.MinEdge.X+d < box.MaxEdge.X &&
cbox.MaxEdge.Z-d > box.MinEdge.Z &&
cbox.MinEdge.Z+d < box.MaxEdge.Z
){
if(is_step_up[boxindex])
{
pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
box = box_0;
box.MinEdge += pos_f;
box.MaxEdge += pos_f;
}
if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS)
{
result.touching_ground = true;
}
// If object doesn't intersect with node, ignore node.
if(box.intersectsWithBox(nodebox) == false)
continue;
/*
Go through every axis
*/
v3f dirs[3] = {
v3f(0,0,1), // back-front
v3f(0,1,0), // top-bottom
v3f(1,0,0), // right-left
};
for(u16 i=0; i<3; i++)
{
/*
Calculate values along the axis
*/
f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[i]);
f32 nodemin = nodebox.MinEdge.dotProduct(dirs[i]);
f32 objectmax = box.MaxEdge.dotProduct(dirs[i]);
f32 objectmin = box.MinEdge.dotProduct(dirs[i]);
f32 objectmax_old = oldbox.MaxEdge.dotProduct(dirs[i]);
f32 objectmin_old = oldbox.MinEdge.dotProduct(dirs[i]);
/*
Check collision for the axis.
Collision happens when object is going through a surface.
*/
bool negative_axis_collides =
(nodemax > objectmin && nodemax <= objectmin_old + d
&& speed_f.dotProduct(dirs[i]) < 0);
bool positive_axis_collides =
(nodemin < objectmax && nodemin >= objectmax_old - d
&& speed_f.dotProduct(dirs[i]) > 0);
bool main_axis_collides =
negative_axis_collides || positive_axis_collides;
/*
Check overlap of object and node in other axes
*/
bool other_axes_overlap = true;
for(u16 j=0; j<3; j++)
{
if(j == i)
continue;
f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[j]);
f32 nodemin = nodebox.MinEdge.dotProduct(dirs[j]);
f32 objectmax = box.MaxEdge.dotProduct(dirs[j]);
f32 objectmin = box.MinEdge.dotProduct(dirs[j]);
if(!(nodemax - d > objectmin && nodemin + d < objectmax))
{
other_axes_overlap = false;
break;
if(is_unloaded[boxindex])
result.standing_on_unloaded = true;
}
}
/*
If this is a collision, revert the pos_f in the main
direction.
*/
if(other_axes_overlap && main_axis_collides)
{
speed_f -= speed_f.dotProduct(dirs[i]) * dirs[i];
pos_f -= pos_f.dotProduct(dirs[i]) * dirs[i];
pos_f += oldpos_f.dotProduct(dirs[i]) * dirs[i];
result.collides = true;
}
}
} // xyz
return result;
}
#if 0
// This doesn't seem to work and isn't used
collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
f32 pos_max_d, const core::aabbox3d<f32> &box_0,
f32 dtime, v3f &pos_f, v3f &speed_f)
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f &pos_f, v3f &speed_f, v3f &accel_f)
{
//TimeTaker tt("collisionMovePrecise");
ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG);
collisionMoveResult final_result;
// If there is no speed, there are no collisions
if(speed_f.getLength() == 0)
return final_result;
// Maximum time increment (for collision detection etc)
// time = distance / speed
f32 dtime_max_increment = pos_max_d / speed_f.getLength();
// Maximum time increment is 10ms or lower
if(dtime_max_increment > 0.01)
dtime_max_increment = 0.01;
// Don't allow overly huge dtime
if(dtime > 2.0)
dtime = 2.0;
@ -224,6 +459,16 @@ collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
{
loopcount++;
// Maximum time increment (for collision detection etc)
// time = distance / speed
f32 dtime_max_increment = 1.0;
if(speed_f.getLength() != 0)
dtime_max_increment = pos_max_d / speed_f.getLength();
// Maximum time increment is 10ms or lower
if(dtime_max_increment > 0.01)
dtime_max_increment = 0.01;
f32 dtime_part;
if(dtime_downcount > dtime_max_increment)
{
@ -242,17 +487,20 @@ collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
}
collisionMoveResult result = collisionMoveSimple(map, gamedef,
pos_max_d, box_0, dtime_part, pos_f, speed_f);
pos_max_d, box_0, stepheight, dtime_part,
pos_f, speed_f, accel_f);
if(result.touching_ground)
final_result.touching_ground = true;
if(result.collides)
final_result.collides = true;
if(result.collides_xz)
final_result.collides_xz = true;
if(result.standing_on_unloaded)
final_result.standing_on_unloaded = true;
}
while(dtime_downcount > 0.001);
return final_result;
}
#endif

@ -21,6 +21,7 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#define COLLISION_HEADER
#include "irrlichttypes_bloated.h"
#include <vector>
class Map;
class IGameDef;
@ -29,22 +30,47 @@ struct collisionMoveResult
{
bool touching_ground;
bool collides;
bool collides_xz;
bool standing_on_unloaded;
collisionMoveResult():
touching_ground(false),
collides(false)
collides(false),
collides_xz(false),
standing_on_unloaded(false)
{}
};
// Moves using a single iteration; speed should not exceed pos_max_d/dtime
collisionMoveResult collisionMoveSimple(Map *map, IGameDef *gamedef,
f32 pos_max_d, const core::aabbox3d<f32> &box_0,
f32 dtime, v3f &pos_f, v3f &speed_f);
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f &pos_f, v3f &speed_f, v3f &accel_f);
#if 0
// This doesn't seem to work and isn't used
// Moves using as many iterations as needed
collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
f32 pos_max_d, const core::aabbox3d<f32> &box_0,
f32 dtime, v3f &pos_f, v3f &speed_f);
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f &pos_f, v3f &speed_f, v3f &accel_f);
#endif
// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// dtime receives time until first collision, invalid if -1 is returned
int axisAlignedCollision(
const aabb3f &staticbox, const aabb3f &movingbox,
const v3f &speed, f32 d, f32 &dtime);
// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
const std::vector<aabb3f> &staticboxes,
const aabb3f &movingbox,
f32 y_increase, f32 d);
enum CollisionType
{

@ -881,22 +881,24 @@ public:
box.MinEdge *= BS;
box.MaxEdge *= BS;
collisionMoveResult moveresult;
f32 pos_max_d = BS*0.25; // Distance per iteration
f32 pos_max_d = BS*0.125; // Distance per iteration
f32 stepheight = 0;
v3f p_pos = m_position;
v3f p_velocity = m_velocity;
v3f p_acceleration = m_acceleration;
IGameDef *gamedef = env->getGameDef();
moveresult = collisionMovePrecise(&env->getMap(), gamedef,
pos_max_d, box, dtime, p_pos, p_velocity);
moveresult = collisionMoveSimple(&env->getMap(), gamedef,
pos_max_d, box, stepheight, dtime,
p_pos, p_velocity, p_acceleration);
// Apply results
m_position = p_pos;
m_velocity = p_velocity;
m_acceleration = p_acceleration;
bool is_end_position = moveresult.collides;
pos_translator.update(m_position, is_end_position, dtime);
pos_translator.translate(dtime);
updateNodePos();
m_velocity += dtime * m_acceleration;
} else {
m_position += dtime * m_velocity + 0.5 * dtime * dtime * m_acceleration;
m_velocity += dtime * m_acceleration;

@ -1027,6 +1027,53 @@ void mapblock_mesh_generate_special(MeshMakeData *data,
u16 indices[] = {0,1,2,2,3,0};
collector.append(tile, vertices, 4, indices, 6);
break;}
case NDT_NODEBOX:
{
TileSpec tiles[6];
for(int i = 0; i < 6; i++)
{
tiles[i] = getNodeTileN(n, p, i, data);
}
u16 l = getInteriorLight(n, 0, data);
video::SColor c = MapBlock_LightColor(255, l);
v3f pos = intToFloat(p, BS);
std::vector<aabb3f> boxes = n.getNodeBoxes(nodedef);
for(std::vector<aabb3f>::iterator
i = boxes.begin();
i != boxes.end(); i++)
{
aabb3f box = *i;
box.MinEdge += pos;
box.MaxEdge += pos;
// Compute texture coords
f32 tx1 = (i->MinEdge.X/BS)+0.5;
f32 ty1 = (i->MinEdge.Y/BS)+0.5;
f32 tz1 = (i->MinEdge.Z/BS)+0.5;
f32 tx2 = (i->MaxEdge.X/BS)+0.5;
f32 ty2 = (i->MaxEdge.Y/BS)+0.5;
f32 tz2 = (i->MaxEdge.Z/BS)+0.5;
f32 txc[24] = {
// up
tx1, 1-tz2, tx2, 1-tz1,
// down
tx1, tz1, tx2, tz2,
// right
tz1, 1-ty2, tz2, 1-ty1,
// left
1-tz2, 1-ty2, 1-tz1, 1-ty1,
// back
1-tx2, 1-ty2, 1-tx1, 1-ty1,
// front
tx1, 1-ty2, tx2, 1-ty1,
};
makeCuboid(&collector, box, tiles, 6, c, txc);
}
break;}
}
}
}

@ -206,9 +206,12 @@ public:
m_speed_f *= pos_max_d / (m_speed_f.getLength()*dtime);
v3f pos_f = getBasePosition();
v3f pos_f_old = pos_f;
v3f accel_f = v3f(0,0,0);
f32 stepheight = 0;
IGameDef *gamedef = m_env->getGameDef();
moveresult = collisionMoveSimple(&m_env->getMap(), gamedef,
pos_max_d, box, dtime, pos_f, m_speed_f);
pos_max_d, box, stepheight, dtime,
pos_f, m_speed_f, accel_f);
if(send_recommended == false)
return;
@ -452,16 +455,18 @@ void LuaEntitySAO::step(float dtime, bool send_recommended)
box.MaxEdge *= BS;
collisionMoveResult moveresult;
f32 pos_max_d = BS*0.25; // Distance per iteration
v3f p_pos = getBasePosition();
f32 stepheight = 0; // Maximum climbable step height
v3f p_pos = m_base_position;
v3f p_velocity = m_velocity;
v3f p_acceleration = m_acceleration;
IGameDef *gamedef = m_env->getGameDef();
moveresult = collisionMovePrecise(&m_env->getMap(), gamedef,
pos_max_d, box, dtime, p_pos, p_velocity);
moveresult = collisionMoveSimple(&m_env->getMap(), gamedef,
pos_max_d, box, stepheight, dtime,
p_pos, p_velocity, p_acceleration);
// Apply results
setBasePosition(p_pos);
m_base_position = p_pos;
m_velocity = p_velocity;
m_velocity += dtime * m_acceleration;
m_acceleration = p_acceleration;
} else {
m_base_position += dtime * m_velocity + 0.5 * dtime
* dtime * m_acceleration;

@ -61,6 +61,7 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#endif
#include "event_manager.h"
#include <list>
#include "util/directiontables.h"
/*
Text input system
@ -294,14 +295,12 @@ PointedThing getPointedThing(Client *client, v3f player_position,
core::line3d<f32> shootline, f32 d,
bool liquids_pointable,
bool look_for_object,
core::aabbox3d<f32> &hilightbox,
bool &should_show_hilightbox,
std::vector<aabb3f> &hilightboxes,
ClientActiveObject *&selected_object)
{
PointedThing result;
hilightbox = core::aabbox3d<f32>(0,0,0,0,0,0);
should_show_hilightbox = false;
hilightboxes.clear();
selected_object = NULL;
INodeDefManager *nodedef = client->getNodeDefManager();
@ -312,28 +311,28 @@ PointedThing getPointedThing(Client *client, v3f player_position,
{
selected_object = client->getSelectedActiveObject(d*BS,
camera_position, shootline);
}
if(selected_object != NULL)
{
core::aabbox3d<f32> *selection_box
= selected_object->getSelectionBox();
// Box should exist because object was returned in the
// first place
if(selected_object->doShowSelectionBox())
{
aabb3f *selection_box = selected_object->getSelectionBox();
// Box should exist because object was
// returned in the first place
assert(selection_box);
v3f pos = selected_object->getPosition();
hilightbox = core::aabbox3d<f32>(
hilightboxes.push_back(aabb3f(
selection_box->MinEdge + pos,
selection_box->MaxEdge + pos
);
selection_box->MaxEdge + pos));
}
should_show_hilightbox = selected_object->doShowSelectionBox();
result.type = POINTEDTHING_OBJECT;
result.object_id = selected_object->getId();
return result;
}
}
// That didn't work, try to find a pointed at node
@ -368,196 +367,64 @@ PointedThing getPointedThing(Client *client, v3f player_position,
if(!isPointableNode(n, client, liquids_pointable))
continue;
std::vector<aabb3f> boxes = n.getSelectionBoxes(nodedef);
v3s16 np(x,y,z);
v3f npf = intToFloat(np, BS);
f32 d = 0.01;
v3s16 dirs[6] = {
v3s16(0,0,1), // back
v3s16(0,1,0), // top
v3s16(1,0,0), // right
v3s16(0,0,-1), // front
v3s16(0,-1,0), // bottom
v3s16(-1,0,0), // left
};
const ContentFeatures &f = nodedef->get(n);
if(f.selection_box.type == NODEBOX_FIXED)
for(std::vector<aabb3f>::const_iterator
i = boxes.begin();
i != boxes.end(); i++)
{
core::aabbox3d<f32> box = f.selection_box.fixed;
aabb3f box = *i;
box.MinEdge += npf;
box.MaxEdge += npf;
v3s16 facedirs[6] = {
v3s16(-1,0,0),
v3s16(1,0,0),
v3s16(0,-1,0),
v3s16(0,1,0),
v3s16(0,0,-1),
v3s16(0,0,1),
};
core::aabbox3d<f32> faceboxes[6] = {
// X-
core::aabbox3d<f32>(
box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z,
box.MinEdge.X+d, box.MaxEdge.Y, box.MaxEdge.Z
),
// X+
core::aabbox3d<f32>(
box.MaxEdge.X-d, box.MinEdge.Y, box.MinEdge.Z,
box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z
),
// Y-
core::aabbox3d<f32>(
box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z,
box.MaxEdge.X, box.MinEdge.Y+d, box.MaxEdge.Z
),
// Y+
core::aabbox3d<f32>(
box.MinEdge.X, box.MaxEdge.Y-d, box.MinEdge.Z,
box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z
),
// Z-
core::aabbox3d<f32>(
box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z,
box.MaxEdge.X, box.MaxEdge.Y, box.MinEdge.Z+d
),
// Z+
core::aabbox3d<f32>(
box.MinEdge.X, box.MinEdge.Y, box.MaxEdge.Z-d,
box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z
),
};
for(u16 i=0; i<6; i++)
for(u16 j=0; j<6; j++)
{
v3f facedir_f(facedirs[i].X, facedirs[i].Y, facedirs[i].Z);
v3f centerpoint = npf + facedir_f * BS/2;
v3s16 facedir = g_6dirs[j];
aabb3f facebox = box;
f32 d = 0.001*BS;
if(facedir.X > 0)
facebox.MinEdge.X = facebox.MaxEdge.X-d;
else if(facedir.X < 0)
facebox.MaxEdge.X = facebox.MinEdge.X+d;
else if(facedir.Y > 0)
facebox.MinEdge.Y = facebox.MaxEdge.Y-d;
else if(facedir.Y < 0)
facebox.MaxEdge.Y = facebox.MinEdge.Y+d;
else if(facedir.Z > 0)
facebox.MinEdge.Z = facebox.MaxEdge.Z-d;
else if(facedir.Z < 0)
facebox.MaxEdge.Z = facebox.MinEdge.Z+d;
v3f centerpoint = facebox.getCenter();
f32 distance = (centerpoint - camera_position).getLength();
if(distance >= mindistance)
continue;
if(!faceboxes[i].intersectsWithLine(shootline))
if(!facebox.intersectsWithLine(shootline))
continue;
v3s16 np_above = np + facedir;
result.type = POINTEDTHING_NODE;
result.node_undersurface = np;
result.node_abovesurface = np+facedirs[i];
mindistance = distance;
hilightbox = box;
should_show_hilightbox = true;
}
}
else if(f.selection_box.type == NODEBOX_WALLMOUNTED)
{
v3s16 dir = n.getWallMountedDir(nodedef);
v3f dir_f = v3f(dir.X, dir.Y, dir.Z);
dir_f *= BS/2 - BS/6 - BS/20;
v3f cpf = npf + dir_f;
f32 distance = (cpf - camera_position).getLength();
core::aabbox3d<f32> box;
// top
if(dir == v3s16(0,1,0)){
box = f.selection_box.wall_top;
}
// bottom
else if(dir == v3s16(0,-1,0)){
box = f.selection_box.wall_bottom;
}
// side
else{
v3f vertices[2] =
{
f.selection_box.wall_side.MinEdge,
f.selection_box.wall_side.MaxEdge
};
for(s32 i=0; i<2; i++)
{
if(dir == v3s16(-1,0,0))
vertices[i].rotateXZBy(0);
if(dir == v3s16(1,0,0))
vertices[i].rotateXZBy(180);
if(dir == v3s16(0,0,-1))
vertices[i].rotateXZBy(90);
if(dir == v3s16(0,0,1))
vertices[i].rotateXZBy(-90);
}
box = core::aabbox3d<f32>(vertices[0]);
box.addInternalPoint(vertices[1]);
}
box.MinEdge += npf;
box.MaxEdge += npf;
if(distance < mindistance)
{
if(box.intersectsWithLine(shootline))
{
result.type = POINTEDTHING_NODE;
result.node_undersurface = np;
result.node_abovesurface = np;
mindistance = distance;
hilightbox = box;
should_show_hilightbox = true;
}
}
}
else // NODEBOX_REGULAR
{
for(u16 i=0; i<6; i++)
{
v3f dir_f = v3f(dirs[i].X,
dirs[i].Y, dirs[i].Z);
v3f centerpoint = npf + dir_f * BS/2;
f32 distance =
(centerpoint - camera_position).getLength();
if(distance < mindistance)
{
core::CMatrix4<f32> m;
m.buildRotateFromTo(v3f(0,0,1), dir_f);
// This is the back face
v3f corners[2] = {
v3f(BS/2, BS/2, BS/2),
v3f(-BS/2, -BS/2, BS/2+d)
};
for(u16 j=0; j<2; j++)
{
m.rotateVect(corners[j]);
corners[j] += npf;
}
core::aabbox3d<f32> facebox(corners[0]);
facebox.addInternalPoint(corners[1]);
if(facebox.intersectsWithLine(shootline))
{
result.type = POINTEDTHING_NODE;
result.node_undersurface = np;
result.node_abovesurface = np + dirs[i];
result.node_abovesurface = np_above;
mindistance = distance;
//hilightbox = facebox;
const float d = 0.502;
core::aabbox3d<f32> nodebox
(-BS*d, -BS*d, -BS*d, BS*d, BS*d, BS*d);
v3f nodepos_f = intToFloat(np, BS);
nodebox.MinEdge += nodepos_f;
nodebox.MaxEdge += nodepos_f;
hilightbox = nodebox;
should_show_hilightbox = true;
hilightboxes.clear();
for(std::vector<aabb3f>::const_iterator
i2 = boxes.begin();
i2 != boxes.end(); i2++)
{
aabb3f box = *i2;
box.MinEdge += npf + v3f(-d,-d,-d);
box.MaxEdge += npf + v3f(d,d,d);
hilightboxes.push_back(box);
}
}
}
} // if distance < mindistance
} // for dirs
} // regular block
} // for coords
return result;
@ -1514,7 +1381,7 @@ void the_game(
hotbar_imagesize = 64;
// Hilight boxes collected during the loop and displayed
core::list< core::aabbox3d<f32> > hilightboxes;
std::vector<aabb3f> hilightboxes;
// Info text
std::wstring infotext;
@ -2127,8 +1994,6 @@ void the_game(
core::line3d<f32> shootline(camera_position,
camera_position + camera_direction * BS * (d+1));
core::aabbox3d<f32> hilightbox;
bool should_show_hilightbox = false;
ClientActiveObject *selected_object = NULL;
PointedThing pointed = getPointedThing(
@ -2137,7 +2002,7 @@ void the_game(
camera_position, shootline, d,
playeritem_liquids_pointable, !ldown_for_dig,
// output
hilightbox, should_show_hilightbox,
hilightboxes,
selected_object);
if(pointed != pointed_old)
@ -2146,12 +2011,6 @@ void the_game(
//dstream<<"Pointing at "<<pointed.dump()<<std::endl;
}
/*
Visualize selection
*/
if(should_show_hilightbox)
hilightboxes.push_back(hilightbox);
/*
Stop digging when
- releasing left mouse button
@ -2818,7 +2677,8 @@ void the_game(
if(show_hud)
{
for(core::list<aabb3f>::Iterator i=hilightboxes.begin();
for(std::vector<aabb3f>::const_iterator
i = hilightboxes.begin();
i != hilightboxes.end(); i++)
{
/*infostream<<"hilightbox min="

@ -52,24 +52,15 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
INodeDefManager *nodemgr = m_gamedef->ndef();
v3f position = getPosition();
v3f oldpos = position;
v3s16 oldpos_i = floatToInt(oldpos, BS);
v3f old_speed = m_speed;
/*std::cout<<"oldpos_i=("<<oldpos_i.X<<","<<oldpos_i.Y<<","
<<oldpos_i.Z<<")"<<std::endl;*/
/*
Calculate new position
*/
position += m_speed * dtime;
// Skip collision detection if a special movement mode is used
bool fly_allowed = m_gamedef->checkLocalPrivilege("fly");
bool free_move = fly_allowed && g_settings->getBool("free_move");
if(free_move)
{
position += m_speed * dtime;
setPosition(position);
return;
}
@ -78,9 +69,6 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
Collision detection
*/
// Player position in nodes
v3s16 pos_i = floatToInt(position, BS);
/*
Check if player is in water (the oscillating value)
*/
@ -147,13 +135,6 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
// Maximum distance over border for sneaking
f32 sneak_max = BS*0.4;
/*
If sneaking, player has larger collision radius to keep from
falling
*/
/*if(control.sneak)
player_radius = sneak_max + d*1.1;*/
/*
If sneaking, keep in range from the last walked node and don't
fall off from it
@ -170,22 +151,8 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
{
position.Y = min_y;
//v3f old_speed = m_speed;
if(m_speed.Y < 0)
m_speed.Y = 0;
/*if(collision_info)
{
// Report fall collision
if(old_speed.Y < m_speed.Y - 0.1)
{
CollisionInfo info;
info.t = COLLISION_FALL;
info.speed = m_speed.Y - old_speed.Y;
collision_info->push_back(info);
}
}*/
}
}
@ -193,22 +160,22 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
Calculate player collision box (new and old)
*/
core::aabbox3d<f32> playerbox(
position.X - player_radius,
position.Y - 0.0,
position.Z - player_radius,
position.X + player_radius,
position.Y + player_height,
position.Z + player_radius
);
core::aabbox3d<f32> playerbox_old(
oldpos.X - player_radius,
oldpos.Y - 0.0,
oldpos.Z - player_radius,
oldpos.X + player_radius,
oldpos.Y + player_height,
oldpos.Z + player_radius
-player_radius,
0.0,
-player_radius,
player_radius,
player_height,
player_radius
);
float player_stepheight = touching_ground ? (BS*0.6) : (BS*0.2);
v3f accel_f = v3f(0,0,0);
collisionMoveResult result = collisionMoveSimple(&map, m_gamedef,
pos_max_d, playerbox, player_stepheight, dtime,
position, m_speed, accel_f);
/*
If the player's feet touch the topside of any node, this is
set to true.
@ -216,154 +183,9 @@ void LocalPlayer::move(f32 dtime, Map &map, f32 pos_max_d,
Player is allowed to jump when this is true.
*/
bool touching_ground_was = touching_ground;
touching_ground = false;
touching_ground = result.touching_ground;
/*std::cout<<"Checking collisions for ("
<<oldpos_i.X<<","<<oldpos_i.Y<<","<<oldpos_i.Z
<<") -> ("
<<pos_i.X<<","<<pos_i.Y<<","<<pos_i.Z
<<"):"<<std::endl;*/
bool standing_on_unloaded = false;
/*
Go through every node around the player
*/
for(s16 y = oldpos_i.Y - 1; y <= oldpos_i.Y + 2; y++)
for(s16 z = oldpos_i.Z - 1; z <= oldpos_i.Z + 1; z++)
for(s16 x = oldpos_i.X - 1; x <= oldpos_i.X + 1; x++)
{
bool is_unloaded = false;
try{
// Player collides into walkable nodes
if(nodemgr->get(map.getNode(v3s16(x,y,z))).walkable == false)
continue;
}
catch(InvalidPositionException &e)
{
is_unloaded = true;
// Doing nothing here will block the player from
// walking over map borders
}
core::aabbox3d<f32> nodebox = getNodeBox(v3s16(x,y,z), BS);
/*
See if the player is touching ground.
Player touches ground if player's minimum Y is near node's
maximum Y and player's X-Z-area overlaps with the node's
X-Z-area.
Use 0.15*BS so that it is easier to get on a node.
*/
if(
//fabs(nodebox.MaxEdge.Y-playerbox.MinEdge.Y) < d
fabs(nodebox.MaxEdge.Y-playerbox.MinEdge.Y) < 0.15*BS
&& nodebox.MaxEdge.X-d > playerbox.MinEdge.X
&& nodebox.MinEdge.X+d < playerbox.MaxEdge.X
&& nodebox.MaxEdge.Z-d > playerbox.MinEdge.Z
&& nodebox.MinEdge.Z+d < playerbox.MaxEdge.Z
){
touching_ground = true;
if(is_unloaded)
standing_on_unloaded = true;
}
// If player doesn't intersect with node, ignore node.
if(playerbox.intersectsWithBox(nodebox) == false)
continue;
/*
Go through every axis
*/
v3f dirs[3] = {
v3f(0,0,1), // back-front
v3f(0,1,0), // top-bottom
v3f(1,0,0), // right-left
};
for(u16 i=0; i<3; i++)
{
/*
Calculate values along the axis
*/
f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[i]);
f32 nodemin = nodebox.MinEdge.dotProduct(dirs[i]);
f32 playermax = playerbox.MaxEdge.dotProduct(dirs[i]);
f32 playermin = playerbox.MinEdge.dotProduct(dirs[i]);
f32 playermax_old = playerbox_old.MaxEdge.dotProduct(dirs[i]);
f32 playermin_old = playerbox_old.MinEdge.dotProduct(dirs[i]);
/*
Check collision for the axis.
Collision happens when player is going through a surface.
*/
/*f32 neg_d = d;
f32 pos_d = d;
// Make it easier to get on top of a node
if(i == 1)
neg_d = 0.15*BS;
bool negative_axis_collides =
(nodemax > playermin && nodemax <= playermin_old + neg_d
&& m_speed.dotProduct(dirs[i]) < 0);
bool positive_axis_collides =
(nodemin < playermax && nodemin >= playermax_old - pos_d
&& m_speed.dotProduct(dirs[i]) > 0);*/
bool negative_axis_collides =
(nodemax > playermin && nodemax <= playermin_old + d
&& m_speed.dotProduct(dirs[i]) < 0);
bool positive_axis_collides =
(nodemin < playermax && nodemin >= playermax_old - d
&& m_speed.dotProduct(dirs[i]) > 0);
bool main_axis_collides =
negative_axis_collides || positive_axis_collides;
/*
Check overlap of player and node in other axes
*/
bool other_axes_overlap = true;
for(u16 j=0; j<3; j++)
{
if(j == i)
continue;
f32 nodemax = nodebox.MaxEdge.dotProduct(dirs[j]);
f32 nodemin = nodebox.MinEdge.dotProduct(dirs[j]);
f32 playermax = playerbox.MaxEdge.dotProduct(dirs[j]);
f32 playermin = playerbox.MinEdge.dotProduct(dirs[j]);
if(!(nodemax - d > playermin && nodemin + d < playermax))
{
other_axes_overlap = false;
break;
}
}
/*
If this is a collision, revert the position in the main
direction.
*/
if(other_axes_overlap && main_axis_collides)
{
//v3f old_speed = m_speed;
m_speed -= m_speed.dotProduct(dirs[i]) * dirs[i];
position -= position.dotProduct(dirs[i]) * dirs[i];
position += oldpos.dotProduct(dirs[i]) * dirs[i];
/*if(collision_info)
{
// Report fall collision
if(old_speed.Y < m_speed.Y - 0.1)
{
CollisionInfo info;
info.t = COLLISION_FALL;
info.speed = m_speed.Y - old_speed.Y;
collision_info->push_back(info);
}
}*/
}
}
} // xyz
bool standing_on_unloaded = result.standing_on_unloaded;
/*
Check the nodes under the player to see from which node the

@ -134,7 +134,98 @@ v3s16 MapNode::getWallMountedDir(INodeDefManager *nodemgr) const
}
}
static std::vector<aabb3f> transformNodeBox(const MapNode &n,
const NodeBox &nodebox, INodeDefManager *nodemgr)
{
std::vector<aabb3f> boxes;
if(nodebox.type == NODEBOX_FIXED)
{
const std::vector<aabb3f> &fixed = nodebox.fixed;
int facedir = n.getFaceDir(nodemgr);
for(std::vector<aabb3f>::const_iterator
i = fixed.begin();
i != fixed.end(); i++)
{
aabb3f box = *i;
if(facedir == 1)
{
box.MinEdge.rotateXZBy(-90);
box.MaxEdge.rotateXZBy(-90);
box.repair();
}
else if(facedir == 2)
{
box.MinEdge.rotateXZBy(180);
box.MaxEdge.rotateXZBy(180);
box.repair();
}
else if(facedir == 3)
{
box.MinEdge.rotateXZBy(90);
box.MaxEdge.rotateXZBy(90);
box.repair();
}
boxes.push_back(box);
}
}
else if(nodebox.type == NODEBOX_WALLMOUNTED)
{
v3s16 dir = n.getWallMountedDir(nodemgr);
// top
if(dir == v3s16(0,1,0))
{
boxes.push_back(nodebox.wall_top);
}
// bottom
else if(dir == v3s16(0,-1,0))
{
boxes.push_back(nodebox.wall_bottom);
}
// side
else
{
v3f vertices[2] =
{
nodebox.wall_side.MinEdge,
nodebox.wall_side.MaxEdge
};
for(s32 i=0; i<2; i++)
{
if(dir == v3s16(-1,0,0))
vertices[i].rotateXZBy(0);
if(dir == v3s16(1,0,0))
vertices[i].rotateXZBy(180);
if(dir == v3s16(0,0,-1))
vertices[i].rotateXZBy(90);
if(dir == v3s16(0,0,1))
vertices[i].rotateXZBy(-90);
}
aabb3f box = aabb3f(vertices[0]);
box.addInternalPoint(vertices[1]);
boxes.push_back(box);
}
}
else // NODEBOX_REGULAR
{
boxes.push_back(aabb3f(-BS/2,-BS/2,-BS/2,BS/2,BS/2,BS/2));
}
return boxes;
}
std::vector<aabb3f> MapNode::getNodeBoxes(INodeDefManager *nodemgr) const
{
const ContentFeatures &f = nodemgr->get(*this);
return transformNodeBox(*this, f.node_box, nodemgr);
}
std::vector<aabb3f> MapNode::getSelectionBoxes(INodeDefManager *nodemgr) const
{
const ContentFeatures &f = nodemgr->get(*this);
return transformNodeBox(*this, f.selection_box, nodemgr);
}
u32 MapNode::serializedLength(u8 version)
{

@ -22,7 +22,9 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include "irrlichttypes.h"
#include "irr_v3d.h"
#include "irr_aabb3d.h"
#include "light.h"
#include <vector>
class INodeDefManager;
@ -196,6 +198,17 @@ struct MapNode
u8 getWallMounted(INodeDefManager *nodemgr) const;
v3s16 getWallMountedDir(INodeDefManager *nodemgr) const;
/*
Gets list of node boxes (used for rendering (NDT_NODEBOX)
and collision)
*/
std::vector<aabb3f> getNodeBoxes(INodeDefManager *nodemgr) const;
/*
Gets list of selection boxes
*/
std::vector<aabb3f> getSelectionBoxes(INodeDefManager *nodemgr) const;
/*
Serialization functions
*/

@ -33,34 +33,74 @@ with this program; if not, write to the Free Software Foundation, Inc.,
NodeBox
*/
void NodeBox::reset()
{
type = NODEBOX_REGULAR;
// default is empty
fixed.clear();
// default is sign/ladder-like
wall_top = aabb3f(-BS/2, BS/2-BS/16., -BS/2, BS/2, BS/2, BS/2);
wall_bottom = aabb3f(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2);
wall_side = aabb3f(-BS/2, -BS/2, -BS/2, -BS/2+BS/16., BS/2, BS/2);
}
void NodeBox::serialize(std::ostream &os) const
{
writeU8(os, 0); // version
writeU8(os, 1); // version
writeU8(os, type);
writeV3F1000(os, fixed.MinEdge);
writeV3F1000(os, fixed.MaxEdge);
if(type == NODEBOX_FIXED)
{
writeU16(os, fixed.size());
for(std::vector<aabb3f>::const_iterator
i = fixed.begin();
i != fixed.end(); i++)
{
writeV3F1000(os, i->MinEdge);
writeV3F1000(os, i->MaxEdge);
}
}
else if(type == NODEBOX_WALLMOUNTED)
{
writeV3F1000(os, wall_top.MinEdge);
writeV3F1000(os, wall_top.MaxEdge);
writeV3F1000(os, wall_bottom.MinEdge);
writeV3F1000(os, wall_bottom.MaxEdge);
writeV3F1000(os, wall_side.MinEdge);
writeV3F1000(os, wall_side.MaxEdge);
}
}
void NodeBox::deSerialize(std::istream &is)
{
int version = readU8(is);
if(version != 0)
if(version != 1)
throw SerializationError("unsupported NodeBox version");
reset();
type = (enum NodeBoxType)readU8(is);
fixed.MinEdge = readV3F1000(is);
fixed.MaxEdge = readV3F1000(is);
if(type == NODEBOX_FIXED)
{
u16 fixed_count = readU16(is);
while(fixed_count--)
{
aabb3f box;
box.MinEdge = readV3F1000(is);
box.MaxEdge = readV3F1000(is);
fixed.push_back(box);
}
}
else if(type == NODEBOX_WALLMOUNTED)
{
wall_top.MinEdge = readV3F1000(is);
wall_top.MaxEdge = readV3F1000(is);
wall_bottom.MinEdge = readV3F1000(is);
wall_bottom.MaxEdge = readV3F1000(is);
wall_side.MinEdge = readV3F1000(is);
wall_side.MaxEdge = readV3F1000(is);
}
}
/*
@ -165,6 +205,7 @@ void ContentFeatures::reset()
liquid_viscosity = 0;
light_source = 0;
damage_per_second = 0;
node_box = NodeBox();
selection_box = NodeBox();
legacy_facedir_simple = false;
legacy_wallmounted = false;
@ -214,6 +255,7 @@ void ContentFeatures::serialize(std::ostream &os)
writeU8(os, liquid_viscosity);
writeU8(os, light_source);
writeU32(os, damage_per_second);
node_box.serialize(os);
selection_box.serialize(os);
writeU8(os, legacy_facedir_simple);
writeU8(os, legacy_wallmounted);
@ -277,6 +319,7 @@ void ContentFeatures::deSerialize(std::istream &is)
liquid_viscosity = readU8(is);
light_source = readU8(is);
damage_per_second = readU32(is);
node_box.deSerialize(is);
selection_box.deSerialize(is);
legacy_facedir_simple = readU8(is);
legacy_wallmounted = readU8(is);
@ -577,6 +620,7 @@ public:
case NDT_PLANTLIKE:
case NDT_FENCELIKE:
case NDT_RAILLIKE:
case NDT_NODEBOX:
f->solidness = 0;
break;
}

@ -65,7 +65,7 @@ enum LiquidType
enum NodeBoxType
{
NODEBOX_REGULAR, // Regular block; allows buildable_to
NODEBOX_FIXED, // Static separately defined box
NODEBOX_FIXED, // Static separately defined box(es)
NODEBOX_WALLMOUNTED, // Box for wall mounted nodes; (top, bottom, side)
};
@ -74,22 +74,16 @@ struct NodeBox
enum NodeBoxType type;
// NODEBOX_REGULAR (no parameters)
// NODEBOX_FIXED
core::aabbox3d<f32> fixed;
std::vector<aabb3f> fixed;
// NODEBOX_WALLMOUNTED
core::aabbox3d<f32> wall_top;
core::aabbox3d<f32> wall_bottom;
core::aabbox3d<f32> wall_side; // being at the -X side
aabb3f wall_top;
aabb3f wall_bottom;
aabb3f wall_side; // being at the -X side
NodeBox():
type(NODEBOX_REGULAR),
// default is rail-like
fixed(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2),
// default is sign/ladder-like
wall_top(-BS/2, BS/2-BS/16., -BS/2, BS/2, BS/2, BS/2),
wall_bottom(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2),
wall_side(-BS/2, -BS/2, -BS/2, -BS/2+BS/16., BS/2, BS/2)
{}
NodeBox()
{ reset(); }
void reset();
void serialize(std::ostream &os) const;
void deSerialize(std::istream &is);
};
@ -143,6 +137,7 @@ enum NodeDrawType
NDT_PLANTLIKE,
NDT_FENCELIKE,
NDT_RAILLIKE,
NDT_NODEBOX,
};
#define CF_SPECIAL_COUNT 2
@ -217,6 +212,7 @@ struct ContentFeatures
// Amount of light the node emits
u8 light_source;
u32 damage_per_second;
NodeBox node_box;
NodeBox selection_box;
// Compatibility with old maps
// Set to true if paramtype used to be 'facedir_simple'

@ -166,6 +166,10 @@ void Player::deSerialize(std::istream &is)
RemotePlayer
*/
void RemotePlayer::setPosition(const v3f &position)
{
Player::setPosition(position);

@ -382,6 +382,7 @@ struct EnumString es_DrawType[] =
{NDT_PLANTLIKE, "plantlike"},
{NDT_FENCELIKE, "fencelike"},
{NDT_RAILLIKE, "raillike"},
{NDT_NODEBOX, "nodebox"},
{0, NULL},
};
@ -595,52 +596,89 @@ static video::SColor readARGB8(lua_State *L, int index)
return color;
}
static core::aabbox3d<f32> read_aabbox3df32(lua_State *L, int index, f32 scale)
static aabb3f read_aabb3f(lua_State *L, int index, f32 scale)
{
core::aabbox3d<f32> box;
if(lua_istable(L, -1)){
lua_rawgeti(L, -1, 1);
aabb3f box;
if(lua_istable(L, index)){
lua_rawgeti(L, index, 1);
box.MinEdge.X = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
lua_rawgeti(L, -1, 2);
lua_rawgeti(L, index, 2);
box.MinEdge.Y = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
lua_rawgeti(L, -1, 3);
lua_rawgeti(L, index, 3);
box.MinEdge.Z = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
lua_rawgeti(L, -1, 4);
lua_rawgeti(L, index, 4);
box.MaxEdge.X = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
lua_rawgeti(L, -1, 5);
lua_rawgeti(L, index, 5);
box.MaxEdge.Y = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
lua_rawgeti(L, -1, 6);
lua_rawgeti(L, index, 6);
box.MaxEdge.Z = lua_tonumber(L, -1) * scale;
lua_pop(L, 1);
}
return box;
}
#if 0
/*
MaterialProperties
*/
static MaterialProperties read_material_properties(
lua_State *L, int table)
static std::vector<aabb3f> read_aabb3f_vector(lua_State *L, int index, f32 scale)
{
MaterialProperties prop;
prop.diggability = (Diggability)getenumfield(L, -1, "diggability",
es_Diggability, DIGGABLE_NORMAL);
getfloatfield(L, -1, "constant_time", prop.constant_time);
getfloatfield(L, -1, "weight", prop.weight);
getfloatfield(L, -1, "crackiness", prop.crackiness);
getfloatfield(L, -1, "crumbliness", prop.crumbliness);
getfloatfield(L, -1, "cuttability", prop.cuttability);
getfloatfield(L, -1, "flammability", prop.flammability);
return prop;
std::vector<aabb3f> boxes;
if(lua_istable(L, index)){
int n = lua_objlen(L, index);
// Check if it's a single box or a list of boxes
bool possibly_single_box = (n == 6);
for(int i = 1; i <= n && possibly_single_box; i++){
lua_rawgeti(L, index, i);
if(!lua_isnumber(L, -1))
possibly_single_box = false;
lua_pop(L, 1);
}
if(possibly_single_box){
// Read a single box
boxes.push_back(read_aabb3f(L, index, scale));
} else {
// Read a list of boxes
for(int i = 1; i <= n; i++){
lua_rawgeti(L, index, i);
boxes.push_back(read_aabb3f(L, -1, scale));
lua_pop(L, 1);
}
}
}
return boxes;
}
static NodeBox read_nodebox(lua_State *L, int index)
{
NodeBox nodebox;
if(lua_istable(L, -1)){
nodebox.type = (NodeBoxType)getenumfield(L, index, "type",
es_NodeBoxType, NODEBOX_REGULAR);
lua_getfield(L, index, "fixed");
if(lua_istable(L, -1))
nodebox.fixed = read_aabb3f_vector(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, index, "wall_top");
if(lua_istable(L, -1))
nodebox.wall_top = read_aabb3f(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, index, "wall_bottom");
if(lua_istable(L, -1))
nodebox.wall_bottom = read_aabb3f(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, index, "wall_side");
if(lua_istable(L, -1))
nodebox.wall_side = read_aabb3f(L, -1, BS);
lua_pop(L, 1);
}
return nodebox;
}
#endif
/*
Groups
@ -891,7 +929,7 @@ static void read_object_properties(lua_State *L, int index,
lua_getfield(L, -1, "collisionbox");
if(lua_istable(L, -1))
prop->collisionbox = read_aabbox3df32(L, -1, 1.0);
prop->collisionbox = read_aabb3f(L, -1, 1.0);
lua_pop(L, 1);
getstringfield(L, -1, "visual", prop->visual);
@ -1203,31 +1241,14 @@ static ContentFeatures read_content_features(lua_State *L, int index)
f.damage_per_second = getintfield_default(L, index,
"damage_per_second", f.damage_per_second);
lua_getfield(L, index, "node_box");
if(lua_istable(L, -1))
f.node_box = read_nodebox(L, -1);
lua_pop(L, 1);
lua_getfield(L, index, "selection_box");
if(lua_istable(L, -1)){
f.selection_box.type = (NodeBoxType)getenumfield(L, -1, "type",
es_NodeBoxType, NODEBOX_REGULAR);
lua_getfield(L, -1, "fixed");
if(lua_istable(L, -1))
f.selection_box.fixed = read_aabbox3df32(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, -1, "wall_top");
if(lua_istable(L, -1))
f.selection_box.wall_top = read_aabbox3df32(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, -1, "wall_bottom");
if(lua_istable(L, -1))
f.selection_box.wall_bottom = read_aabbox3df32(L, -1, BS);
lua_pop(L, 1);
lua_getfield(L, -1, "wall_side");
if(lua_istable(L, -1))
f.selection_box.wall_side = read_aabbox3df32(L, -1, BS);
lua_pop(L, 1);
}
f.selection_box = read_nodebox(L, -1);
lua_pop(L, 1);
// Set to true if paramtype used to be 'facedir_simple'
@ -5604,6 +5625,21 @@ void scriptapi_luaentity_get_properties(lua_State *L, u16 id,
// Set default values that differ from ObjectProperties defaults
prop->hp_max = 10;
/* Read stuff */
prop->hp_max = getintfield_default(L, -1, "hp_max", 10);
getboolfield(L, -1, "physical", prop->physical);
getfloatfield(L, -1, "weight", prop->weight);
lua_getfield(L, -1, "collisionbox");
if(lua_istable(L, -1))
prop->collisionbox = read_aabb3f(L, -1, 1.0);
lua_pop(L, 1);
getstringfield(L, -1, "visual", prop->visual);
// Deprecated: read object properties directly
read_object_properties(L, -1, prop);

@ -27,6 +27,7 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include "connection.h"
#include "serialization.h"
#include "voxel.h"
#include "collision.h"
#include <sstream>
#include "porting.h"
#include "content_mapnode.h"
@ -1075,6 +1076,153 @@ struct TestMapSector
};
#endif
struct TestCollision
{
void Run()
{
/*
axisAlignedCollision
*/
for(s16 bx = -3; bx <= 3; bx++)
for(s16 by = -3; by <= 3; by++)
for(s16 bz = -3; bz <= 3; bz++)
{
// X-
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
v3f v(1, 0, 0);
f32 dtime = 0;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 1.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
v3f v(-1, 0, 0);
f32 dtime = 0;
assert(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by+1.5, bz, bx-1, by+2.5, bz-1);
v3f v(1, 0, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
v3f v(0.5, 0.1, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 3.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
v3f v(0.5, 0.1, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 3.000) < 0.001);
}
// X+
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
v3f v(-1, 0, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 1.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
v3f v(1, 0, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz+1.5, bx+3, by+1, bz+3.5);
v3f v(-1, 0, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
v3f v(-0.5, 0.2, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 1); // Y, not X!
assert(fabs(dtime - 2.500) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
v3f v(-0.5, 0.3, 0);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 2.000) < 0.001);
}
// TODO: Y-, Y+, Z-, Z+
// misc
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.3, by+2.29, bz+2.29, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.29, by+2.3, bz+2.29, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 1);
assert(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.29, by+2.29, bz+2.3, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 2);
assert(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.3, by-2.29, bz-2.29);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 0);
assert(fabs(dtime - 16.1) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.3, bz-2.29);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 1);
assert(fabs(dtime - 16.1) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.29, bz-2.3);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
assert(axisAlignedCollision(s, m, v, 0, dtime) == 2);
assert(fabs(dtime - 16.1) < 0.001);
}
}
}
};
struct TestSocket
{
void Run()
@ -1544,6 +1692,7 @@ void run_tests()
TESTPARAMS(TestInventory, idef);
//TEST(TestMapBlock);
//TEST(TestMapSector);
TEST(TestCollision);
if(INTERNET_SIMULATOR == false){
TEST(TestSocket);
dout_con<<"=== BEGIN RUNNING UNIT TESTS FOR CONNECTION ==="<<std::endl;

@ -61,6 +61,14 @@ struct AtlasPointer
v2f size; // Size in atlas
u16 tiled; // X-wise tiling count. If 0, width of atlas is width of image.
AtlasPointer():
id(0),
atlas(NULL),
pos(0,0),
size(1,1),
tiled(1)
{}
AtlasPointer(
u16 id_,
video::ITexture *atlas_=NULL,