// Luanti // SPDX-License-Identifier: LGPL-2.1-or-later // Copyright (C) 2016 juhdanad, Daniel Juhasz #include "raycast.h" #include "irr_v3d.h" #include "irr_aabb3d.h" #include #include "constants.h" bool RaycastSort::operator() (const PointedThing &pt1, const PointedThing &pt2) const { // "nothing" cannot be sorted assert(pt1.type != POINTEDTHING_NOTHING); assert(pt2.type != POINTEDTHING_NOTHING); f32 pt1_distSq = pt1.distanceSq; // Add some bonus when one of them is an object if (pt1.type != pt2.type) { if (pt1.type == POINTEDTHING_OBJECT) pt1_distSq -= BS * BS; else if (pt2.type == POINTEDTHING_OBJECT) pt1_distSq += BS * BS; } // returns false if pt1 is nearer than pt2 if (pt1_distSq < pt2.distanceSq) { return false; } if (pt1_distSq == pt2.distanceSq) { // Sort them to allow only one order if (pt1.type == POINTEDTHING_OBJECT) return (pt2.type == POINTEDTHING_OBJECT && pt1.object_id < pt2.object_id); return (pt2.type == POINTEDTHING_OBJECT || pt1.node_undersurface < pt2.node_undersurface); } return true; } RaycastState::RaycastState(const core::line3d &shootline, bool objects_pointable, bool liquids_pointable, const std::optional &pointabilities) : m_shootline(shootline), m_iterator(shootline.start / BS, shootline.getVector() / BS), m_previous_node(m_iterator.m_current_node_pos), m_objects_pointable(objects_pointable), m_liquids_pointable(liquids_pointable), m_pointabilities(pointabilities) { } bool boxLineCollision(const aabb3f &box, const v3f start, const v3f dir, v3f *collision_point, v3f *collision_normal) { if (box.isPointInside(start)) { *collision_point = start; collision_normal->set(0, 0, 0); return true; } float m = 0; // Test X collision if (dir.X != 0) { if (dir.X > 0) m = (box.MinEdge.X - start.X) / dir.X; else m = (box.MaxEdge.X - start.X) / dir.X; if (m >= 0 && m <= 1) { *collision_point = start + dir * m; if ((collision_point->Y >= box.MinEdge.Y) && (collision_point->Y <= box.MaxEdge.Y) && (collision_point->Z >= box.MinEdge.Z) && (collision_point->Z <= box.MaxEdge.Z)) { collision_normal->set((dir.X > 0) ? -1 : 1, 0, 0); return true; } } } // Test Y collision if (dir.Y != 0) { if (dir.Y > 0) m = (box.MinEdge.Y - start.Y) / dir.Y; else m = (box.MaxEdge.Y - start.Y) / dir.Y; if (m >= 0 && m <= 1) { *collision_point = start + dir * m; if ((collision_point->X >= box.MinEdge.X) && (collision_point->X <= box.MaxEdge.X) && (collision_point->Z >= box.MinEdge.Z) && (collision_point->Z <= box.MaxEdge.Z)) { collision_normal->set(0, (dir.Y > 0) ? -1 : 1, 0); return true; } } } // Test Z collision if (dir.Z != 0) { if (dir.Z > 0) m = (box.MinEdge.Z - start.Z) / dir.Z; else m = (box.MaxEdge.Z - start.Z) / dir.Z; if (m >= 0 && m <= 1) { *collision_point = start + dir * m; if ((collision_point->X >= box.MinEdge.X) && (collision_point->X <= box.MaxEdge.X) && (collision_point->Y >= box.MinEdge.Y) && (collision_point->Y <= box.MaxEdge.Y)) { collision_normal->set(0, 0, (dir.Z > 0) ? -1 : 1); return true; } } } return false; } bool boxLineCollision(const aabb3f &box, const v3f rotation, const v3f start, const v3f dir, v3f *collision_point, v3f *collision_normal, v3f *raw_collision_normal) { // Inversely transform the ray rather than rotating the box faces; // this allows us to continue using a simple ray - AABB intersection core::quaternion rot(rotation * core::DEGTORAD); rot.makeInverse(); bool collision = boxLineCollision(box, rot * start, rot * dir, collision_point, collision_normal); if (!collision) return collision; // Transform the results back rot.makeInverse(); *collision_point = rot * *collision_point; *raw_collision_normal = *collision_normal; *collision_normal = rot * *collision_normal; return collision; }