mirror of
https://github.com/minetest/minetest.git
synced 2024-11-23 16:13:46 +01:00
7ffc0268df
Performance profiling on Linux AMD64 showed this to be a significant bottleneck. The non-inlined functions are expensive due to XMM registers spilling onto the stack.
734 lines
18 KiB
C++
734 lines
18 KiB
C++
/*
|
|
* Minetest
|
|
* Copyright (C) 2010-2014 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
* Copyright (C) 2010-2014 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
* permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include "noise.h"
|
|
#include <iostream>
|
|
#include <cstring> // memset
|
|
#include "debug.h"
|
|
#include "util/numeric.h"
|
|
#include "util/string.h"
|
|
#include "exceptions.h"
|
|
|
|
#define NOISE_MAGIC_X 1619
|
|
#define NOISE_MAGIC_Y 31337
|
|
#define NOISE_MAGIC_Z 52591
|
|
// Unsigned magic seed prevents undefined behavior.
|
|
#define NOISE_MAGIC_SEED 1013U
|
|
|
|
FlagDesc flagdesc_noiseparams[] = {
|
|
{"defaults", NOISE_FLAG_DEFAULTS},
|
|
{"eased", NOISE_FLAG_EASED},
|
|
{"absvalue", NOISE_FLAG_ABSVALUE},
|
|
{"pointbuffer", NOISE_FLAG_POINTBUFFER},
|
|
{"simplex", NOISE_FLAG_SIMPLEX},
|
|
{NULL, 0}
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
PcgRandom::PcgRandom(u64 state, u64 seq)
|
|
{
|
|
seed(state, seq);
|
|
}
|
|
|
|
void PcgRandom::seed(u64 state, u64 seq)
|
|
{
|
|
m_state = 0U;
|
|
m_inc = (seq << 1u) | 1u;
|
|
next();
|
|
m_state += state;
|
|
next();
|
|
}
|
|
|
|
|
|
u32 PcgRandom::next()
|
|
{
|
|
u64 oldstate = m_state;
|
|
m_state = oldstate * 6364136223846793005ULL + m_inc;
|
|
|
|
u32 xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
|
|
u32 rot = oldstate >> 59u;
|
|
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
|
|
}
|
|
|
|
|
|
u32 PcgRandom::range(u32 bound)
|
|
{
|
|
// If the bound is 0, we cover the whole RNG's range
|
|
if (bound == 0)
|
|
return next();
|
|
|
|
/*
|
|
This is an optimization of the expression:
|
|
0x100000000ull % bound
|
|
since 64-bit modulo operations typically much slower than 32.
|
|
*/
|
|
u32 threshold = -bound % bound;
|
|
u32 r;
|
|
|
|
/*
|
|
If the bound is not a multiple of the RNG's range, it may cause bias,
|
|
e.g. a RNG has a range from 0 to 3 and we take want a number 0 to 2.
|
|
Using rand() % 3, the number 0 would be twice as likely to appear.
|
|
With a very large RNG range, the effect becomes less prevalent but
|
|
still present.
|
|
|
|
This can be solved by modifying the range of the RNG to become a
|
|
multiple of bound by dropping values above the a threshold.
|
|
|
|
In our example, threshold == 4 % 3 == 1, so reject values < 1
|
|
(that is, 0), thus making the range == 3 with no bias.
|
|
|
|
This loop may look dangerous, but will always terminate due to the
|
|
RNG's property of uniformity.
|
|
*/
|
|
while ((r = next()) < threshold)
|
|
;
|
|
|
|
return r % bound;
|
|
}
|
|
|
|
|
|
s32 PcgRandom::range(s32 min, s32 max)
|
|
{
|
|
if (max < min)
|
|
throw PrngException("Invalid range (max < min)");
|
|
|
|
// We have to cast to s64 because otherwise this could overflow,
|
|
// and signed overflow is undefined behavior.
|
|
u32 bound = (s64)max - (s64)min + 1;
|
|
return range(bound) + min;
|
|
}
|
|
|
|
|
|
void PcgRandom::bytes(void *out, size_t len)
|
|
{
|
|
u8 *outb = (u8 *)out;
|
|
int bytes_left = 0;
|
|
u32 r;
|
|
|
|
while (len--) {
|
|
if (bytes_left == 0) {
|
|
bytes_left = sizeof(u32);
|
|
r = next();
|
|
}
|
|
|
|
*outb = r & 0xFF;
|
|
outb++;
|
|
bytes_left--;
|
|
r >>= CHAR_BIT;
|
|
}
|
|
}
|
|
|
|
|
|
s32 PcgRandom::randNormalDist(s32 min, s32 max, int num_trials)
|
|
{
|
|
s32 accum = 0;
|
|
for (int i = 0; i != num_trials; i++)
|
|
accum += range(min, max);
|
|
return myround((float)accum / num_trials);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
float noise2d(int x, int y, s32 seed)
|
|
{
|
|
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)(int)n / 0x40000000;
|
|
}
|
|
|
|
|
|
float noise3d(int x, int y, int z, s32 seed)
|
|
{
|
|
unsigned int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
|
|
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
|
n = (n >> 13) ^ n;
|
|
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
|
return 1.f - (float)(int)n / 0x40000000;
|
|
}
|
|
|
|
|
|
inline float dotProduct(float vx, float vy, float wx, float wy)
|
|
{
|
|
return vx * wx + vy * wy;
|
|
}
|
|
|
|
|
|
inline float linearInterpolation(float v0, float v1, float t)
|
|
{
|
|
return v0 + (v1 - v0) * t;
|
|
}
|
|
|
|
|
|
inline float biLinearInterpolation(
|
|
float v00, float v10,
|
|
float v01, float v11,
|
|
float x, float y,
|
|
bool eased)
|
|
{
|
|
// Inlining will optimize this branch out when possible
|
|
if (eased) {
|
|
x = easeCurve(x);
|
|
y = easeCurve(y);
|
|
}
|
|
float u = linearInterpolation(v00, v10, x);
|
|
float v = linearInterpolation(v01, v11, x);
|
|
return linearInterpolation(u, v, y);
|
|
}
|
|
|
|
|
|
inline float triLinearInterpolation(
|
|
float v000, float v100, float v010, float v110,
|
|
float v001, float v101, float v011, float v111,
|
|
float x, float y, float z,
|
|
bool eased)
|
|
{
|
|
// Inlining will optimize this branch out when possible
|
|
if (eased) {
|
|
x = easeCurve(x);
|
|
y = easeCurve(y);
|
|
z = easeCurve(z);
|
|
}
|
|
float u = biLinearInterpolation(v000, v100, v010, v110, x, y, false);
|
|
float v = biLinearInterpolation(v001, v101, v011, v111, x, y, false);
|
|
return linearInterpolation(u, v, z);
|
|
}
|
|
|
|
float noise2d_gradient(float x, float y, s32 seed, bool eased)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
// Get values for corners of square
|
|
float v00 = noise2d(x0, y0, seed);
|
|
float v10 = noise2d(x0+1, y0, seed);
|
|
float v01 = noise2d(x0, y0+1, seed);
|
|
float v11 = noise2d(x0+1, y0+1, seed);
|
|
// Interpolate
|
|
return biLinearInterpolation(v00, v10, v01, v11, xl, yl, eased);
|
|
}
|
|
|
|
|
|
float noise3d_gradient(float x, float y, float z, s32 seed, bool eased)
|
|
{
|
|
// Calculate the integer coordinates
|
|
int x0 = myfloor(x);
|
|
int y0 = myfloor(y);
|
|
int z0 = myfloor(z);
|
|
// Calculate the remaining part of the coordinates
|
|
float xl = x - (float)x0;
|
|
float yl = y - (float)y0;
|
|
float zl = z - (float)z0;
|
|
// Get values for corners of cube
|
|
float v000 = noise3d(x0, y0, z0, seed);
|
|
float v100 = noise3d(x0 + 1, y0, z0, seed);
|
|
float v010 = noise3d(x0, y0 + 1, z0, seed);
|
|
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
|
|
float v001 = noise3d(x0, y0, z0 + 1, seed);
|
|
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
|
|
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
|
|
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
|
|
// Interpolate
|
|
return triLinearInterpolation(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
xl, yl, zl,
|
|
eased);
|
|
}
|
|
|
|
|
|
float noise2d_perlin(float x, float y, s32 seed,
|
|
int octaves, float persistence, bool eased)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
for (int i = 0; i < octaves; i++)
|
|
{
|
|
a += g * noise2d_gradient(x * f, y * f, seed + i, eased);
|
|
f *= 2.0;
|
|
g *= persistence;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
float contour(float v)
|
|
{
|
|
v = std::fabs(v);
|
|
if (v >= 1.0)
|
|
return 0.0;
|
|
return (1.0 - v);
|
|
}
|
|
|
|
|
|
///////////////////////// [ New noise ] ////////////////////////////
|
|
|
|
|
|
float NoisePerlin2D(const NoiseParams *np, float x, float y, s32 seed)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
seed += np->seed;
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
float noiseval = noise2d_gradient(x * f, y * f, seed + i,
|
|
np->flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED));
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
|
noiseval = std::fabs(noiseval);
|
|
|
|
a += g * noiseval;
|
|
f *= np->lacunarity;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return np->offset + a * np->scale;
|
|
}
|
|
|
|
|
|
float NoisePerlin3D(const NoiseParams *np, float x, float y, float z, s32 seed)
|
|
{
|
|
float a = 0;
|
|
float f = 1.0;
|
|
float g = 1.0;
|
|
|
|
x /= np->spread.X;
|
|
y /= np->spread.Y;
|
|
z /= np->spread.Z;
|
|
seed += np->seed;
|
|
|
|
for (size_t i = 0; i < np->octaves; i++) {
|
|
float noiseval = noise3d_gradient(x * f, y * f, z * f, seed + i,
|
|
np->flags & NOISE_FLAG_EASED);
|
|
|
|
if (np->flags & NOISE_FLAG_ABSVALUE)
|
|
noiseval = std::fabs(noiseval);
|
|
|
|
a += g * noiseval;
|
|
f *= np->lacunarity;
|
|
g *= np->persist;
|
|
}
|
|
|
|
return np->offset + a * np->scale;
|
|
}
|
|
|
|
|
|
Noise::Noise(const NoiseParams *np_, s32 seed, u32 sx, u32 sy, u32 sz)
|
|
{
|
|
np = *np_;
|
|
this->seed = seed;
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
allocBuffers();
|
|
}
|
|
|
|
|
|
Noise::~Noise()
|
|
{
|
|
delete[] gradient_buf;
|
|
delete[] persist_buf;
|
|
delete[] noise_buf;
|
|
delete[] result;
|
|
}
|
|
|
|
|
|
void Noise::allocBuffers()
|
|
{
|
|
if (sx < 1)
|
|
sx = 1;
|
|
if (sy < 1)
|
|
sy = 1;
|
|
if (sz < 1)
|
|
sz = 1;
|
|
|
|
this->noise_buf = NULL;
|
|
resizeNoiseBuf(sz > 1);
|
|
|
|
delete[] gradient_buf;
|
|
delete[] persist_buf;
|
|
delete[] result;
|
|
|
|
try {
|
|
size_t bufsize = sx * sy * sz;
|
|
this->persist_buf = NULL;
|
|
this->gradient_buf = new float[bufsize];
|
|
this->result = new float[bufsize];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
void Noise::setSize(u32 sx, u32 sy, u32 sz)
|
|
{
|
|
this->sx = sx;
|
|
this->sy = sy;
|
|
this->sz = sz;
|
|
|
|
allocBuffers();
|
|
}
|
|
|
|
|
|
void Noise::setSpreadFactor(v3f spread)
|
|
{
|
|
this->np.spread = spread;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::setOctaves(int octaves)
|
|
{
|
|
this->np.octaves = octaves;
|
|
|
|
resizeNoiseBuf(sz > 1);
|
|
}
|
|
|
|
|
|
void Noise::resizeNoiseBuf(bool is3d)
|
|
{
|
|
// Maximum possible spread value factor
|
|
float ofactor = (np.lacunarity > 1.0) ?
|
|
pow(np.lacunarity, np.octaves - 1) :
|
|
np.lacunarity;
|
|
|
|
// Noise lattice point count
|
|
// (int)(sz * spread * ofactor) is # of lattice points crossed due to length
|
|
float num_noise_points_x = sx * ofactor / np.spread.X;
|
|
float num_noise_points_y = sy * ofactor / np.spread.Y;
|
|
float num_noise_points_z = sz * ofactor / np.spread.Z;
|
|
|
|
// Protect against obviously invalid parameters
|
|
if (num_noise_points_x > 1000000000.f ||
|
|
num_noise_points_y > 1000000000.f ||
|
|
num_noise_points_z > 1000000000.f)
|
|
throw InvalidNoiseParamsException();
|
|
|
|
// Protect against an octave having a spread < 1, causing broken noise values
|
|
if (np.spread.X / ofactor < 1.0f ||
|
|
np.spread.Y / ofactor < 1.0f ||
|
|
np.spread.Z / ofactor < 1.0f) {
|
|
errorstream << "A noise parameter has too many octaves: "
|
|
<< np.octaves << " octaves" << std::endl;
|
|
throw InvalidNoiseParamsException("A noise parameter has too many octaves");
|
|
}
|
|
|
|
// + 2 for the two initial endpoints
|
|
// + 1 for potentially crossing a boundary due to offset
|
|
size_t nlx = (size_t)std::ceil(num_noise_points_x) + 3;
|
|
size_t nly = (size_t)std::ceil(num_noise_points_y) + 3;
|
|
size_t nlz = is3d ? (size_t)std::ceil(num_noise_points_z) + 3 : 1;
|
|
|
|
delete[] noise_buf;
|
|
try {
|
|
noise_buf = new float[nlx * nly * nlz];
|
|
} catch (std::bad_alloc &e) {
|
|
throw InvalidNoiseParamsException();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* NB: This algorithm is not optimal in terms of space complexity. The entire
|
|
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
|
|
* 2 lines + 2 planes.
|
|
* However, this would require the noise calls to be interposed with the
|
|
* interpolation loops, which may trash the icache, leading to lower overall
|
|
* performance.
|
|
* Another optimization that could save half as many noise calls is to carry over
|
|
* values from the previous noise lattice as midpoints in the new lattice for the
|
|
* next octave.
|
|
*/
|
|
#define idx(x, y) ((y) * nlx + (x))
|
|
void Noise::gradientMap2D(
|
|
float x, float y,
|
|
float step_x, float step_y,
|
|
s32 seed)
|
|
{
|
|
float v00, v01, v10, v11, u, v, orig_u;
|
|
u32 index, i, j, noisex, noisey;
|
|
u32 nlx, nly;
|
|
s32 x0, y0;
|
|
|
|
bool eased = np.flags & (NOISE_FLAG_DEFAULTS | NOISE_FLAG_EASED);
|
|
x0 = std::floor(x);
|
|
y0 = std::floor(y);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
orig_u = u;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
nly = (u32)(v + sy * step_y) + 2;
|
|
index = 0;
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noise_buf[index++] = noise2d(x0 + i, y0 + j, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v00 = noise_buf[idx(0, noisey)];
|
|
v10 = noise_buf[idx(1, noisey)];
|
|
v01 = noise_buf[idx(0, noisey + 1)];
|
|
v11 = noise_buf[idx(1, noisey + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
gradient_buf[index++] =
|
|
biLinearInterpolation(v00, v10, v01, v11, u, v, eased);
|
|
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v00 = v10;
|
|
v01 = v11;
|
|
v10 = noise_buf[idx(noisex + 1, noisey)];
|
|
v11 = noise_buf[idx(noisex + 1, noisey + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
#define idx(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
|
|
void Noise::gradientMap3D(
|
|
float x, float y, float z,
|
|
float step_x, float step_y, float step_z,
|
|
s32 seed)
|
|
{
|
|
float v000, v010, v100, v110;
|
|
float v001, v011, v101, v111;
|
|
float u, v, w, orig_u, orig_v;
|
|
u32 index, i, j, k, noisex, noisey, noisez;
|
|
u32 nlx, nly, nlz;
|
|
s32 x0, y0, z0;
|
|
|
|
bool eased = np.flags & NOISE_FLAG_EASED;
|
|
|
|
x0 = std::floor(x);
|
|
y0 = std::floor(y);
|
|
z0 = std::floor(z);
|
|
u = x - (float)x0;
|
|
v = y - (float)y0;
|
|
w = z - (float)z0;
|
|
orig_u = u;
|
|
orig_v = v;
|
|
|
|
//calculate noise point lattice
|
|
nlx = (u32)(u + sx * step_x) + 2;
|
|
nly = (u32)(v + sy * step_y) + 2;
|
|
nlz = (u32)(w + sz * step_z) + 2;
|
|
index = 0;
|
|
for (k = 0; k != nlz; k++)
|
|
for (j = 0; j != nly; j++)
|
|
for (i = 0; i != nlx; i++)
|
|
noise_buf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
|
|
|
|
//calculate interpolations
|
|
index = 0;
|
|
noisey = 0;
|
|
noisez = 0;
|
|
for (k = 0; k != sz; k++) {
|
|
v = orig_v;
|
|
noisey = 0;
|
|
for (j = 0; j != sy; j++) {
|
|
v000 = noise_buf[idx(0, noisey, noisez)];
|
|
v100 = noise_buf[idx(1, noisey, noisez)];
|
|
v010 = noise_buf[idx(0, noisey + 1, noisez)];
|
|
v110 = noise_buf[idx(1, noisey + 1, noisez)];
|
|
v001 = noise_buf[idx(0, noisey, noisez + 1)];
|
|
v101 = noise_buf[idx(1, noisey, noisez + 1)];
|
|
v011 = noise_buf[idx(0, noisey + 1, noisez + 1)];
|
|
v111 = noise_buf[idx(1, noisey + 1, noisez + 1)];
|
|
|
|
u = orig_u;
|
|
noisex = 0;
|
|
for (i = 0; i != sx; i++) {
|
|
gradient_buf[index++] = triLinearInterpolation(
|
|
v000, v100, v010, v110,
|
|
v001, v101, v011, v111,
|
|
u, v, w,
|
|
eased);
|
|
|
|
u += step_x;
|
|
if (u >= 1.0) {
|
|
u -= 1.0;
|
|
noisex++;
|
|
v000 = v100;
|
|
v010 = v110;
|
|
v100 = noise_buf[idx(noisex + 1, noisey, noisez)];
|
|
v110 = noise_buf[idx(noisex + 1, noisey + 1, noisez)];
|
|
v001 = v101;
|
|
v011 = v111;
|
|
v101 = noise_buf[idx(noisex + 1, noisey, noisez + 1)];
|
|
v111 = noise_buf[idx(noisex + 1, noisey + 1, noisez + 1)];
|
|
}
|
|
}
|
|
|
|
v += step_y;
|
|
if (v >= 1.0) {
|
|
v -= 1.0;
|
|
noisey++;
|
|
}
|
|
}
|
|
|
|
w += step_z;
|
|
if (w >= 1.0) {
|
|
w -= 1.0;
|
|
noisez++;
|
|
}
|
|
}
|
|
}
|
|
#undef idx
|
|
|
|
|
|
float *Noise::perlinMap2D(float x, float y, float *persistence_map)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy;
|
|
|
|
x /= np.spread.X;
|
|
y /= np.spread.Y;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
if (persistence_map) {
|
|
if (!persist_buf)
|
|
persist_buf = new float[bufsize];
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
persist_buf[i] = 1.0;
|
|
}
|
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
|
gradientMap2D(x * f, y * f,
|
|
f / np.spread.X, f / np.spread.Y,
|
|
seed + np.seed + oct);
|
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
|
|
|
f *= np.lacunarity;
|
|
g *= np.persist;
|
|
}
|
|
|
|
if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
float *Noise::perlinMap3D(float x, float y, float z, float *persistence_map)
|
|
{
|
|
float f = 1.0, g = 1.0;
|
|
size_t bufsize = sx * sy * sz;
|
|
|
|
x /= np.spread.X;
|
|
y /= np.spread.Y;
|
|
z /= np.spread.Z;
|
|
|
|
memset(result, 0, sizeof(float) * bufsize);
|
|
|
|
if (persistence_map) {
|
|
if (!persist_buf)
|
|
persist_buf = new float[bufsize];
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
persist_buf[i] = 1.0;
|
|
}
|
|
|
|
for (size_t oct = 0; oct < np.octaves; oct++) {
|
|
gradientMap3D(x * f, y * f, z * f,
|
|
f / np.spread.X, f / np.spread.Y, f / np.spread.Z,
|
|
seed + np.seed + oct);
|
|
|
|
updateResults(g, persist_buf, persistence_map, bufsize);
|
|
|
|
f *= np.lacunarity;
|
|
g *= np.persist;
|
|
}
|
|
|
|
if (std::fabs(np.offset - 0.f) > 0.00001 || std::fabs(np.scale - 1.f) > 0.00001) {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] = result[i] * np.scale + np.offset;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void Noise::updateResults(float g, float *gmap,
|
|
const float *persistence_map, size_t bufsize)
|
|
{
|
|
// This looks very ugly, but it is 50-70% faster than having
|
|
// conditional statements inside the loop
|
|
if (np.flags & NOISE_FLAG_ABSVALUE) {
|
|
if (persistence_map) {
|
|
for (size_t i = 0; i != bufsize; i++) {
|
|
result[i] += gmap[i] * std::fabs(gradient_buf[i]);
|
|
gmap[i] *= persistence_map[i];
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * std::fabs(gradient_buf[i]);
|
|
}
|
|
} else {
|
|
if (persistence_map) {
|
|
for (size_t i = 0; i != bufsize; i++) {
|
|
result[i] += gmap[i] * gradient_buf[i];
|
|
gmap[i] *= persistence_map[i];
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i != bufsize; i++)
|
|
result[i] += g * gradient_buf[i];
|
|
}
|
|
}
|
|
}
|