Improve shadow rendering with non-default camera FOV (#11385)

* Adjust minimum filter radius for perspective

* Expand shadow frustum when camera FOV changes, reuse FOV distance adjustment from numeric.cpp

* Read shadow_soft_radius setting as float

* Use adaptive filter radius to accomodate for PSM distortion

* Adjust filter radius for texture resolution
This commit is contained in:
x2048 2021-07-11 17:15:19 +02:00 committed by GitHub
parent 1d25d1f7ad
commit f5706d444b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 37 additions and 23 deletions

@ -181,9 +181,14 @@ float getDeltaPerspectiveFactor(float l)
float getPenumbraRadius(sampler2D shadowsampler, vec2 smTexCoord, float realDistance, float multiplier) float getPenumbraRadius(sampler2D shadowsampler, vec2 smTexCoord, float realDistance, float multiplier)
{ {
float baseLength = getBaseLength(smTexCoord);
float perspectiveFactor;
// Return fast if sharp shadows are requested // Return fast if sharp shadows are requested
if (SOFTSHADOWRADIUS <= 1.0) if (SOFTSHADOWRADIUS <= 1.0) {
return SOFTSHADOWRADIUS; perspectiveFactor = getDeltaPerspectiveFactor(baseLength);
return max(2 * length(smTexCoord.xy) * 2048 / f_textureresolution / pow(perspectiveFactor, 3), SOFTSHADOWRADIUS);
}
vec2 clampedpos; vec2 clampedpos;
float texture_size = 1.0 / (2048 /*f_textureresolution*/ * 0.5); float texture_size = 1.0 / (2048 /*f_textureresolution*/ * 0.5);
@ -192,8 +197,6 @@ float getPenumbraRadius(sampler2D shadowsampler, vec2 smTexCoord, float realDist
float pointDepth; float pointDepth;
float maxRadius = SOFTSHADOWRADIUS * 5.0 * multiplier; float maxRadius = SOFTSHADOWRADIUS * 5.0 * multiplier;
float baseLength = getBaseLength(smTexCoord);
float perspectiveFactor;
float bound = clamp(PCFBOUND * (1 - baseLength), 0.5, PCFBOUND); float bound = clamp(PCFBOUND * (1 - baseLength), 0.5, PCFBOUND);
int n = 0; int n = 0;
@ -211,9 +214,10 @@ float getPenumbraRadius(sampler2D shadowsampler, vec2 smTexCoord, float realDist
} }
depth = depth / n; depth = depth / n;
depth = pow(clamp(depth, 0.0, 1000.0), 1.6) / 0.001; depth = pow(clamp(depth, 0.0, 1000.0), 1.6) / 0.001;
return max(0.5, depth * maxRadius);
perspectiveFactor = getDeltaPerspectiveFactor(baseLength);
return max(length(smTexCoord.xy) * 2 * 2048 / f_textureresolution / pow(perspectiveFactor, 3), depth * maxRadius);
} }
#ifdef POISSON_FILTER #ifdef POISSON_FILTER

@ -740,7 +740,7 @@ ShaderInfo ShaderSource::generateShader(const std::string &name,
s32 shadow_filter = g_settings->getS32("shadow_filters"); s32 shadow_filter = g_settings->getS32("shadow_filters");
shaders_header << "#define SHADOW_FILTER " << shadow_filter << "\n"; shaders_header << "#define SHADOW_FILTER " << shadow_filter << "\n";
float shadow_soft_radius = g_settings->getS32("shadow_soft_radius"); float shadow_soft_radius = g_settings->getFloat("shadow_soft_radius");
if (shadow_soft_radius < 1.0f) if (shadow_soft_radius < 1.0f)
shadow_soft_radius = 1.0f; shadow_soft_radius = 1.0f;
shaders_header << "#define SOFTSHADOWRADIUS " << shadow_soft_radius << "\n"; shaders_header << "#define SOFTSHADOWRADIUS " << shadow_soft_radius << "\n";

@ -33,29 +33,34 @@ void DirectionalLight::createSplitMatrices(const Camera *cam)
v3f newCenter; v3f newCenter;
v3f look = cam->getDirection(); v3f look = cam->getDirection();
// camera view tangents
float tanFovY = tanf(cam->getFovY() * 0.5f);
float tanFovX = tanf(cam->getFovX() * 0.5f);
// adjusted frustum boundaries
float sfNear = shadow_frustum.zNear;
float sfFar = adjustDist(shadow_frustum.zFar, cam->getFovY());
// adjusted camera positions
v3f camPos2 = cam->getPosition(); v3f camPos2 = cam->getPosition();
v3f camPos = v3f(camPos2.X - cam->getOffset().X * BS, v3f camPos = v3f(camPos2.X - cam->getOffset().X * BS,
camPos2.Y - cam->getOffset().Y * BS, camPos2.Y - cam->getOffset().Y * BS,
camPos2.Z - cam->getOffset().Z * BS); camPos2.Z - cam->getOffset().Z * BS);
camPos += look * shadow_frustum.zNear; camPos += look * sfNear;
camPos2 += look * shadow_frustum.zNear; camPos2 += look * sfNear;
float end = shadow_frustum.zNear + shadow_frustum.zFar;
newCenter = camPos + look * (shadow_frustum.zNear + 0.05f * end); // center point of light frustum
v3f world_center = camPos2 + look * (shadow_frustum.zNear + 0.05f * end); float end = sfNear + sfFar;
newCenter = camPos + look * (sfNear + 0.05f * end);
v3f world_center = camPos2 + look * (sfNear + 0.05f * end);
// Create a vector to the frustum far corner // Create a vector to the frustum far corner
// @Liso: move all vars we can outside the loop.
float tanFovY = tanf(cam->getFovY() * 0.5f);
float tanFovX = tanf(cam->getFovX() * 0.5f);
const v3f &viewUp = cam->getCameraNode()->getUpVector(); const v3f &viewUp = cam->getCameraNode()->getUpVector();
// viewUp.normalize();
v3f viewRight = look.crossProduct(viewUp); v3f viewRight = look.crossProduct(viewUp);
// viewRight.normalize();
v3f farCorner = look + viewRight * tanFovX + viewUp * tanFovY; v3f farCorner = look + viewRight * tanFovX + viewUp * tanFovY;
// Compute the frustumBoundingSphere radius // Compute the frustumBoundingSphere radius
v3f boundVec = (camPos + farCorner * shadow_frustum.zFar) - newCenter; v3f boundVec = (camPos + farCorner * sfFar) - newCenter;
radius = boundVec.getLength() * 2.0f; radius = boundVec.getLength() * 2.0f;
// boundVec.getLength(); // boundVec.getLength();
float vvolume = radius * 2.0f; float vvolume = radius * 2.0f;

@ -159,7 +159,7 @@ bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
return true; return true;
} }
s16 adjustDist(s16 dist, float zoom_fov) inline float adjustDist(float dist, float zoom_fov)
{ {
// 1.775 ~= 72 * PI / 180 * 1.4, the default FOV on the client. // 1.775 ~= 72 * PI / 180 * 1.4, the default FOV on the client.
// The heuristic threshold for zooming is half of that. // The heuristic threshold for zooming is half of that.
@ -167,8 +167,13 @@ s16 adjustDist(s16 dist, float zoom_fov)
if (zoom_fov < 0.001f || zoom_fov > threshold_fov) if (zoom_fov < 0.001f || zoom_fov > threshold_fov)
return dist; return dist;
return std::round(dist * std::cbrt((1.0f - std::cos(threshold_fov)) / return dist * std::cbrt((1.0f - std::cos(threshold_fov)) /
(1.0f - std::cos(zoom_fov / 2.0f)))); (1.0f - std::cos(zoom_fov / 2.0f)));
}
s16 adjustDist(s16 dist, float zoom_fov)
{
return std::round(adjustDist((float)dist, zoom_fov));
} }
void setPitchYawRollRad(core::matrix4 &m, const v3f &rot) void setPitchYawRollRad(core::matrix4 &m, const v3f &rot)