Improve accuracy and safety of float serialization

Multiplying by a factor of 1/1000.f (rather than dividing by 1000.f) directly
introduces an error of 1 ULP.  With this patch, an exact comparison of a
floating point literal with the deserialized F1000 form representing it is now
guaranteed to be successful.
In addition, the maxmium and minimum safely representible floating point
numbers are now well-defined as constants.
This commit is contained in:
kwolekr 2015-08-01 01:03:51 -04:00
parent bf991bde45
commit 42cf5e972d
2 changed files with 21 additions and 17 deletions

@ -296,10 +296,10 @@ void TestSerialization::testStreamRead()
UASSERT(readS32(is) == -6); UASSERT(readS32(is) == -6);
UASSERT(readS64(is) == -43); UASSERT(readS64(is) == -43);
UASSERT(fabs(readF1000(is) - 53.534f) < 0.005); UASSERT(readF1000(is) == 53.534f);
UASSERT(fabs(readF1000(is) - -300000.32f) < 0.05); UASSERT(readF1000(is) == -300000.32f);
UASSERT(fabs(readF1000(is) - -2147483.f) < 0.05); UASSERT(readF1000(is) == F1000_MIN);
UASSERT(fabs(readF1000(is) - 2147483.f) < 0.05); UASSERT(readF1000(is) == F1000_MAX);
UASSERT(deSerializeString(is) == "foobar!"); UASSERT(deSerializeString(is) == "foobar!");
@ -307,18 +307,11 @@ void TestSerialization::testStreamRead()
UASSERT(readV3S16(is) == v3s16(4207, 604, -30)); UASSERT(readV3S16(is) == v3s16(4207, 604, -30));
UASSERT(readV2S32(is) == v2s32(1920, 1080)); UASSERT(readV2S32(is) == v2s32(1920, 1080));
UASSERT(readV3S32(is) == v3s32(-400, 6400054, 290549855)); UASSERT(readV3S32(is) == v3s32(-400, 6400054, 290549855));
UASSERT(readV2F1000(is) == v2f(500.656f, 350.345f));
v2f vec2 = readV2F1000(is);
UASSERT(fabs(vec2.X - 500.656f) < 0.005);
UASSERT(fabs(vec2.Y - 350.345f) < 0.005);
UASSERT(deSerializeWideString(is) == L"\x02~woof~\x5455"); UASSERT(deSerializeWideString(is) == L"\x02~woof~\x5455");
v3f vec3 = readV3F1000(is); UASSERT(readV3F1000(is) == v3f(500, 10024.2f, -192.54f));
UASSERT(fabs(vec3.X - 500.f) < 0.005);
UASSERT(fabs(vec3.Y - 10024.2f) < 0.005);
UASSERT(fabs(vec3.Z - -192.54f) < 0.005);
UASSERT(readARGB8(is) == video::SColor(255, 128, 50, 128)); UASSERT(readARGB8(is) == video::SColor(255, 128, 50, 128));
UASSERT(deSerializeLongString(is) == "some longer string here"); UASSERT(deSerializeLongString(is) == "some longer string here");
@ -346,8 +339,8 @@ void TestSerialization::testStreamWrite()
writeF1000(os, 53.53467f); writeF1000(os, 53.53467f);
writeF1000(os, -300000.32f); writeF1000(os, -300000.32f);
writeF1000(os, -2147483.f); writeF1000(os, F1000_MIN);
writeF1000(os, 2147483.f); writeF1000(os, F1000_MAX);
os << serializeString("foobar!"); os << serializeString("foobar!");

@ -21,6 +21,7 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#define UTIL_SERIALIZE_HEADER #define UTIL_SERIALIZE_HEADER
#include "../irrlichttypes_bloated.h" #include "../irrlichttypes_bloated.h"
#include "../debug.h" // for assert
#include "config.h" #include "config.h"
#if HAVE_ENDIAN_H #if HAVE_ENDIAN_H
#include <endian.h> #include <endian.h>
@ -30,7 +31,16 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include <string> #include <string>
#define FIXEDPOINT_FACTOR 1000.0f #define FIXEDPOINT_FACTOR 1000.0f
#define FIXEDPOINT_INVFACTOR (1.0f/FIXEDPOINT_FACTOR)
// 0x7FFFFFFF / 1000.0f is not serializable.
// The limited float precision at this magnitude may cause the result to round
// to a greater value than can be represented by a 32 bit integer when increased
// by a factor of FIXEDPOINT_FACTOR. As a result, [F1000_MIN..F1000_MAX] does
// not represent the full range, but rather the largest safe range, of values on
// all supported architectures. Note: This definition makes assumptions on
// platform float-to-int conversion behavior.
#define F1000_MIN ((float)(s32)((-0x7FFFFFFF - 1) / FIXEDPOINT_FACTOR))
#define F1000_MAX ((float)(s32)((0x7FFFFFFF) / FIXEDPOINT_FACTOR))
#define STRING_MAX_LEN 0xFFFF #define STRING_MAX_LEN 0xFFFF
#define WIDE_STRING_MAX_LEN 0xFFFF #define WIDE_STRING_MAX_LEN 0xFFFF
@ -163,7 +173,7 @@ inline s64 readS64(const u8 *data)
inline f32 readF1000(const u8 *data) inline f32 readF1000(const u8 *data)
{ {
return (f32)readS32(data) * FIXEDPOINT_INVFACTOR; return (f32)readS32(data) / FIXEDPOINT_FACTOR;
} }
inline video::SColor readARGB8(const u8 *data) inline video::SColor readARGB8(const u8 *data)
@ -252,6 +262,7 @@ inline void writeS64(u8 *data, s64 i)
inline void writeF1000(u8 *data, f32 i) inline void writeF1000(u8 *data, f32 i)
{ {
assert(i >= F1000_MIN && i <= F1000_MAX);
writeS32(data, i * FIXEDPOINT_FACTOR); writeS32(data, i * FIXEDPOINT_FACTOR);
} }