// Copyright (C) 2002-2012 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "COpenGLDriver.h" #include #include "CNullDriver.h" #include "IContextManager.h" #ifdef _IRR_COMPILE_WITH_OPENGL_ #include "os.h" #include "COpenGLCacheHandler.h" #include "COpenGLMaterialRenderer.h" #include "COpenGLSLMaterialRenderer.h" #include "COpenGLCoreTexture.h" #include "COpenGLCoreRenderTarget.h" #include "mt_opengl.h" namespace irr { namespace video { // Statics variables const u16 COpenGLDriver::Quad2DIndices[4] = {0, 1, 2, 3}; COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters ¶ms, io::IFileSystem *io, IContextManager *contextManager) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CacheHandler(0), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), ColorFormat(ECF_R8G8B8), FixedPipelineState(EOFPS_ENABLE), Params(params), ContextManager(contextManager) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif } bool COpenGLDriver::initDriver() { ContextManager->generateSurface(); ContextManager->generateContext(); ExposedData = ContextManager->getContext(); ContextManager->activateContext(ExposedData, false); GL.LoadAllProcedures(ContextManager); genericDriverInit(); #if defined(_IRR_COMPILE_WITH_WINDOWS_DEVICE_) || defined(_IRR_COMPILE_WITH_X11_DEVICE_) extGlSwapInterval(Params.Vsync ? 1 : 0); #endif return true; } //! destructor COpenGLDriver::~COpenGLDriver() { deleteMaterialRenders(); CacheHandler->getTextureCache().clear(); // I get a blue screen on my laptop, when I do not delete the // textures manually before releasing the dc. Oh how I love this. removeAllRenderTargets(); deleteAllTextures(); removeAllOcclusionQueries(); removeAllHardwareBuffers(); delete CacheHandler; if (ContextManager) { ContextManager->destroyContext(); ContextManager->destroySurface(); ContextManager->terminate(); ContextManager->drop(); } } // ----------------------------------------------------------------------- // METHODS // ----------------------------------------------------------------------- bool COpenGLDriver::genericDriverInit() { if (ContextManager) ContextManager->grab(); Name = "OpenGL "; Name.append(glGetString(GL_VERSION)); s32 pos = Name.findNext(' ', 7); if (pos != -1) Name = Name.subString(0, pos); printVersion(); // print renderer information const GLubyte *renderer = glGetString(GL_RENDERER); const GLubyte *vendor = glGetString(GL_VENDOR); if (renderer && vendor) { os::Printer::log(reinterpret_cast(renderer), reinterpret_cast(vendor), ELL_INFORMATION); VendorName = reinterpret_cast(vendor); } u32 i; // load extensions initExtensions(ContextManager, Params.Stencilbuffer); // reset cache handler delete CacheHandler; CacheHandler = new COpenGLCacheHandler(this); if (queryFeature(EVDF_ARB_GLSL)) { char buf[32]; const u32 maj = ShaderLanguageVersion / 100; snprintf_irr(buf, 32, "%u.%u", maj, ShaderLanguageVersion - maj * 100); os::Printer::log("GLSL version", buf, ELL_INFORMATION); } else os::Printer::log("GLSL not available.", ELL_INFORMATION); DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits); DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits); DriverAttributes->setAttribute("MaxLights", MaxLights); DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy); DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers); DriverAttributes->setAttribute("MaxMultipleRenderTargets", (s32)Feature.MultipleRenderTarget); DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices); DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize); DriverAttributes->setAttribute("MaxGeometryVerticesOut", (s32)MaxGeometryVerticesOut); DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias); DriverAttributes->setAttribute("Version", Version); DriverAttributes->setAttribute("ShaderLanguageVersion", ShaderLanguageVersion); DriverAttributes->setAttribute("AntiAlias", AntiAlias); glPixelStorei(GL_PACK_ALIGNMENT, 1); for (i = 0; i < ETS_COUNT; ++i) setTransform(static_cast(i), core::IdentityMatrix); setAmbientLight(SColorf(0.0f, 0.0f, 0.0f, 0.0f)); #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); // This is a fast replacement for NORMALIZE_NORMALS // if ((Version>101) || FeatureAvailable[IRR_EXT_rescale_normal]) // glEnable(GL_RESCALE_NORMAL_EXT); glClearDepth(1.0); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glFrontFace(GL_CW); // adjust flat coloring scheme to DirectX version #if defined(GL_ARB_provoking_vertex) || defined(GL_EXT_provoking_vertex) extGlProvokingVertex(GL_FIRST_VERTEX_CONVENTION_EXT); #endif // Create built-in 2D quad for 2D rendering (both quads and lines). Quad2DVertices[0] = S3DVertex(core::vector3df(-1.0f, 1.0f, 0.0f), core::vector3df(0.0f, 0.0f, 0.0f), SColor(255, 255, 255, 255), core::vector2df(0.0f, 1.0f)); Quad2DVertices[1] = S3DVertex(core::vector3df(1.0f, 1.0f, 0.0f), core::vector3df(0.0f, 0.0f, 0.0f), SColor(255, 255, 255, 255), core::vector2df(1.0f, 1.0f)); Quad2DVertices[2] = S3DVertex(core::vector3df(1.0f, -1.0f, 0.0f), core::vector3df(0.0f, 0.0f, 0.0f), SColor(255, 255, 255, 255), core::vector2df(1.0f, 0.0f)); Quad2DVertices[3] = S3DVertex(core::vector3df(-1.0f, -1.0f, 0.0f), core::vector3df(0.0f, 0.0f, 0.0f), SColor(255, 255, 255, 255), core::vector2df(0.0f, 0.0f)); // create material renderers createMaterialRenderers(); // set the renderstates setRenderStates3DMode(); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // create matrix for flipping textures TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f)); // We need to reset once more at the beginning of the first rendering. // This fixes problems with intermediate changes to the material during texture load. ResetRenderStates = true; return true; } void COpenGLDriver::createMaterialRenderers() { addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_ONETEXTURE_BLEND(this)); } bool COpenGLDriver::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData &videoData, core::rect *sourceRect) { CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect); if (ContextManager) ContextManager->activateContext(videoData, true); clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } bool COpenGLDriver::endScene() { CNullDriver::endScene(); glFlush(); bool status = false; if (ContextManager) status = ContextManager->swapBuffers(); // todo: console device present return status; } //! Returns the transformation set by setTransform const core::matrix4 &COpenGLDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COpenGLDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4 &mat) { Matrices[state] = mat; Transformation3DChanged = true; switch (state) { case ETS_VIEW: case ETS_WORLD: { // OpenGL only has a model matrix, view and world is not existent. so lets fake these two. CacheHandler->setMatrixMode(GL_MODELVIEW); // first load the viewing transformation for user clip planes glLoadMatrixf((Matrices[ETS_VIEW]).pointer()); // now the real model-view matrix glMultMatrixf(Matrices[ETS_WORLD].pointer()); } break; case ETS_PROJECTION: { CacheHandler->setMatrixMode(GL_PROJECTION); glLoadMatrixf(mat.pointer()); } break; default: break; } } bool COpenGLDriver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const u32 vertexCount = mb->getVertexCount(); const E_VERTEX_TYPE vType = mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); const c8 *vbuf = static_cast(vertices); core::array buffer; if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) { // buffer vertex data, and convert colors... buffer.set_used(vertexSize * vertexCount); memcpy(buffer.pointer(), vertices, vertexSize * vertexCount); vbuf = buffer.const_pointer(); // in order to convert the colors into opengl format (RGBA) switch (vType) { case EVT_STANDARD: { S3DVertex *pb = reinterpret_cast(buffer.pointer()); const S3DVertex *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color)); } } break; case EVT_2TCOORDS: { S3DVertex2TCoords *pb = reinterpret_cast(buffer.pointer()); const S3DVertex2TCoords *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color)); } } break; case EVT_TANGENTS: { S3DVertexTangents *pb = reinterpret_cast(buffer.pointer()); const S3DVertexTangents *po = static_cast(vertices); for (u32 i = 0; i < vertexCount; i++) { po[i].Color.toOpenGLColor((u8 *)&(pb[i].Color)); } } break; default: { return false; } } } // get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_verticesID) { extGlGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer = true; } else if (HWBuffer->vbo_verticesSize < vertexCount * vertexSize) { newBuffer = true; } extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); // copy data to graphics card if (!newBuffer) extGlBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, vbuf); else { HWBuffer->vbo_verticesSize = vertexCount * vertexSize; if (HWBuffer->Mapped_Vertex == scene::EHM_STATIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_STATIC_DRAW); else if (HWBuffer->Mapped_Vertex == scene::EHM_DYNAMIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_DYNAMIC_DRAW); else // scene::EHM_STREAM extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_STREAM_DRAW); } extGlBindBuffer(GL_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); #else return false; #endif } bool COpenGLDriver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *indices = mb->getIndices(); u32 indexCount = mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case EIT_16BIT: { indexSize = sizeof(u16); break; } case EIT_32BIT: { indexSize = sizeof(u32); break; } default: { return false; } } // get or create buffer bool newBuffer = false; if (!HWBuffer->vbo_indicesID) { extGlGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer = true; } else if (HWBuffer->vbo_indicesSize < indexCount * indexSize) { newBuffer = true; } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); // copy data to graphics card if (!newBuffer) extGlBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount * indexSize; if (HWBuffer->Mapped_Index == scene::EHM_STATIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else if (HWBuffer->Mapped_Index == scene::EHM_DYNAMIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); else // scene::EHM_STREAM extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STREAM_DRAW); } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (!testGLError(__LINE__)); #else return false; #endif } //! updates hardware buffer if needed bool COpenGLDriver::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !((SHWBufferLink_opengl *)HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer((SHWBufferLink_opengl *)HWBuffer)) return false; } } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl *)HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_opengl *)HWBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer COpenGLDriver::SHWBufferLink *COpenGLDriver::createHardwareBuffer(const scene::IMeshBuffer *mb) { #if defined(GL_ARB_vertex_buffer_object) if (!mb || (mb->getHardwareMappingHint_Index() == scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex() == scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer = new SHWBufferLink_opengl(mb); // add to map HWBuffer->listPosition = HWBufferList.insert(HWBufferList.end(), HWBuffer); HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex = mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index = mb->getHardwareMappingHint_Index(); HWBuffer->vbo_verticesID = 0; HWBuffer->vbo_indicesID = 0; HWBuffer->vbo_verticesSize = 0; HWBuffer->vbo_indicesSize = 0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; #else return 0; #endif } void COpenGLDriver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer = (SHWBufferLink_opengl *)_HWBuffer; if (HWBuffer->vbo_verticesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID = 0; } if (HWBuffer->vbo_indicesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID = 0; } #endif CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COpenGLDriver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; updateHardwareBuffer(_HWBuffer); // check if update is needed #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer = (SHWBufferLink_opengl *)_HWBuffer; const scene::IMeshBuffer *mb = HWBuffer->MeshBuffer; const void *vertices = mb->getVertices(); const void *indexList = mb->getIndices(); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) { extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices = 0; } if (HWBuffer->Mapped_Index != scene::EHM_NEVER) { extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList = 0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getPrimitiveCount(), mb->getVertexType(), mb->getPrimitiveType(), mb->getIndexType()); if (HWBuffer->Mapped_Vertex != scene::EHM_NEVER) extGlBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index != scene::EHM_NEVER) extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif } //! Create occlusion query. /** Use node for identification and mesh for occlusion test. */ void COpenGLDriver::addOcclusionQuery(scene::ISceneNode *node, const scene::IMesh *mesh) { if (!queryFeature(EVDF_OCCLUSION_QUERY)) return; CNullDriver::addOcclusionQuery(node, mesh); const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if ((index != -1) && (OcclusionQueries[index].UID == 0)) extGlGenQueries(1, reinterpret_cast(&OcclusionQueries[index].UID)); } //! Remove occlusion query. void COpenGLDriver::removeOcclusionQuery(scene::ISceneNode *node) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].UID != 0) extGlDeleteQueries(1, reinterpret_cast(&OcclusionQueries[index].UID)); CNullDriver::removeOcclusionQuery(node); } } //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ void COpenGLDriver::runOcclusionQuery(scene::ISceneNode *node, bool visible) { if (!node) return; const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].UID) extGlBeginQuery( #ifdef GL_ARB_occlusion_query GL_SAMPLES_PASSED_ARB, #else 0, #endif OcclusionQueries[index].UID); CNullDriver::runOcclusionQuery(node, visible); if (OcclusionQueries[index].UID) extGlEndQuery( #ifdef GL_ARB_occlusion_query GL_SAMPLES_PASSED_ARB); #else 0); #endif testGLError(__LINE__); } } //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void COpenGLDriver::updateOcclusionQuery(scene::ISceneNode *node, bool block) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { // not yet started if (OcclusionQueries[index].Run == u32(~0)) return; GLint available = block ? GL_TRUE : GL_FALSE; if (!block) { extGlGetQueryObjectiv(OcclusionQueries[index].UID, #ifdef GL_ARB_occlusion_query GL_QUERY_RESULT_AVAILABLE_ARB, #elif defined(GL_NV_occlusion_query) GL_PIXEL_COUNT_AVAILABLE_NV, #else 0, #endif &available); testGLError(__LINE__); } if (available == GL_TRUE) { extGlGetQueryObjectiv(OcclusionQueries[index].UID, #ifdef GL_ARB_occlusion_query GL_QUERY_RESULT_ARB, #elif defined(GL_NV_occlusion_query) GL_PIXEL_COUNT_NV, #else 0, #endif &available); if (queryFeature(EVDF_OCCLUSION_QUERY)) OcclusionQueries[index].Result = available; } testGLError(__LINE__); } } //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger than the actual value of pixels. */ u32 COpenGLDriver::getOcclusionQueryResult(scene::ISceneNode *node) const { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) return OcclusionQueries[index].Result; else return ~0; } //! Create render target. IRenderTarget *COpenGLDriver::addRenderTarget() { COpenGLRenderTarget *renderTarget = new COpenGLRenderTarget(this); RenderTargets.push_back(renderTarget); return renderTarget; } // small helper function to create vertex buffer object address offsets static inline const GLvoid *buffer_offset(const size_t offset) { return (const GLvoid *)offset; } //! draws a vertex primitive list void COpenGLDriver::drawVertexPrimitiveList(const void *vertices, u32 vertexCount, const void *indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices && !FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(vertices, vertexCount, vType); // draw everything setRenderStates3DMode(); if ((pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) CacheHandler->setClientState(true, true, true, true); else CacheHandler->setClientState(true, false, true, false); // due to missing defines in OSX headers, we have to be more specific with this check // #if defined(GL_ARB_vertex_array_bgra) || defined(GL_EXT_vertex_array_bgra) #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (vertices) { if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) { switch (vType) { case EVT_STANDARD: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(vertices))[0].Color); break; case EVT_2TCOORDS: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Color); break; case EVT_TANGENTS: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Color); break; } } else { // avoid passing broken pointer to OpenGL _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } } switch (vType) { case EVT_STANDARD: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12)); glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0); } if (Feature.MaxTextureUnits > 0 && CacheHandler->getTextureCache()[1]) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12)); glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (Feature.MaxTextureUnits > 0) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12)); glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } if (Feature.MaxTextureUnits > 0) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Tangent); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36)); CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 2); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Binormal); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48)); } break; } renderArray(indexList, primitiveCount, pType, iType); if (Feature.MaxTextureUnits > 0) { if (vType == EVT_TANGENTS) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 2); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } if ((vType != EVT_STANDARD) || CacheHandler->getTextureCache()[1]) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } CacheHandler->setClientActiveTexture(GL_TEXTURE0); } } void COpenGLDriver::getColorBuffer(const void *vertices, u32 vertexCount, E_VERTEX_TYPE vType) { // convert colors to gl color format. vertexCount *= 4; // reused as color component count ColorBuffer.set_used(vertexCount); u32 i; switch (vType) { case EVT_STANDARD: { const S3DVertex *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_2TCOORDS: { const S3DVertex2TCoords *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_TANGENTS: { const S3DVertexTangents *p = static_cast(vertices); for (i = 0; i < vertexCount; i += 4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; } } void COpenGLDriver::renderArray(const void *indexList, u32 primitiveCount, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { GLenum indexSize = 0; switch (iType) { case EIT_16BIT: { indexSize = GL_UNSIGNED_SHORT; break; } case EIT_32BIT: { indexSize = GL_UNSIGNED_INT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: { #ifdef GL_ARB_point_sprite if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) glEnable(GL_POINT_SPRITE_ARB); #endif // prepare size and attenuation (where supported) GLfloat particleSize = Material.Thickness; // if (AntiAlias) // particleSize=core::clamp(particleSize, DimSmoothedPoint[0], DimSmoothedPoint[1]); // else particleSize = core::clamp(particleSize, DimAliasedPoint[0], DimAliasedPoint[1]); #if defined(GL_VERSION_1_4) || defined(GL_ARB_point_parameters) || defined(GL_EXT_point_parameters) || defined(GL_SGIS_point_parameters) const float att[] = {1.0f, 1.0f, 0.0f}; #if defined(GL_VERSION_1_4) extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, att); // extGlPointParameterf(GL_POINT_SIZE_MIN,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, 1.0f); #elif defined(GL_ARB_point_parameters) extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION_ARB, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_ARB,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_ARB, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_ARB, 1.0f); #elif defined(GL_EXT_point_parameters) extGlPointParameterfv(GL_DISTANCE_ATTENUATION_EXT, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_EXT,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_EXT, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0f); #elif defined(GL_SGIS_point_parameters) extGlPointParameterfv(GL_DISTANCE_ATTENUATION_SGIS, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_SGIS,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_SGIS, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_SGIS, 1.0f); #endif #endif glPointSize(particleSize); #ifdef GL_ARB_point_sprite if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) { CacheHandler->setActiveTexture(GL_TEXTURE0_ARB); glTexEnvf(GL_POINT_SPRITE_ARB, GL_COORD_REPLACE, GL_TRUE); } #endif glDrawArrays(GL_POINTS, 0, primitiveCount); #ifdef GL_ARB_point_sprite if (pType == scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) { glDisable(GL_POINT_SPRITE_ARB); CacheHandler->setActiveTexture(GL_TEXTURE0_ARB); glTexEnvf(GL_POINT_SPRITE_ARB, GL_COORD_REPLACE, GL_FALSE); } #endif } break; case scene::EPT_LINE_STRIP: glDrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList); break; case scene::EPT_LINE_LOOP: glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList); break; case scene::EPT_LINES: glDrawElements(GL_LINES, primitiveCount * 2, indexSize, indexList); break; case scene::EPT_TRIANGLE_STRIP: glDrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList); break; case scene::EPT_TRIANGLE_FAN: glDrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList); break; case scene::EPT_TRIANGLES: glDrawElements(GL_TRIANGLES, primitiveCount * 3, indexSize, indexList); break; } } //! draws a vertex primitive list in 2d void COpenGLDriver::draw2DVertexPrimitiveList(const void *vertices, u32 vertexCount, const void *indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices && !FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(vertices, vertexCount, vType); // draw everything CacheHandler->getTextureCache().set(0, Material.getTexture(0)); if (Material.MaterialType == EMT_ONETEXTURE_BLEND) { E_BLEND_FACTOR srcFact; E_BLEND_FACTOR dstFact; E_MODULATE_FUNC modulo; u32 alphaSource; unpack_textureBlendFunc(srcFact, dstFact, modulo, alphaSource, Material.MaterialTypeParam); setRenderStates2DMode(alphaSource & video::EAS_VERTEX_COLOR, (Material.getTexture(0) != 0), (alphaSource & video::EAS_TEXTURE) != 0); } else setRenderStates2DMode(Material.MaterialType == EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType == EMT_TRANSPARENT_ALPHA_CHANNEL); if ((pType != scene::EPT_POINTS) && (pType != scene::EPT_POINT_SPRITES)) CacheHandler->setClientState(true, false, true, true); else CacheHandler->setClientState(true, false, true, false); // due to missing defines in OSX headers, we have to be more specific with this check // #if defined(GL_ARB_vertex_array_bgra) || defined(GL_EXT_vertex_array_bgra) #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (vertices) { if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) { switch (vType) { case EVT_STANDARD: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(vertices))[0].Color); break; case EVT_2TCOORDS: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Color); break; case EVT_TANGENTS: glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Color); break; } } else { // avoid passing broken pointer to OpenGL _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } } switch (vType) { case EVT_STANDARD: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Pos); } else { glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), 0); } if (Feature.MaxTextureUnits > 0 && CacheHandler->getTextureCache()[1]) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Pos); } else { glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (Feature.MaxTextureUnits > 0) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Pos); } else { glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } break; } renderArray(indexList, primitiveCount, pType, iType); if (Feature.MaxTextureUnits > 0) { if ((vType != EVT_STANDARD) || CacheHandler->getTextureCache()[1]) { CacheHandler->setClientActiveTexture(GL_TEXTURE0 + 1); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } CacheHandler->setClientActiveTexture(GL_TEXTURE0); } } void COpenGLDriver::draw2DImage(const video::ITexture *texture, const core::position2d &destPos, const core::rect &sourceRect, const core::rect *clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; // clip these coordinates core::rect targetRect(destPos, sourceRect.getSize()); if (clipRect) { targetRect.clipAgainst(*clipRect); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; } const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); targetRect.clipAgainst(core::rect(0, 0, (s32)renderTargetSize.Width, (s32)renderTargetSize.Height)); if (targetRect.getWidth() < 0 || targetRect.getHeight() < 0) return; // ok, we've clipped everything. // now draw it. const core::dimension2d sourceSize(targetRect.getSize()); const core::position2d sourcePos(sourceRect.UpperLeftCorner + (targetRect.UpperLeftCorner - destPos)); const core::dimension2d &ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); disableTextures(1); if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[2].Color = color; Quad2DVertices[3].Color = color; Quad2DVertices[0].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)targetRect.LowerRightCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)targetRect.UpperLeftCorner.X, (f32)targetRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 4, EVT_STANDARD); CacheHandler->setClientState(true, false, true, true); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, Quad2DIndices); } void COpenGLDriver::draw2DImage(const video::ITexture *texture, const core::rect &destRect, const core::rect &sourceRect, const core::rect *clipRect, const video::SColor *const colors, bool useAlphaChannelOfTexture) { if (!texture) return; const core::dimension2d &ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, sourceRect.UpperLeftCorner.Y * invH, sourceRect.LowerRightCorner.X * invW, sourceRect.LowerRightCorner.Y * invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, }; const video::SColor *const useColor = colors ? colors : temp; disableTextures(1); if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 || useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } Quad2DVertices[0].Color = useColor[0]; Quad2DVertices[1].Color = useColor[3]; Quad2DVertices[2].Color = useColor[2]; Quad2DVertices[3].Color = useColor[1]; Quad2DVertices[0].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)destRect.LowerRightCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)destRect.UpperLeftCorner.X, (f32)destRect.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 4, EVT_STANDARD); CacheHandler->setClientState(true, false, true, true); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, Quad2DIndices); if (clipRect) glDisable(GL_SCISSOR_TEST); } void COpenGLDriver::draw2DImage(const video::ITexture *texture, u32 layer, bool flip) { if (!texture || !CacheHandler->getTextureCache().set(0, texture)) return; disableTextures(1); setRenderStates2DMode(false, true, true); CacheHandler->setMatrixMode(GL_PROJECTION); glLoadIdentity(); CacheHandler->setMatrixMode(GL_MODELVIEW); glLoadIdentity(); Transformation3DChanged = true; CacheHandler->setClientState(true, false, false, true); const core::vector3df positionData[4] = { core::vector3df(-1.f, 1.f, 0.f), core::vector3df(1.f, 1.f, 0.f), core::vector3df(1.f, -1.f, 0.f), core::vector3df(-1.f, -1.f, 0.f)}; glVertexPointer(2, GL_FLOAT, sizeof(core::vector3df), positionData); if (texture && texture->getType() == ETT_CUBEMAP) { const core::vector3df texcoordCubeData[6][4] = { // GL_TEXTURE_CUBE_MAP_POSITIVE_X { core::vector3df(1.f, 1.f, 1.f), core::vector3df(1.f, 1.f, -1.f), core::vector3df(1.f, -1.f, -1.f), core::vector3df(1.f, -1.f, 1.f)}, // GL_TEXTURE_CUBE_MAP_NEGATIVE_X { core::vector3df(-1.f, 1.f, -1.f), core::vector3df(-1.f, 1.f, 1.f), core::vector3df(-1.f, -1.f, 1.f), core::vector3df(-1.f, -1.f, -1.f)}, // GL_TEXTURE_CUBE_MAP_POSITIVE_Y { core::vector3df(-1.f, 1.f, -1.f), core::vector3df(1.f, 1.f, -1.f), core::vector3df(1.f, 1.f, 1.f), core::vector3df(-1.f, 1.f, 1.f)}, // GL_TEXTURE_CUBE_MAP_NEGATIVE_Y { core::vector3df(-1.f, -1.f, 1.f), core::vector3df(-1.f, -1.f, -1.f), core::vector3df(1.f, -1.f, -1.f), core::vector3df(1.f, -1.f, 1.f)}, // GL_TEXTURE_CUBE_MAP_POSITIVE_Z { core::vector3df(-1.f, 1.f, 1.f), core::vector3df(-1.f, -1.f, 1.f), core::vector3df(1.f, -1.f, 1.f), core::vector3df(1.f, 1.f, 1.f)}, // GL_TEXTURE_CUBE_MAP_NEGATIVE_Z { core::vector3df(1.f, 1.f, -1.f), core::vector3df(-1.f, 1.f, -1.f), core::vector3df(-1.f, -1.f, -1.f), core::vector3df(1.f, -1.f, -1.f)}}; const core::vector3df texcoordData[4] = { texcoordCubeData[layer][(flip) ? 3 : 0], texcoordCubeData[layer][(flip) ? 2 : 1], texcoordCubeData[layer][(flip) ? 1 : 2], texcoordCubeData[layer][(flip) ? 0 : 3]}; glTexCoordPointer(3, GL_FLOAT, sizeof(core::vector3df), texcoordData); } else { f32 modificator = (flip) ? 1.f : 0.f; core::vector2df texcoordData[4] = { core::vector2df(0.f, 0.f + modificator), core::vector2df(1.f, 0.f + modificator), core::vector2df(1.f, 1.f - modificator), core::vector2df(0.f, 1.f - modificator)}; glTexCoordPointer(2, GL_FLOAT, sizeof(core::vector2df), texcoordData); } glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, Quad2DIndices); } //! draws a set of 2d images, using a color and the alpha channel of the //! texture if desired. void COpenGLDriver::draw2DImageBatch(const video::ITexture *texture, const core::array> &positions, const core::array> &sourceRects, const core::rect *clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; const u32 drawCount = core::min_(positions.size(), sourceRects.size()); const core::dimension2d &ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); disableTextures(1); if (!CacheHandler->getTextureCache().set(0, texture)) return; setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[2].Color = color; Quad2DVertices[3].Color = color; if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 4, EVT_STANDARD); CacheHandler->setClientState(true, false, true, true); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } for (u32 i = 0; i < drawCount; ++i) { if (!sourceRects[i].isValid()) continue; core::position2d targetPos(positions[i]); core::position2d sourcePos(sourceRects[i].UpperLeftCorner); // This needs to be signed as it may go negative. core::dimension2d sourceSize(sourceRects[i].getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) continue; } } // clip these coordinates if (targetPos.X < 0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X; targetPos.X = 0; } if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < 0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) continue; } // ok, we've clipped everything. // now draw it. const core::rect tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); const core::rect poss(targetPos, sourceSize); Quad2DVertices[0].Pos = core::vector3df((f32)poss.UpperLeftCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)poss.LowerRightCorner.X, (f32)poss.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)poss.LowerRightCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)poss.UpperLeftCorner.X, (f32)poss.LowerRightCorner.Y, 0.0f); Quad2DVertices[0].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[1].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); Quad2DVertices[2].TCoords = core::vector2df(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); Quad2DVertices[3].TCoords = core::vector2df(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, Quad2DIndices); } } //! draw a 2d rectangle void COpenGLDriver::draw2DRectangle(SColor color, const core::rect &position, const core::rect *clip) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glRectf(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y), GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y)); } //! draw an 2d rectangle void COpenGLDriver::draw2DRectangle(const core::rect &position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect *clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; disableTextures(); setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); Quad2DVertices[0].Color = colorLeftUp; Quad2DVertices[1].Color = colorRightUp; Quad2DVertices[2].Color = colorRightDown; Quad2DVertices[3].Color = colorLeftDown; Quad2DVertices[0].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.UpperLeftCorner.Y, 0.0f); Quad2DVertices[2].Pos = core::vector3df((f32)pos.LowerRightCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); Quad2DVertices[3].Pos = core::vector3df((f32)pos.UpperLeftCorner.X, (f32)pos.LowerRightCorner.Y, 0.0f); if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 4, EVT_STANDARD); CacheHandler->setClientState(true, false, true, false); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawElements(GL_TRIANGLE_FAN, 4, GL_UNSIGNED_SHORT, Quad2DIndices); } //! Draws a 2d line. void COpenGLDriver::draw2DLine(const core::position2d &start, const core::position2d &end, SColor color) { { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[0].Pos = core::vector3df((f32)start.X, (f32)start.Y, 0.0f); Quad2DVertices[1].Pos = core::vector3df((f32)end.X, (f32)end.Y, 0.0f); if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 2, EVT_STANDARD); CacheHandler->setClientState(true, false, true, false); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawElements(GL_LINES, 2, GL_UNSIGNED_SHORT, Quad2DIndices); // Draw sometimes non-drawn first & last pixel (search for "diamond exit rule") // HACK this messes with alpha blending glDrawArrays(GL_POINTS, 0, 1); glDrawArrays(GL_POINTS, 1, 1); } } //! disables all textures beginning with the optional fromStage parameter. Otherwise all texture stages are disabled. //! Returns whether disabling was successful or not. bool COpenGLDriver::disableTextures(u32 fromStage) { bool result = true; for (u32 i = fromStage; i < Feature.MaxTextureUnits; ++i) { result &= CacheHandler->getTextureCache().set(i, 0, EST_ACTIVE_ON_CHANGE); } return result; } //! creates a matrix in supplied GLfloat array to pass to OpenGL inline void COpenGLDriver::getGLMatrix(GLfloat gl_matrix[16], const core::matrix4 &m) { memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32)); } //! creates a opengltexturematrix from a D3D style texture matrix inline void COpenGLDriver::getGLTextureMatrix(GLfloat *o, const core::matrix4 &m) { o[0] = m[0]; o[1] = m[1]; o[2] = 0.f; o[3] = 0.f; o[4] = m[4]; o[5] = m[5]; o[6] = 0.f; o[7] = 0.f; o[8] = 0.f; o[9] = 0.f; o[10] = 1.f; o[11] = 0.f; o[12] = m[8]; o[13] = m[9]; o[14] = 0.f; o[15] = 1.f; } ITexture *COpenGLDriver::createDeviceDependentTexture(const io::path &name, IImage *image) { std::vector tmp { image }; COpenGLTexture *texture = new COpenGLTexture(name, tmp, ETT_2D, this); return texture; } ITexture *COpenGLDriver::createDeviceDependentTextureCubemap(const io::path &name, const std::vector &image) { COpenGLTexture *texture = new COpenGLTexture(name, image, ETT_CUBEMAP, this); return texture; } void COpenGLDriver::disableFeature(E_VIDEO_DRIVER_FEATURE feature, bool flag) { CNullDriver::disableFeature(feature, flag); if (feature == EVDF_TEXTURE_CUBEMAP_SEAMLESS) { if (queryFeature(feature)) glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); else if (COpenGLExtensionHandler::queryFeature(feature)) glDisable(GL_TEXTURE_CUBE_MAP_SEAMLESS); } } //! Sets a material. All 3d drawing functions draw geometry now using this material. void COpenGLDriver::setMaterial(const SMaterial &material) { Material = material; OverrideMaterial.apply(Material); for (u32 i = 0; i < Feature.MaxTextureUnits; ++i) { const ITexture *texture = Material.getTexture(i); CacheHandler->getTextureCache().set(i, texture, EST_ACTIVE_ON_CHANGE); if (texture) { setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i)); } } } //! prints error if an error happened. bool COpenGLDriver::testGLError(int code) { if (!Params.DriverDebug) return false; GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", core::stringc(code).c_str(), ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", core::stringc(code).c_str(), ELL_ERROR); break; case GL_STACK_OVERFLOW: os::Printer::log("GL_STACK_OVERFLOW", core::stringc(code).c_str(), ELL_ERROR); break; case GL_STACK_UNDERFLOW: os::Printer::log("GL_STACK_UNDERFLOW", core::stringc(code).c_str(), ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", core::stringc(code).c_str(), ELL_ERROR); break; case GL_TABLE_TOO_LARGE: os::Printer::log("GL_TABLE_TOO_LARGE", core::stringc(code).c_str(), ELL_ERROR); break; #if defined(GL_EXT_framebuffer_object) case GL_INVALID_FRAMEBUFFER_OPERATION_EXT: os::Printer::log("GL_INVALID_FRAMEBUFFER_OPERATION", core::stringc(code).c_str(), ELL_ERROR); break; #endif }; return true; } //! sets the needed renderstates void COpenGLDriver::setRenderStates3DMode() { if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages CacheHandler->setBlend(false); CacheHandler->setAlphaTest(false); CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); CacheHandler->setActiveTexture(GL_TEXTURE0_ARB); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); // switch back the matrices CacheHandler->setMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); CacheHandler->setMatrixMode(GL_PROJECTION); glLoadMatrixf(Matrices[ETS_PROJECTION].pointer()); ResetRenderStates = true; #ifdef GL_EXT_clip_volume_hint if (FeatureAvailable[IRR_EXT_clip_volume_hint]) glHint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT, GL_NICEST); #endif } if (ResetRenderStates || LastMaterial != Material) { // unset old material if (LastMaterial.MaterialType != Material.MaterialType && static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; CacheHandler->correctCacheMaterial(LastMaterial); ResetRenderStates = false; } if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } //! Get native wrap mode value GLint COpenGLDriver::getTextureWrapMode(const u8 clamp) { GLint mode = GL_REPEAT; switch (clamp) { case ETC_REPEAT: mode = GL_REPEAT; break; case ETC_CLAMP: mode = GL_CLAMP; break; case ETC_CLAMP_TO_EDGE: #ifdef GL_VERSION_1_2 if (Version > 101) mode = GL_CLAMP_TO_EDGE; else #endif #ifdef GL_SGIS_texture_edge_clamp if (FeatureAvailable[IRR_SGIS_texture_edge_clamp]) mode = GL_CLAMP_TO_EDGE_SGIS; else #endif // fallback mode = GL_CLAMP; break; case ETC_CLAMP_TO_BORDER: #ifdef GL_VERSION_1_3 if (Version > 102) mode = GL_CLAMP_TO_BORDER; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_border_clamp]) mode = GL_CLAMP_TO_BORDER_ARB; else #endif #ifdef GL_SGIS_texture_border_clamp if (FeatureAvailable[IRR_SGIS_texture_border_clamp]) mode = GL_CLAMP_TO_BORDER_SGIS; else #endif // fallback mode = GL_CLAMP; break; case ETC_MIRROR: #ifdef GL_VERSION_1_4 if (Version > 103) mode = GL_MIRRORED_REPEAT; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_mirrored_repeat]) mode = GL_MIRRORED_REPEAT_ARB; else #endif #ifdef GL_IBM_texture_mirrored_repeat if (FeatureAvailable[IRR_IBM_texture_mirrored_repeat]) mode = GL_MIRRORED_REPEAT_IBM; else #endif mode = GL_REPEAT; break; case ETC_MIRROR_CLAMP: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode = GL_MIRROR_CLAMP_EXT; else #endif #if defined(GL_ATI_texture_mirror_once) if (FeatureAvailable[IRR_ATI_texture_mirror_once]) mode = GL_MIRROR_CLAMP_ATI; else #endif mode = GL_CLAMP; break; case ETC_MIRROR_CLAMP_TO_EDGE: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode = GL_MIRROR_CLAMP_TO_EDGE_EXT; else #endif #if defined(GL_ATI_texture_mirror_once) if (FeatureAvailable[IRR_ATI_texture_mirror_once]) mode = GL_MIRROR_CLAMP_TO_EDGE_ATI; else #endif mode = GL_CLAMP; break; case ETC_MIRROR_CLAMP_TO_BORDER: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode = GL_MIRROR_CLAMP_TO_BORDER_EXT; else #endif mode = GL_CLAMP; break; } return mode; } //! Can be called by an IMaterialRenderer to make its work easier. void COpenGLDriver::setBasicRenderStates(const SMaterial &material, const SMaterial &lastmaterial, bool resetAllRenderStates) { // Fixed pipeline isn't important for shader based materials E_OPENGL_FIXED_PIPELINE_STATE tempState = FixedPipelineState; if (resetAllRenderStates || tempState == EOFPS_ENABLE || tempState == EOFPS_DISABLE_TO_ENABLE) { // material colors if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.ColorMaterial != material.ColorMaterial) { switch (material.ColorMaterial) { case ECM_NONE: glDisable(GL_COLOR_MATERIAL); break; case ECM_DIFFUSE: glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); break; case ECM_AMBIENT: glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT); break; case ECM_EMISSIVE: glColorMaterial(GL_FRONT_AND_BACK, GL_EMISSION); break; case ECM_SPECULAR: glColorMaterial(GL_FRONT_AND_BACK, GL_SPECULAR); break; case ECM_DIFFUSE_AND_AMBIENT: glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); break; } if (material.ColorMaterial != ECM_NONE) glEnable(GL_COLOR_MATERIAL); } if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.AmbientColor != material.AmbientColor || lastmaterial.DiffuseColor != material.DiffuseColor || lastmaterial.EmissiveColor != material.EmissiveColor || lastmaterial.ColorMaterial != material.ColorMaterial) { GLfloat color[4]; const f32 inv = 1.0f / 255.0f; if ((material.ColorMaterial != video::ECM_AMBIENT) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.AmbientColor.getRed() * inv; color[1] = material.AmbientColor.getGreen() * inv; color[2] = material.AmbientColor.getBlue() * inv; color[3] = material.AmbientColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color); } if ((material.ColorMaterial != video::ECM_DIFFUSE) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.DiffuseColor.getRed() * inv; color[1] = material.DiffuseColor.getGreen() * inv; color[2] = material.DiffuseColor.getBlue() * inv; color[3] = material.DiffuseColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color); } if (material.ColorMaterial != video::ECM_EMISSIVE) { color[0] = material.EmissiveColor.getRed() * inv; color[1] = material.EmissiveColor.getGreen() * inv; color[2] = material.EmissiveColor.getBlue() * inv; color[3] = material.EmissiveColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color); } } if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.SpecularColor != material.SpecularColor || lastmaterial.Shininess != material.Shininess || lastmaterial.ColorMaterial != material.ColorMaterial) { GLfloat color[4] = {0.f, 0.f, 0.f, 1.f}; const f32 inv = 1.0f / 255.0f; glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess); // disable Specular colors if no shininess is set if ((material.Shininess != 0.0f) && (material.ColorMaterial != video::ECM_SPECULAR)) { #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif color[0] = material.SpecularColor.getRed() * inv; color[1] = material.SpecularColor.getGreen() * inv; color[2] = material.SpecularColor.getBlue() * inv; color[3] = material.SpecularColor.getAlpha() * inv; } #ifdef GL_EXT_separate_specular_color else if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR); #endif glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color); } // shademode if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.GouraudShading != material.GouraudShading) { if (material.GouraudShading) glShadeModel(GL_SMOOTH); else glShadeModel(GL_FLAT); } // lighting if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.Lighting != material.Lighting) { if (material.Lighting) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); } // fog if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.FogEnable != material.FogEnable) { if (material.FogEnable) glEnable(GL_FOG); else glDisable(GL_FOG); } // normalization if (resetAllRenderStates || tempState == EOFPS_DISABLE_TO_ENABLE || lastmaterial.NormalizeNormals != material.NormalizeNormals) { if (material.NormalizeNormals) glEnable(GL_NORMALIZE); else glDisable(GL_NORMALIZE); } // Set fixed pipeline as active. tempState = EOFPS_ENABLE; } else if (tempState == EOFPS_ENABLE_TO_DISABLE) { glDisable(GL_COLOR_MATERIAL); glDisable(GL_LIGHTING); glDisable(GL_FOG); glDisable(GL_NORMALIZE); // Set programmable pipeline as active. tempState = EOFPS_DISABLE; } // tempState == EOFPS_DISABLE - driver doesn't calls functions related to fixed pipeline. // fillmode - fixed pipeline call, but it emulate GL_LINES behaviour in rendering, so it stay here. if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud)) glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud ? GL_POINT : GL_FILL); // ZBuffer switch (material.ZBuffer) { case ECFN_DISABLED: CacheHandler->setDepthTest(false); break; case ECFN_LESSEQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_EQUAL); break; case ECFN_LESS: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_ALWAYS); break; case ECFN_NEVER: CacheHandler->setDepthTest(true); CacheHandler->setDepthFunc(GL_NEVER); break; default: break; } // ZWrite if (getWriteZBuffer(material)) { CacheHandler->setDepthMask(true); } else { CacheHandler->setDepthMask(false); } // Back face culling if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { CacheHandler->setCullFaceFunc(GL_FRONT_AND_BACK); CacheHandler->setCullFace(true); } else if (material.BackfaceCulling) { CacheHandler->setCullFaceFunc(GL_BACK); CacheHandler->setCullFace(true); } else if (material.FrontfaceCulling) { CacheHandler->setCullFaceFunc(GL_FRONT); CacheHandler->setCullFace(true); } else { CacheHandler->setCullFace(false); } // Color Mask CacheHandler->setColorMask(material.ColorMask); // Blend Equation if (material.BlendOperation == EBO_NONE) CacheHandler->setBlend(false); else { CacheHandler->setBlend(true); #if defined(GL_EXT_blend_subtract) || defined(GL_EXT_blend_minmax) || defined(GL_EXT_blend_logic_op) || defined(GL_VERSION_1_4) if (queryFeature(EVDF_BLEND_OPERATIONS)) { switch (material.BlendOperation) { case EBO_SUBTRACT: #if defined(GL_VERSION_1_4) CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT); #elif defined(GL_EXT_blend_subtract) CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT_EXT); #endif break; case EBO_REVSUBTRACT: #if defined(GL_VERSION_1_4) CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT); #elif defined(GL_EXT_blend_subtract) CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT_EXT); #endif break; case EBO_MIN: #if defined(GL_VERSION_1_4) CacheHandler->setBlendEquation(GL_MIN); #elif defined(GL_EXT_blend_minmax) CacheHandler->setBlendEquation(GL_MIN_EXT); #endif break; case EBO_MAX: #if defined(GL_VERSION_1_4) CacheHandler->setBlendEquation(GL_MAX); #elif defined(GL_EXT_blend_minmax) CacheHandler->setBlendEquation(GL_MAX_EXT); #endif break; case EBO_MIN_FACTOR: #if defined(GL_AMD_blend_minmax_factor) if (FeatureAvailable[IRR_AMD_blend_minmax_factor]) CacheHandler->setBlendEquation(GL_FACTOR_MIN_AMD); #endif // fallback in case of missing extension #if defined(GL_VERSION_1_4) #if defined(GL_AMD_blend_minmax_factor) else #endif CacheHandler->setBlendEquation(GL_MIN); #endif break; case EBO_MAX_FACTOR: #if defined(GL_AMD_blend_minmax_factor) if (FeatureAvailable[IRR_AMD_blend_minmax_factor]) CacheHandler->setBlendEquation(GL_FACTOR_MAX_AMD); #endif // fallback in case of missing extension #if defined(GL_VERSION_1_4) #if defined(GL_AMD_blend_minmax_factor) else #endif CacheHandler->setBlendEquation(GL_MAX); #endif break; case EBO_MIN_ALPHA: #if defined(GL_SGIX_blend_alpha_minmax) if (FeatureAvailable[IRR_SGIX_blend_alpha_minmax]) CacheHandler->setBlendEquation(GL_ALPHA_MIN_SGIX); // fallback in case of missing extension else if (FeatureAvailable[IRR_EXT_blend_minmax]) CacheHandler->setBlendEquation(GL_MIN_EXT); #endif break; case EBO_MAX_ALPHA: #if defined(GL_SGIX_blend_alpha_minmax) if (FeatureAvailable[IRR_SGIX_blend_alpha_minmax]) CacheHandler->setBlendEquation(GL_ALPHA_MAX_SGIX); // fallback in case of missing extension else if (FeatureAvailable[IRR_EXT_blend_minmax]) CacheHandler->setBlendEquation(GL_MAX_EXT); #endif break; default: #if defined(GL_VERSION_1_4) CacheHandler->setBlendEquation(GL_FUNC_ADD); #elif defined(GL_EXT_blend_subtract) || defined(GL_EXT_blend_minmax) || defined(GL_EXT_blend_logic_op) CacheHandler->setBlendEquation(GL_FUNC_ADD_EXT); #endif break; } } #endif } // Blend Factor if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF? && material.MaterialType != EMT_ONETEXTURE_BLEND) { E_BLEND_FACTOR srcRGBFact = EBF_ZERO; E_BLEND_FACTOR dstRGBFact = EBF_ZERO; E_BLEND_FACTOR srcAlphaFact = EBF_ZERO; E_BLEND_FACTOR dstAlphaFact = EBF_ZERO; E_MODULATE_FUNC modulo = EMFN_MODULATE_1X; u32 alphaSource = 0; unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor); if (queryFeature(EVDF_BLEND_SEPARATE)) { CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact), getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact)); } else { CacheHandler->setBlendFunc(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact)); } } // Polygon Offset if (queryFeature(EVDF_POLYGON_OFFSET) && (resetAllRenderStates || lastmaterial.PolygonOffsetSlopeScale != material.PolygonOffsetSlopeScale || lastmaterial.PolygonOffsetDepthBias != material.PolygonOffsetDepthBias)) { glDisable(lastmaterial.Wireframe ? GL_POLYGON_OFFSET_LINE : lastmaterial.PointCloud ? GL_POLYGON_OFFSET_POINT : GL_POLYGON_OFFSET_FILL); if (material.PolygonOffsetSlopeScale || material.PolygonOffsetDepthBias) { glEnable(material.Wireframe ? GL_POLYGON_OFFSET_LINE : material.PointCloud ? GL_POLYGON_OFFSET_POINT : GL_POLYGON_OFFSET_FILL); glPolygonOffset(material.PolygonOffsetSlopeScale, material.PolygonOffsetDepthBias); } else { glPolygonOffset(0.0f, 0.f); } } // thickness if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) { if (AntiAlias) { // glPointSize(core::clamp(static_cast(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1])); // we don't use point smoothing glPointSize(core::clamp(static_cast(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); glLineWidth(core::clamp(static_cast(material.Thickness), DimSmoothedLine[0], DimSmoothedLine[1])); } else { glPointSize(core::clamp(static_cast(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); glLineWidth(core::clamp(static_cast(material.Thickness), DimAliasedLine[0], DimAliasedLine[1])); } } // Anti aliasing if ((resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) && FeatureAvailable[IRR_ARB_multisample]) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE | EAAM_QUALITY))) { glEnable(GL_MULTISAMPLE_ARB); #ifdef GL_NV_multisample_filter_hint if (FeatureAvailable[IRR_NV_multisample_filter_hint]) { if ((material.AntiAliasing & EAAM_QUALITY) == EAAM_QUALITY) glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); else glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_FASTEST); } #endif } else glDisable(GL_MULTISAMPLE_ARB); } // Texture parameters setTextureRenderStates(material, resetAllRenderStates); // set current fixed pipeline state FixedPipelineState = tempState; } //! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call. void COpenGLDriver::setTextureRenderStates(const SMaterial &material, bool resetAllRenderstates) { // Set textures to TU/TIU and apply filters to them for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i) { bool fixedPipeline = false; if (FixedPipelineState == EOFPS_ENABLE || FixedPipelineState == EOFPS_DISABLE_TO_ENABLE) fixedPipeline = true; const COpenGLTexture *tmpTexture = CacheHandler->getTextureCache().get(i); if (tmpTexture) { CacheHandler->setActiveTexture(GL_TEXTURE0 + i); // Minetest uses the first texture matrix even with the programmable pipeline if (fixedPipeline || i == 0) { const bool isRTT = tmpTexture->isRenderTarget(); CacheHandler->setMatrixMode(GL_TEXTURE); if (!isRTT && Matrices[ETS_TEXTURE_0 + i].isIdentity()) glLoadIdentity(); else { GLfloat glmat[16]; if (isRTT) getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i] * TextureFlipMatrix); else getGLTextureMatrix(glmat, Matrices[ETS_TEXTURE_0 + i]); glLoadMatrixf(glmat); } } const GLenum tmpType = tmpTexture->getOpenGLTextureType(); COpenGLTexture::SStatesCache &statesCache = tmpTexture->getStatesCache(); if (resetAllRenderstates) statesCache.IsCached = false; #ifdef GL_VERSION_2_1 if (Version >= 201) { if (!statesCache.IsCached || material.TextureLayers[i].LODBias != statesCache.LODBias) { if (material.TextureLayers[i].LODBias) { const float tmp = core::clamp(material.TextureLayers[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexParameterf(tmpType, GL_TEXTURE_LOD_BIAS, tmp); } else glTexParameterf(tmpType, GL_TEXTURE_LOD_BIAS, 0.f); statesCache.LODBias = material.TextureLayers[i].LODBias; } } else if (FeatureAvailable[IRR_EXT_texture_lod_bias]) { if (material.TextureLayers[i].LODBias) { const float tmp = core::clamp(material.TextureLayers[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp); } else glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f); } #elif defined(GL_EXT_texture_lod_bias) if (FeatureAvailable[IRR_EXT_texture_lod_bias]) { if (material.TextureLayers[i].LODBias) { const float tmp = core::clamp(material.TextureLayers[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp); } else glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f); } #endif if (!statesCache.IsCached || material.TextureLayers[i].MagFilter != statesCache.MagFilter) { E_TEXTURE_MAG_FILTER magFilter = material.TextureLayers[i].MagFilter; glTexParameteri(tmpType, GL_TEXTURE_MAG_FILTER, magFilter == ETMAGF_NEAREST ? GL_NEAREST : (assert(magFilter == ETMAGF_LINEAR), GL_LINEAR)); statesCache.MagFilter = magFilter; } if (material.UseMipMaps && tmpTexture->hasMipMaps()) { if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter || !statesCache.MipMapStatus) { E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter; glTexParameteri(tmpType, GL_TEXTURE_MIN_FILTER, minFilter == ETMINF_NEAREST_MIPMAP_NEAREST ? GL_NEAREST_MIPMAP_NEAREST : minFilter == ETMINF_LINEAR_MIPMAP_NEAREST ? GL_LINEAR_MIPMAP_NEAREST : minFilter == ETMINF_NEAREST_MIPMAP_LINEAR ? GL_NEAREST_MIPMAP_LINEAR : (assert(minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR_MIPMAP_LINEAR)); statesCache.MinFilter = minFilter; statesCache.MipMapStatus = true; } } else { if (!statesCache.IsCached || material.TextureLayers[i].MinFilter != statesCache.MinFilter || statesCache.MipMapStatus) { E_TEXTURE_MIN_FILTER minFilter = material.TextureLayers[i].MinFilter; glTexParameteri(tmpType, GL_TEXTURE_MIN_FILTER, (minFilter == ETMINF_NEAREST_MIPMAP_NEAREST || minFilter == ETMINF_NEAREST_MIPMAP_LINEAR) ? GL_NEAREST : (assert(minFilter == ETMINF_LINEAR_MIPMAP_NEAREST || minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR)); statesCache.MinFilter = minFilter; statesCache.MipMapStatus = false; } } #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[IRR_EXT_texture_filter_anisotropic] && (!statesCache.IsCached || material.TextureLayers[i].AnisotropicFilter != statesCache.AnisotropicFilter)) { glTexParameteri(tmpType, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayers[i].AnisotropicFilter > 1 ? core::min_(MaxAnisotropy, material.TextureLayers[i].AnisotropicFilter) : 1); statesCache.AnisotropicFilter = material.TextureLayers[i].AnisotropicFilter; } #endif if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapU != statesCache.WrapU) { glTexParameteri(tmpType, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayers[i].TextureWrapU)); statesCache.WrapU = material.TextureLayers[i].TextureWrapU; } if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapV != statesCache.WrapV) { glTexParameteri(tmpType, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayers[i].TextureWrapV)); statesCache.WrapV = material.TextureLayers[i].TextureWrapV; } if (!statesCache.IsCached || material.TextureLayers[i].TextureWrapW != statesCache.WrapW) { glTexParameteri(tmpType, GL_TEXTURE_WRAP_R, getTextureWrapMode(material.TextureLayers[i].TextureWrapW)); statesCache.WrapW = material.TextureLayers[i].TextureWrapW; } statesCache.IsCached = true; } } } //! Enable the 2d override material void COpenGLDriver::enableMaterial2D(bool enable) { if (!enable) CurrentRenderMode = ERM_NONE; CNullDriver::enableMaterial2D(enable); } //! sets the needed renderstates void COpenGLDriver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { // 2d methods uses fixed pipeline if (FixedPipelineState == COpenGLDriver::EOFPS_DISABLE) FixedPipelineState = COpenGLDriver::EOFPS_DISABLE_TO_ENABLE; else FixedPipelineState = COpenGLDriver::EOFPS_ENABLE; bool resetAllRenderStates = false; if (CurrentRenderMode != ERM_2D || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } if (Transformation3DChanged) { CacheHandler->setMatrixMode(GL_PROJECTION); const core::dimension2d &renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m(core::matrix4::EM4CONST_NOTHING); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f); m.setTranslation(core::vector3df(-1, 1, 0)); glLoadMatrixf(m.pointer()); CacheHandler->setMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.375f, 0.375f, 0.0f); Transformation3DChanged = false; } CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); CacheHandler->setBlendEquation(GL_FUNC_ADD); #ifdef GL_EXT_clip_volume_hint if (FeatureAvailable[IRR_EXT_clip_volume_hint]) glHint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT, GL_FASTEST); #endif resetAllRenderStates = true; } SMaterial currentMaterial = (!OverrideMaterial2DEnabled) ? InitMaterial2D : OverrideMaterial2D; currentMaterial.Lighting = false; if (texture) { setTransform(ETS_TEXTURE_0, core::IdentityMatrix); // Due to the transformation change, the previous line would call a reset each frame // but we can safely reset the variable as it was false before Transformation3DChanged = false; } else { CacheHandler->getTextureCache().set(0, 0); } setBasicRenderStates(currentMaterial, LastMaterial, resetAllRenderStates); LastMaterial = currentMaterial; CacheHandler->correctCacheMaterial(LastMaterial); // no alphaChannel without texture alphaChannel &= texture; if (alphaChannel || alpha) { CacheHandler->setBlend(true); CacheHandler->setAlphaTest(true); CacheHandler->setAlphaFunc(GL_GREATER, 0.f); } else { CacheHandler->setBlend(false); CacheHandler->setAlphaTest(false); } if (texture) { CacheHandler->setActiveTexture(GL_TEXTURE0_ARB); if (alphaChannel) { // if alpha and alpha texture just modulate, otherwise use only the alpha channel if (alpha) { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { #if defined(GL_ARB_texture_env_combine) || defined(GL_EXT_texture_env_combine) if (FeatureAvailable[IRR_ARB_texture_env_combine] || FeatureAvailable[IRR_EXT_texture_env_combine]) { #ifdef GL_ARB_texture_env_combine glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE); // rgb always modulates glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB); #else glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE); // rgb always modulates glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); #endif } else #endif glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } else { if (alpha) { #if defined(GL_ARB_texture_env_combine) || defined(GL_EXT_texture_env_combine) if (FeatureAvailable[IRR_ARB_texture_env_combine] || FeatureAvailable[IRR_EXT_texture_env_combine]) { #ifdef GL_ARB_texture_env_combine glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PRIMARY_COLOR_ARB); // rgb always modulates glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB); #else glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PRIMARY_COLOR_EXT); // rgb always modulates glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); #endif } else #endif glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } } CurrentRenderMode = ERM_2D; } //! \return Returns the name of the video driver. const char *COpenGLDriver::getName() const { return Name.c_str(); } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void COpenGLDriver::setAmbientLight(const SColorf &color) { CNullDriver::setAmbientLight(color); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data); } // this code was sent in by Oliver Klems, thank you! (I modified the glViewport // method just a bit. void COpenGLDriver::setViewPort(const core::rect &area) { core::rect vp = area; core::rect rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight() > 0 && vp.getWidth() > 0) CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight()); ViewPort = vp; } void COpenGLDriver::setViewPortRaw(u32 width, u32 height) { CacheHandler->setViewport(0, 0, width, height); ViewPort = core::recti(0, 0, width, height); } //! Sets the fog mode. void COpenGLDriver::setFog(SColor c, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog); glFogf(GL_FOG_MODE, GLfloat((fogType == EFT_FOG_LINEAR) ? GL_LINEAR : (fogType == EFT_FOG_EXP) ? GL_EXP : GL_EXP2)); #ifdef GL_EXT_fog_coord if (FeatureAvailable[IRR_EXT_fog_coord]) glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH); #endif #ifdef GL_NV_fog_distance if (FeatureAvailable[IRR_NV_fog_distance]) { if (rangeFog) glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_RADIAL_NV); else glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_PLANE_ABSOLUTE_NV); } #endif if (fogType == EFT_FOG_LINEAR) { glFogf(GL_FOG_START, start); glFogf(GL_FOG_END, end); } else glFogf(GL_FOG_DENSITY, density); if (pixelFog) glHint(GL_FOG_HINT, GL_NICEST); else glHint(GL_FOG_HINT, GL_FASTEST); SColorf color(c); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glFogfv(GL_FOG_COLOR, data); } //! Draws a 3d box. void COpenGLDriver::draw3DBox(const core::aabbox3d &box, SColor color) { core::vector3df edges[8]; box.getEdges(edges); setRenderStates3DMode(); video::S3DVertex v[24]; for (u32 i = 0; i < 24; i++) v[i].Color = color; v[0].Pos = edges[5]; v[1].Pos = edges[1]; v[2].Pos = edges[1]; v[3].Pos = edges[3]; v[4].Pos = edges[3]; v[5].Pos = edges[7]; v[6].Pos = edges[7]; v[7].Pos = edges[5]; v[8].Pos = edges[0]; v[9].Pos = edges[2]; v[10].Pos = edges[2]; v[11].Pos = edges[6]; v[12].Pos = edges[6]; v[13].Pos = edges[4]; v[14].Pos = edges[4]; v[15].Pos = edges[0]; v[16].Pos = edges[1]; v[17].Pos = edges[0]; v[18].Pos = edges[3]; v[19].Pos = edges[2]; v[20].Pos = edges[7]; v[21].Pos = edges[6]; v[22].Pos = edges[5]; v[23].Pos = edges[4]; if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(v, 24, EVT_STANDARD); CacheHandler->setClientState(true, false, true, false); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast(v))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(v))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawArrays(GL_LINES, 0, 24); } //! Draws a 3d line. void COpenGLDriver::draw3DLine(const core::vector3df &start, const core::vector3df &end, SColor color) { setRenderStates3DMode(); Quad2DVertices[0].Color = color; Quad2DVertices[1].Color = color; Quad2DVertices[0].Pos = core::vector3df((f32)start.X, (f32)start.Y, (f32)start.Z); Quad2DVertices[1].Pos = core::vector3df((f32)end.X, (f32)end.Y, (f32)end.Z); if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) getColorBuffer(Quad2DVertices, 2, EVT_STANDARD); CacheHandler->setClientState(true, false, true, false); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Pos); #ifdef GL_BGRA const GLint colorSize = (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) ? GL_BGRA : 4; #else const GLint colorSize = 4; #endif if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) glColorPointer(colorSize, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast(Quad2DVertices))[0].Color); else { _IRR_DEBUG_BREAK_IF(ColorBuffer.size() == 0); glColorPointer(colorSize, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } glDrawElements(GL_LINES, 2, GL_UNSIGNED_SHORT, Quad2DIndices); } //! Removes a texture from the texture cache and deletes it, freeing lot of memory. void COpenGLDriver::removeTexture(ITexture *texture) { CacheHandler->getTextureCache().remove(texture); CNullDriver::removeTexture(texture); } //! Check if the driver supports creating textures with the given color format bool COpenGLDriver::queryTextureFormat(ECOLOR_FORMAT format) const { GLint dummyInternalFormat; GLenum dummyPixelFormat; GLenum dummyPixelType; void (*dummyConverter)(const void *, s32, void *); return getColorFormatParameters(format, dummyInternalFormat, dummyPixelFormat, dummyPixelType, &dummyConverter); } bool COpenGLDriver::needsTransparentRenderPass(const irr::video::SMaterial &material) const { return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation(); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COpenGLDriver::OnResize(const core::dimension2d &size) { CNullDriver::OnResize(size); CacheHandler->setViewport(0, 0, size.Width, size.Height); Transformation3DChanged = true; } //! Returns type of video driver E_DRIVER_TYPE COpenGLDriver::getDriverType() const { return EDT_OPENGL; } //! returns color format ECOLOR_FORMAT COpenGLDriver::getColorFormat() const { return ColorFormat; } //! Get a vertex shader constant index. s32 COpenGLDriver::getVertexShaderConstantID(const c8 *name) { return getPixelShaderConstantID(name); } //! Get a pixel shader constant index. s32 COpenGLDriver::getPixelShaderConstantID(const c8 *name) { os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID()."); return -1; } //! Sets a constant for the vertex shader based on an index. bool COpenGLDriver::setVertexShaderConstant(s32 index, const f32 *floats, int count) { // pass this along, as in GLSL the same routine is used for both vertex and fragment shaders return setPixelShaderConstant(index, floats, count); } //! Int interface for the above. bool COpenGLDriver::setVertexShaderConstant(s32 index, const s32 *ints, int count) { return setPixelShaderConstant(index, ints, count); } //! Uint interface for the above. bool COpenGLDriver::setVertexShaderConstant(s32 index, const u32 *ints, int count) { return setPixelShaderConstant(index, ints, count); } //! Sets a constant for the pixel shader based on an index. bool COpenGLDriver::setPixelShaderConstant(s32 index, const f32 *floats, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Int interface for the above. bool COpenGLDriver::setPixelShaderConstant(s32 index, const s32 *ints, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } bool COpenGLDriver::setPixelShaderConstant(s32 index, const u32 *ints, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COpenGLDriver::addHighLevelShaderMaterial( const c8 *vertexShaderProgram, const c8 *vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8 *pixelShaderProgram, const c8 *pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8 *geometryShaderProgram, const c8 *geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack *callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGLSLMaterialRenderer *r = new COpenGLSLMaterialRenderer( this, nr, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback, baseMaterial, userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver *COpenGLDriver::getVideoDriver() { return this; } ITexture *COpenGLDriver::addRenderTargetTexture(const core::dimension2d &size, const io::path &name, const ECOLOR_FORMAT format) { if (IImage::isCompressedFormat(format)) return 0; // disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); bool supportForFBO = (Feature.ColorAttachment > 0); core::dimension2du destSize(size); if (!supportForFBO) { destSize = core::dimension2d(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height)); destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false); } COpenGLTexture *renderTargetTexture = new COpenGLTexture(name, destSize, ETT_2D, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); // restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } //! Creates a render target texture for a cubemap ITexture *COpenGLDriver::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path &name, const ECOLOR_FORMAT format) { if (IImage::isCompressedFormat(format)) return 0; // disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); bool supportForFBO = (Feature.ColorAttachment > 0); const core::dimension2d size(sideLen, sideLen); core::dimension2du destSize(size); if (!supportForFBO) { destSize = core::dimension2d(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height)); destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false); } COpenGLTexture *renderTargetTexture = new COpenGLTexture(name, destSize, ETT_CUBEMAP, format, this); addTexture(renderTargetTexture); renderTargetTexture->drop(); // restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return renderTargetTexture; } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 COpenGLDriver::getMaximalPrimitiveCount() const { return 0x7fffffff; } bool COpenGLDriver::setRenderTargetEx(IRenderTarget *target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil) { if (target && target->getDriverType() != EDT_OPENGL) { os::Printer::log("Fatal Error: Tried to set a render target not owned by this driver.", ELL_ERROR); return false; } bool supportForFBO = (Feature.ColorAttachment > 0); core::dimension2d destRenderTargetSize(0, 0); if (target) { COpenGLRenderTarget *renderTarget = static_cast(target); if (supportForFBO) { CacheHandler->setFBO(renderTarget->getBufferID()); renderTarget->update(); } destRenderTargetSize = renderTarget->getSize(); setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height); } else { if (supportForFBO) CacheHandler->setFBO(0); else { COpenGLRenderTarget *prevRenderTarget = static_cast(CurrentRenderTarget); COpenGLTexture *renderTargetTexture = static_cast(prevRenderTarget->getTexture()); if (renderTargetTexture) { const COpenGLTexture *prevTexture = CacheHandler->getTextureCache()[0]; CacheHandler->getTextureCache().set(0, renderTargetTexture); const core::dimension2d size = renderTargetTexture->getSize(); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, size.Width, size.Height); CacheHandler->getTextureCache().set(0, prevTexture); } } destRenderTargetSize = core::dimension2d(0, 0); setViewPortRaw(ScreenSize.Width, ScreenSize.Height); } if (CurrentRenderTargetSize != destRenderTargetSize) { CurrentRenderTargetSize = destRenderTargetSize; Transformation3DChanged = true; } CurrentRenderTarget = target; if (!supportForFBO) { clearFlag |= ECBF_COLOR; clearFlag |= ECBF_DEPTH; } clearBuffers(clearFlag, clearColor, clearDepth, clearStencil); return true; } void COpenGLDriver::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil) { GLbitfield mask = 0; u8 colorMask = 0; bool depthMask = false; CacheHandler->getColorMask(colorMask); CacheHandler->getDepthMask(depthMask); if (flag & ECBF_COLOR) { CacheHandler->setColorMask(ECP_ALL); const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (flag & ECBF_DEPTH) { CacheHandler->setDepthMask(true); glClearDepth(depth); mask |= GL_DEPTH_BUFFER_BIT; } if (flag & ECBF_STENCIL) { glClearStencil(stencil); mask |= GL_STENCIL_BUFFER_BIT; } if (mask) glClear(mask); CacheHandler->setColorMask(colorMask); CacheHandler->setDepthMask(depthMask); } //! Returns an image created from the last rendered frame. IImage *COpenGLDriver::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target) { if (target != video::ERT_FRAME_BUFFER) return 0; if (format == video::ECF_UNKNOWN) format = getColorFormat(); // TODO: Maybe we could support more formats (floating point and some of those beyond ECF_R8), didn't really try yet if (IImage::isCompressedFormat(format) || IImage::isDepthFormat(format) || IImage::isFloatingPointFormat(format) || format >= ECF_R8) return 0; // allows to read pixels in top-to-bottom order #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_TRUE); #endif GLenum fmt; GLenum type; switch (format) { case ECF_A1R5G5B5: fmt = GL_BGRA; type = GL_UNSIGNED_SHORT_1_5_5_5_REV; break; case ECF_R5G6B5: fmt = GL_RGB; type = GL_UNSIGNED_SHORT_5_6_5; break; case ECF_R8G8B8: fmt = GL_RGB; type = GL_UNSIGNED_BYTE; break; case ECF_A8R8G8B8: fmt = GL_BGRA; if (Version > 101) type = GL_UNSIGNED_INT_8_8_8_8_REV; else type = GL_UNSIGNED_BYTE; break; default: fmt = GL_BGRA; type = GL_UNSIGNED_BYTE; break; } IImage *newImage = createImage(format, ScreenSize); u8 *pixels = 0; if (newImage) pixels = static_cast(newImage->getData()); if (pixels) { glReadBuffer(Params.Doublebuffer ? GL_BACK : GL_FRONT); glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, fmt, type, pixels); testGLError(__LINE__); glReadBuffer(GL_BACK); } #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_FALSE); else #endif if (pixels && newImage) { // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch = newImage->getPitch(); u8 *p2 = pixels + (ScreenSize.Height - 1) * pitch; u8 *tmpBuffer = new u8[pitch]; for (u32 i = 0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); // for (u32 j=0; jdrop(); return 0; } } return newImage; } core::dimension2du COpenGLDriver::getMaxTextureSize() const { return core::dimension2du(MaxTextureSize, MaxTextureSize); } //! Convert E_PRIMITIVE_TYPE to OpenGL equivalent GLenum COpenGLDriver::primitiveTypeToGL(scene::E_PRIMITIVE_TYPE type) const { switch (type) { case scene::EPT_POINTS: return GL_POINTS; case scene::EPT_LINE_STRIP: return GL_LINE_STRIP; case scene::EPT_LINE_LOOP: return GL_LINE_LOOP; case scene::EPT_LINES: return GL_LINES; case scene::EPT_TRIANGLE_STRIP: return GL_TRIANGLE_STRIP; case scene::EPT_TRIANGLE_FAN: return GL_TRIANGLE_FAN; case scene::EPT_TRIANGLES: return GL_TRIANGLES; case scene::EPT_POINT_SPRITES: #ifdef GL_ARB_point_sprite return GL_POINT_SPRITE_ARB; #else return GL_POINTS; #endif } return GL_TRIANGLES; } GLenum COpenGLDriver::getGLBlend(E_BLEND_FACTOR factor) const { GLenum r = 0; switch (factor) { case EBF_ZERO: r = GL_ZERO; break; case EBF_ONE: r = GL_ONE; break; case EBF_DST_COLOR: r = GL_DST_COLOR; break; case EBF_ONE_MINUS_DST_COLOR: r = GL_ONE_MINUS_DST_COLOR; break; case EBF_SRC_COLOR: r = GL_SRC_COLOR; break; case EBF_ONE_MINUS_SRC_COLOR: r = GL_ONE_MINUS_SRC_COLOR; break; case EBF_SRC_ALPHA: r = GL_SRC_ALPHA; break; case EBF_ONE_MINUS_SRC_ALPHA: r = GL_ONE_MINUS_SRC_ALPHA; break; case EBF_DST_ALPHA: r = GL_DST_ALPHA; break; case EBF_ONE_MINUS_DST_ALPHA: r = GL_ONE_MINUS_DST_ALPHA; break; case EBF_SRC_ALPHA_SATURATE: r = GL_SRC_ALPHA_SATURATE; break; } return r; } GLenum COpenGLDriver::getZBufferBits() const { GLenum bits = 0; switch (Params.ZBufferBits) { case 16: bits = GL_DEPTH_COMPONENT16; break; case 24: bits = GL_DEPTH_COMPONENT24; break; case 32: bits = GL_DEPTH_COMPONENT32; break; default: bits = GL_DEPTH_COMPONENT; break; } return bits; } bool COpenGLDriver::getColorFormatParameters(ECOLOR_FORMAT format, GLint &internalFormat, GLenum &pixelFormat, GLenum &pixelType, void (**converter)(const void *, s32, void *)) const { // NOTE: Converter variable not used here, but don't remove, it's used in the OGL-ES drivers. bool supported = false; internalFormat = GL_RGBA; pixelFormat = GL_RGBA; pixelType = GL_UNSIGNED_BYTE; switch (format) { case ECF_A1R5G5B5: supported = true; internalFormat = GL_RGBA; pixelFormat = GL_BGRA_EXT; pixelType = GL_UNSIGNED_SHORT_1_5_5_5_REV; break; case ECF_R5G6B5: supported = true; internalFormat = GL_RGB; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_SHORT_5_6_5; break; case ECF_R8G8B8: supported = true; internalFormat = GL_RGB; pixelFormat = GL_RGB; pixelType = GL_UNSIGNED_BYTE; break; case ECF_A8R8G8B8: supported = true; internalFormat = GL_RGBA; pixelFormat = GL_BGRA_EXT; if (Version > 101) pixelType = GL_UNSIGNED_INT_8_8_8_8_REV; break; case ECF_D16: supported = true; internalFormat = GL_DEPTH_COMPONENT16; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_SHORT; break; case ECF_D32: supported = true; internalFormat = GL_DEPTH_COMPONENT32; pixelFormat = GL_DEPTH_COMPONENT; pixelType = GL_UNSIGNED_INT; break; case ECF_D24S8: #ifdef GL_VERSION_3_0 if (Version >= 300) { supported = true; internalFormat = GL_DEPTH_STENCIL; pixelFormat = GL_DEPTH_STENCIL; pixelType = GL_UNSIGNED_INT_24_8; } else #endif #ifdef GL_EXT_packed_depth_stencil if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_EXT_packed_depth_stencil)) { supported = true; internalFormat = GL_DEPTH_STENCIL_EXT; pixelFormat = GL_DEPTH_STENCIL_EXT; pixelType = GL_UNSIGNED_INT_24_8_EXT; } #endif break; case ECF_R8: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_R8; pixelFormat = GL_RED; pixelType = GL_UNSIGNED_BYTE; } break; case ECF_R8G8: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_RG8; pixelFormat = GL_RG; pixelType = GL_UNSIGNED_BYTE; } break; case ECF_R16: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_R16; pixelFormat = GL_RED; pixelType = GL_UNSIGNED_SHORT; } break; case ECF_R16G16: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_RG16; pixelFormat = GL_RG; pixelType = GL_UNSIGNED_SHORT; } break; case ECF_R16F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_R16F; pixelFormat = GL_RED; #ifdef GL_ARB_half_float_pixel if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_half_float_pixel)) pixelType = GL_HALF_FLOAT_ARB; else #endif pixelType = GL_FLOAT; } break; case ECF_G16R16F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_RG16F; pixelFormat = GL_RG; #ifdef GL_ARB_half_float_pixel if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_half_float_pixel)) pixelType = GL_HALF_FLOAT_ARB; else #endif pixelType = GL_FLOAT; } break; case ECF_A16B16G16R16F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_float)) { supported = true; internalFormat = GL_RGBA16F_ARB; pixelFormat = GL_RGBA; #ifdef GL_ARB_half_float_pixel if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_half_float_pixel)) pixelType = GL_HALF_FLOAT_ARB; else #endif pixelType = GL_FLOAT; } break; case ECF_R32F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_R32F; pixelFormat = GL_RED; pixelType = GL_FLOAT; } break; case ECF_G32R32F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_rg)) { supported = true; internalFormat = GL_RG32F; pixelFormat = GL_RG; pixelType = GL_FLOAT; } break; case ECF_A32B32G32R32F: if (queryOpenGLFeature(COpenGLExtensionHandler::IRR_ARB_texture_float)) { supported = true; internalFormat = GL_RGBA32F_ARB; pixelFormat = GL_RGBA; pixelType = GL_FLOAT; } break; default: break; } return supported; } COpenGLDriver::E_OPENGL_FIXED_PIPELINE_STATE COpenGLDriver::getFixedPipelineState() const { return FixedPipelineState; } void COpenGLDriver::setFixedPipelineState(COpenGLDriver::E_OPENGL_FIXED_PIPELINE_STATE state) { FixedPipelineState = state; } const SMaterial &COpenGLDriver::getCurrentMaterial() const { return Material; } COpenGLCacheHandler *COpenGLDriver::getCacheHandler() const { return CacheHandler; } } // end namespace } // end namespace #endif // _IRR_COMPILE_WITH_OPENGL_ namespace irr { namespace video { IVideoDriver *createOpenGLDriver(const SIrrlichtCreationParameters ¶ms, io::IFileSystem *io, IContextManager *contextManager) { #ifdef _IRR_COMPILE_WITH_OPENGL_ COpenGLDriver *ogl = new COpenGLDriver(params, io, contextManager); if (!ogl->initDriver()) { ogl->drop(); ogl = 0; } return ogl; #else return 0; #endif } } // end namespace } // end namespace