minetest/irr/src/OpenGL/Driver.cpp
DS 431c5c8b36 Fix wireframe mode in opengl3 driver ()
`GL_LINES` isn't suitable, because it makes lines between pairs of 2 vertices,
not loops around 3 vertices.
Support for OpenGL ES isn't simple, as it has no `glPolygonMode`. And showing broken
wireframe (i.e. with `GL_LINES`) would cause confusion.
2025-01-06 19:39:17 +01:00

1937 lines
59 KiB
C++

// Copyright (C) 2023 Vitaliy Lobachevskiy
// Copyright (C) 2014 Patryk Nadrowski
// Copyright (C) 2009-2010 Amundis
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in Irrlicht.h
#include "Driver.h"
#include <cassert>
#include "CNullDriver.h"
#include "IContextManager.h"
#include "COpenGLCoreTexture.h"
#include "COpenGLCoreRenderTarget.h"
#include "COpenGLCoreCacheHandler.h"
#include "MaterialRenderer.h"
#include "FixedPipelineRenderer.h"
#include "Renderer2D.h"
#include "EVertexAttributes.h"
#include "CImage.h"
#include "os.h"
#include "mt_opengl.h"
namespace irr
{
namespace video
{
struct VertexAttribute
{
enum Mode : u8
{
Regular,
Normalized,
Integer,
};
u8 Index;
u8 ComponentCount;
GLenum ComponentType;
Mode mode;
u32 Offset;
};
struct VertexType
{
u32 VertexSize;
std::vector<VertexAttribute> Attributes;
// allow ranged for loops
inline auto begin() const { return Attributes.begin(); }
inline auto end() const { return Attributes.end(); }
};
static const VertexType vtStandard = {
sizeof(S3DVertex),
{
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)},
},
};
// FIXME: this is actually UB because these vertex classes are not "standard-layout"
// they violate the following requirement:
// - only one class in the hierarchy has non-static data members
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
static const VertexType vt2TCoords = {
sizeof(S3DVertex2TCoords),
{
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex2TCoords, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords)},
{EVA_TCOORD1, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex2TCoords, TCoords2)},
},
};
static const VertexType vtTangents = {
sizeof(S3DVertexTangents),
{
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Pos)},
{EVA_NORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Normal)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertexTangents, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, TCoords)},
{EVA_TANGENT, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Tangent)},
{EVA_BINORMAL, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertexTangents, Binormal)},
},
};
#pragma GCC diagnostic pop
static const VertexType &getVertexTypeDescription(E_VERTEX_TYPE type)
{
switch (type) {
case EVT_STANDARD:
return vtStandard;
case EVT_2TCOORDS:
return vt2TCoords;
case EVT_TANGENTS:
return vtTangents;
default:
assert(false);
CODE_UNREACHABLE();
}
}
static const VertexType vt2DImage = {
sizeof(S3DVertex),
{
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
{EVA_TCOORD0, 2, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, TCoords)},
},
};
static const VertexType vtPrimitive = {
sizeof(S3DVertex),
{
{EVA_POSITION, 3, GL_FLOAT, VertexAttribute::Mode::Regular, offsetof(S3DVertex, Pos)},
{EVA_COLOR, 4, GL_UNSIGNED_BYTE, VertexAttribute::Mode::Normalized, offsetof(S3DVertex, Color)},
},
};
void APIENTRY COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam)
{
((COpenGL3DriverBase *)userParam)->debugCb(source, type, id, severity, length, message);
}
void COpenGL3DriverBase::debugCb(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message)
{
// shader compiler can be very noisy
if (source == GL_DEBUG_SOURCE_SHADER_COMPILER && severity == GL_DEBUG_SEVERITY_NOTIFICATION)
return;
ELOG_LEVEL ll = ELL_INFORMATION;
if (severity == GL_DEBUG_SEVERITY_HIGH)
ll = ELL_ERROR;
else if (severity == GL_DEBUG_SEVERITY_MEDIUM)
ll = ELL_WARNING;
char buf[300];
snprintf_irr(buf, sizeof(buf), "%04x %04x %.*s", source, type, length, message);
os::Printer::log("GL", buf, ll);
}
COpenGL3DriverBase::COpenGL3DriverBase(const SIrrlichtCreationParameters &params, io::IFileSystem *io, IContextManager *contextManager) :
CNullDriver(io, params.WindowSize), COpenGL3ExtensionHandler(), CacheHandler(0),
Params(params), ResetRenderStates(true), LockRenderStateMode(false), AntiAlias(params.AntiAlias),
MaterialRenderer2DActive(0), MaterialRenderer2DTexture(0), MaterialRenderer2DNoTexture(0),
CurrentRenderMode(ERM_NONE), Transformation3DChanged(true),
OGLES2ShaderPath(params.OGLES2ShaderPath),
ColorFormat(ECF_R8G8B8), ContextManager(contextManager), EnableErrorTest(params.DriverDebug)
{
if (!ContextManager)
return;
ContextManager->grab();
ContextManager->generateSurface();
ContextManager->generateContext();
ExposedData = ContextManager->getContext();
ContextManager->activateContext(ExposedData, false);
GL.LoadAllProcedures(ContextManager);
TEST_GL_ERROR(this);
}
COpenGL3DriverBase::~COpenGL3DriverBase()
{
QuadIndexVBO.destroy();
deleteMaterialRenders();
CacheHandler->getTextureCache().clear();
removeAllRenderTargets();
deleteAllTextures();
removeAllOcclusionQueries();
removeAllHardwareBuffers();
delete MaterialRenderer2DTexture;
delete MaterialRenderer2DNoTexture;
delete CacheHandler;
if (ContextManager) {
ContextManager->destroyContext();
ContextManager->destroySurface();
ContextManager->terminate();
ContextManager->drop();
}
}
void COpenGL3DriverBase::initQuadsIndices(u32 max_vertex_count)
{
u32 max_quad_count = max_vertex_count / 4;
u32 indices_size = 6 * max_quad_count;
if (indices_size == QuadIndexVBO.getSize() * sizeof(u16))
return;
// initialize buffer contents
std::vector<u16> QuadsIndices;
QuadsIndices.reserve(indices_size);
for (u32 k = 0; k < max_quad_count; k++) {
QuadsIndices.push_back(4 * k + 0);
QuadsIndices.push_back(4 * k + 1);
QuadsIndices.push_back(4 * k + 2);
QuadsIndices.push_back(4 * k + 0);
QuadsIndices.push_back(4 * k + 2);
QuadsIndices.push_back(4 * k + 3);
}
QuadIndexVBO.upload(QuadsIndices.data(), QuadsIndices.size() * sizeof(u16),
0, GL_STATIC_DRAW, true);
}
void COpenGL3DriverBase::initVersion()
{
Name = GL.GetString(GL_VERSION);
printVersion();
// print renderer information
VendorName = GL.GetString(GL_RENDERER);
os::Printer::log("Renderer", VendorName.c_str(), ELL_INFORMATION);
Version = getVersionFromOpenGL();
}
bool COpenGL3DriverBase::isVersionAtLeast(int major, int minor) const noexcept
{
if (Version.Major < major)
return false;
if (Version.Major > major)
return true;
return Version.Minor >= minor;
}
bool COpenGL3DriverBase::genericDriverInit(const core::dimension2d<u32> &screenSize, bool stencilBuffer)
{
initVersion();
initFeatures();
printTextureFormats();
if (EnableErrorTest) {
if (KHRDebugSupported) {
GL.Enable(GL_DEBUG_OUTPUT);
GL.DebugMessageCallback(debugCb, this);
} else {
os::Printer::log("GL debug extension not available");
}
} else {
// don't do debug things if they are not wanted (even if supported)
KHRDebugSupported = false;
}
initQuadsIndices();
// reset cache handler
delete CacheHandler;
CacheHandler = new COpenGL3CacheHandler(this);
StencilBuffer = stencilBuffer;
DriverAttributes->setAttribute("MaxTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxSupportedTextures", (s32)Feature.MaxTextureUnits);
DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy);
DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices);
DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize);
DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias);
DriverAttributes->setAttribute("Version", 100 * Version.Major + Version.Minor);
DriverAttributes->setAttribute("AntiAlias", AntiAlias);
GL.PixelStorei(GL_PACK_ALIGNMENT, 1);
for (s32 i = 0; i < ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
GL.ClearDepthf(1.0f);
GL.Hint(GL_GENERATE_MIPMAP_HINT, GL_NICEST);
GL.FrontFace(GL_CW);
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0, 0), core::vector2df(0, 1.0f), core::vector2df(1.0f, -1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
TEST_GL_ERROR(this);
return true;
}
void COpenGL3DriverBase::printTextureFormats()
{
char buf[128];
for (u32 i = 0; i < static_cast<u32>(ECF_UNKNOWN); i++) {
auto &info = TextureFormats[i];
if (!info.InternalFormat) {
snprintf_irr(buf, sizeof(buf), "%s -> unsupported", ColorFormatNames[i]);
} else {
snprintf_irr(buf, sizeof(buf), "%s -> %#06x %#06x %#06x%s",
ColorFormatNames[i], info.InternalFormat, info.PixelFormat,
info.PixelType, info.Converter ? " (c)" : "");
}
os::Printer::log(buf, ELL_DEBUG);
}
}
void COpenGL3DriverBase::loadShaderData(const io::path &vertexShaderName, const io::path &fragmentShaderName, c8 **vertexShaderData, c8 **fragmentShaderData)
{
io::path vsPath(OGLES2ShaderPath);
vsPath += vertexShaderName;
io::path fsPath(OGLES2ShaderPath);
fsPath += fragmentShaderName;
*vertexShaderData = 0;
*fragmentShaderData = 0;
io::IReadFile *vsFile = FileSystem->createAndOpenFile(vsPath);
if (!vsFile) {
std::string warning("Warning: Missing shader files needed to simulate fixed function materials:\n");
warning.append(vsPath.c_str()).append("\n");
warning += "Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
io::IReadFile *fsFile = FileSystem->createAndOpenFile(fsPath);
if (!fsFile) {
std::string warning("Warning: Missing shader files needed to simulate fixed function materials:\n");
warning.append(fsPath.c_str()).append("\n");
warning += "Shaderpath can be changed in SIrrCreationParamters::OGLES2ShaderPath";
os::Printer::log(warning.c_str(), ELL_WARNING);
return;
}
long size = vsFile->getSize();
if (size) {
*vertexShaderData = new c8[size + 1];
vsFile->read(*vertexShaderData, size);
(*vertexShaderData)[size] = 0;
}
{
auto tmp = std::string("Loaded ") + std::to_string(size) + " bytes for vertex shader " + vertexShaderName.c_str();
os::Printer::log(tmp.c_str(), ELL_INFORMATION);
}
size = fsFile->getSize();
if (size) {
// if both handles are the same we must reset the file
if (fsFile == vsFile)
fsFile->seek(0);
*fragmentShaderData = new c8[size + 1];
fsFile->read(*fragmentShaderData, size);
(*fragmentShaderData)[size] = 0;
}
{
auto tmp = std::string("Loaded ") + std::to_string(size) + " bytes for fragment shader " + fragmentShaderName.c_str();
os::Printer::log(tmp.c_str(), ELL_INFORMATION);
}
vsFile->drop();
fsFile->drop();
}
void COpenGL3DriverBase::createMaterialRenderers()
{
// Create callbacks.
COpenGL3MaterialSolidCB *SolidCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB *TransparentAlphaChannelCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB *TransparentAlphaChannelRefCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialSolidCB *TransparentVertexAlphaCB = new COpenGL3MaterialSolidCB();
COpenGL3MaterialOneTextureBlendCB *OneTextureBlendCB = new COpenGL3MaterialOneTextureBlendCB();
// Create built-in materials.
// The addition order must be the same as in the E_MATERIAL_TYPE enumeration. Thus the
const core::stringc VertexShader = OGLES2ShaderPath + "Solid.vsh";
// EMT_SOLID
core::stringc FragmentShader = OGLES2ShaderPath + "Solid.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, FragmentShader, "", "Solid",
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, SolidCB, EMT_SOLID, 0);
// EMT_TRANSPARENT_ALPHA_CHANNEL
FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannel.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, FragmentShader, "", "TransparentAlphaChannel",
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
// EMT_TRANSPARENT_ALPHA_CHANNEL_REF
FragmentShader = OGLES2ShaderPath + "TransparentAlphaChannelRef.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, FragmentShader, "", "TransparentAlphaChannelRef",
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentAlphaChannelRefCB, EMT_SOLID, 0);
// EMT_TRANSPARENT_VERTEX_ALPHA
FragmentShader = OGLES2ShaderPath + "TransparentVertexAlpha.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, FragmentShader, "", "TransparentVertexAlpha",
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, TransparentVertexAlphaCB, EMT_TRANSPARENT_ALPHA_CHANNEL, 0);
// EMT_ONETEXTURE_BLEND
FragmentShader = OGLES2ShaderPath + "OneTextureBlend.fsh";
addHighLevelShaderMaterialFromFiles(VertexShader, FragmentShader, "", "OneTextureBlend",
scene::EPT_TRIANGLES, scene::EPT_TRIANGLE_STRIP, 0, OneTextureBlendCB, EMT_ONETEXTURE_BLEND, 0);
// Drop callbacks.
SolidCB->drop();
TransparentAlphaChannelCB->drop();
TransparentAlphaChannelRefCB->drop();
TransparentVertexAlphaCB->drop();
OneTextureBlendCB->drop();
// Create 2D material renderers
c8 *vs2DData = 0;
c8 *fs2DData = 0;
loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, true);
delete[] vs2DData;
delete[] fs2DData;
vs2DData = 0;
fs2DData = 0;
loadShaderData(io::path("Renderer2D.vsh"), io::path("Renderer2D_noTex.fsh"), &vs2DData, &fs2DData);
MaterialRenderer2DNoTexture = new COpenGL3Renderer2D(vs2DData, fs2DData, this, false);
delete[] vs2DData;
delete[] fs2DData;
}
bool COpenGL3DriverBase::setMaterialTexture(irr::u32 layerIdx, const irr::video::ITexture *texture)
{
Material.TextureLayers[layerIdx].Texture = const_cast<ITexture *>(texture); // function uses const-pointer for texture because all draw functions use const-pointers already
return CacheHandler->getTextureCache().set(0, texture);
}
bool COpenGL3DriverBase::beginScene(u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil, const SExposedVideoData &videoData, core::rect<s32> *sourceRect)
{
CNullDriver::beginScene(clearFlag, clearColor, clearDepth, clearStencil, videoData, sourceRect);
if (ContextManager)
ContextManager->activateContext(videoData, true);
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
bool COpenGL3DriverBase::endScene()
{
CNullDriver::endScene();
GL.Flush();
if (ContextManager)
return ContextManager->swapBuffers();
return false;
}
//! Returns the transformation set by setTransform
const core::matrix4 &COpenGL3DriverBase::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COpenGL3DriverBase::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4 &mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
}
bool COpenGL3DriverBase::uploadHardwareBuffer(OpenGLVBO &vbo,
const void *buffer, size_t bufferSize, scene::E_HARDWARE_MAPPING hint)
{
accountHWBufferUpload(bufferSize);
GLenum usage = GL_STATIC_DRAW;
if (hint == scene::EHM_STREAM)
usage = GL_STREAM_DRAW;
else if (hint == scene::EHM_DYNAMIC)
usage = GL_DYNAMIC_DRAW;
vbo.upload(buffer, bufferSize, 0, usage);
return (!TEST_GL_ERROR(this));
}
bool COpenGL3DriverBase::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
assert(HWBuffer->IsVertex);
const auto *vb = HWBuffer->VertexBuffer;
assert(vb);
const u32 vertexSize = getVertexPitchFromType(vb->getType());
const size_t bufferSize = vertexSize * vb->getCount();
return uploadHardwareBuffer(HWBuffer->Vbo, vb->getData(),
bufferSize, vb->getHardwareMappingHint());
}
bool COpenGL3DriverBase::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
assert(!HWBuffer->IsVertex);
const auto *ib = HWBuffer->IndexBuffer;
assert(ib);
u32 indexSize;
switch (ib->getType()) {
case EIT_16BIT:
indexSize = sizeof(u16);
break;
case EIT_32BIT:
indexSize = sizeof(u32);
break;
default:
return false;
}
const size_t bufferSize = ib->getCount() * indexSize;
return uploadHardwareBuffer(HWBuffer->Vbo, ib->getData(),
bufferSize, ib->getHardwareMappingHint());
}
bool COpenGL3DriverBase::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
auto *b = static_cast<SHWBufferLink_opengl *>(HWBuffer);
if (b->IsVertex) {
assert(b->VertexBuffer);
if (b->ChangedID != b->VertexBuffer->getChangedID() || !b->Vbo.exists()) {
if (!updateVertexHardwareBuffer(b))
return false;
b->ChangedID = b->VertexBuffer->getChangedID();
}
} else {
assert(b->IndexBuffer);
if (b->ChangedID != b->IndexBuffer->getChangedID() || !b->Vbo.exists()) {
if (!updateIndexHardwareBuffer(b))
return false;
b->ChangedID = b->IndexBuffer->getChangedID();
}
}
return true;
}
COpenGL3DriverBase::SHWBufferLink *COpenGL3DriverBase::createHardwareBuffer(const scene::IVertexBuffer *vb)
{
if (!vb || vb->getHardwareMappingHint() == scene::EHM_NEVER)
return 0;
auto *HWBuffer = new SHWBufferLink_opengl(vb);
registerHardwareBuffer(HWBuffer);
if (!updateVertexHardwareBuffer(HWBuffer)) {
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
COpenGL3DriverBase::SHWBufferLink *COpenGL3DriverBase::createHardwareBuffer(const scene::IIndexBuffer *ib)
{
if (!ib || ib->getHardwareMappingHint() == scene::EHM_NEVER)
return 0;
auto *HWBuffer = new SHWBufferLink_opengl(ib);
registerHardwareBuffer(HWBuffer);
if (!updateIndexHardwareBuffer(HWBuffer)) {
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
}
void COpenGL3DriverBase::deleteHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return;
auto *b = static_cast<SHWBufferLink_opengl *>(HWBuffer);
b->Vbo.destroy();
CNullDriver::deleteHardwareBuffer(HWBuffer);
}
void COpenGL3DriverBase::drawBuffers(const scene::IVertexBuffer *vb,
const scene::IIndexBuffer *ib, u32 PrimitiveCount,
scene::E_PRIMITIVE_TYPE PrimitiveType)
{
if (!vb || !ib)
return;
auto *hwvert = static_cast<SHWBufferLink_opengl *>(getBufferLink(vb));
auto *hwidx = static_cast<SHWBufferLink_opengl *>(getBufferLink(ib));
updateHardwareBuffer(hwvert);
updateHardwareBuffer(hwidx);
const void *vertices = vb->getData();
if (hwvert) {
assert(hwvert->IsVertex);
GL.BindBuffer(GL_ARRAY_BUFFER, hwvert->Vbo.getName());
vertices = nullptr;
}
const void *indexList = ib->getData();
if (hwidx) {
assert(!hwidx->IsVertex);
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, hwidx->Vbo.getName());
indexList = nullptr;
}
drawVertexPrimitiveList(vertices, vb->getCount(), indexList,
PrimitiveCount, vb->getType(), PrimitiveType, ib->getType());
if (hwvert)
GL.BindBuffer(GL_ARRAY_BUFFER, 0);
if (hwidx)
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
IRenderTarget *COpenGL3DriverBase::addRenderTarget()
{
COpenGL3RenderTarget *renderTarget = new COpenGL3RenderTarget(this);
RenderTargets.push_back(renderTarget);
return renderTarget;
}
void COpenGL3DriverBase::blitRenderTarget(IRenderTarget *from, IRenderTarget *to)
{
if (Version.Spec == OpenGLSpec::ES && Version.Major < 3) {
os::Printer::log("glBlitFramebuffer not supported by OpenGL ES < 3.0", ELL_ERROR);
return;
}
GLuint prev_fbo_id;
CacheHandler->getFBO(prev_fbo_id);
COpenGL3RenderTarget *src = static_cast<COpenGL3RenderTarget *>(from);
COpenGL3RenderTarget *dst = static_cast<COpenGL3RenderTarget *>(to);
GL.BindFramebuffer(GL.READ_FRAMEBUFFER, src->getBufferID());
GL.BindFramebuffer(GL.DRAW_FRAMEBUFFER, dst->getBufferID());
GL.BlitFramebuffer(
0, 0, src->getSize().Width, src->getSize().Height,
0, 0, dst->getSize().Width, dst->getSize().Height,
GL.COLOR_BUFFER_BIT | GL.DEPTH_BUFFER_BIT | GL.STENCIL_BUFFER_BIT, GL.NEAREST);
// This resets both read and draw framebuffer. Note that we bypass CacheHandler here.
GL.BindFramebuffer(GL.FRAMEBUFFER, prev_fbo_id);
}
//! draws a vertex primitive list
void COpenGL3DriverBase::drawVertexPrimitiveList(const void *vertices, u32 vertexCount,
const void *indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
setRenderStates3DMode();
drawGeneric(vertices, indexList, primitiveCount, vType, pType, iType);
}
//! draws a vertex primitive list in 2d
void COpenGL3DriverBase::draw2DVertexPrimitiveList(const void *vertices, u32 vertexCount,
const void *indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!vertices)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
setRenderStates2DMode(
Material.MaterialType == EMT_TRANSPARENT_VERTEX_ALPHA,
Material.getTexture(0),
Material.MaterialType == EMT_TRANSPARENT_ALPHA_CHANNEL
);
drawGeneric(vertices, indexList, primitiveCount, vType, pType, iType);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture *texture, const core::position2d<s32> &destPos,
const core::rect<s32> &sourceRect, const core::rect<s32> *clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
SColor colors[4] = {color, color, color, color};
draw2DImage(texture, {destPos, sourceRect.getSize()}, sourceRect, clipRect, colors, useAlphaChannelOfTexture);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture *texture, const core::rect<s32> &destRect,
const core::rect<s32> &sourceRect, const core::rect<s32> *clipRect,
const video::SColor *const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2du &ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT ? sourceRect.LowerRightCorner.Y : sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT ? sourceRect.UpperLeftCorner.Y : sourceRect.LowerRightCorner.Y) * invH);
const video::SColor temp[4] = {
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
};
const video::SColor *const useColor = colors ? colors : temp;
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(useColor[0].getAlpha() < 255 || useColor[1].getAlpha() < 255 ||
useColor[2].getAlpha() < 255 || useColor[3].getAlpha() < 255,
true, useAlphaChannelOfTexture);
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
if (clipRect) {
if (!clipRect->isValid())
return;
GL.Enable(GL_SCISSOR_TEST);
GL.Scissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
f32 left = (f32)destRect.UpperLeftCorner.X;
f32 right = (f32)destRect.LowerRightCorner.X;
f32 down = (f32)destRect.LowerRightCorner.Y;
f32 top = (f32)destRect.UpperLeftCorner.Y;
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, useColor[0], tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, useColor[3], tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, useColor[2], tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, useColor[1], tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
drawQuad(vt2DImage, vertices);
if (clipRect)
GL.Disable(GL_SCISSOR_TEST);
TEST_GL_ERROR(this);
}
void COpenGL3DriverBase::draw2DImage(const video::ITexture *texture, u32 layer, bool flip)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(false, true, true);
S3DVertex quad2DVertices[4];
quad2DVertices[0].Pos = core::vector3df(-1.f, 1.f, 0.f);
quad2DVertices[1].Pos = core::vector3df(1.f, 1.f, 0.f);
quad2DVertices[2].Pos = core::vector3df(1.f, -1.f, 0.f);
quad2DVertices[3].Pos = core::vector3df(-1.f, -1.f, 0.f);
f32 modificator = (flip) ? 1.f : 0.f;
quad2DVertices[0].TCoords = core::vector2df(0.f, 0.f + modificator);
quad2DVertices[1].TCoords = core::vector2df(1.f, 0.f + modificator);
quad2DVertices[2].TCoords = core::vector2df(1.f, 1.f - modificator);
quad2DVertices[3].TCoords = core::vector2df(0.f, 1.f - modificator);
quad2DVertices[0].Color = SColor(0xFFFFFFFF);
quad2DVertices[1].Color = SColor(0xFFFFFFFF);
quad2DVertices[2].Color = SColor(0xFFFFFFFF);
quad2DVertices[3].Color = SColor(0xFFFFFFFF);
drawQuad(vt2DImage, quad2DVertices);
}
void COpenGL3DriverBase::draw2DImageBatch(const video::ITexture *texture,
const core::array<core::position2d<s32>> &positions,
const core::array<core::rect<s32>> &sourceRects,
const core::rect<s32> *clipRect,
SColor color, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
chooseMaterial2D();
if (!setMaterialTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha() < 255, true, useAlphaChannelOfTexture);
const core::dimension2d<u32> &renderTargetSize = getCurrentRenderTargetSize();
if (clipRect) {
if (!clipRect->isValid())
return;
GL.Enable(GL_SCISSOR_TEST);
GL.Scissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height - clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
const irr::u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size());
assert(6 * drawCount * sizeof(u16) <= QuadIndexVBO.getSize()); // FIXME split the batch? or let it crash?
std::vector<S3DVertex> vtx;
vtx.reserve(drawCount * 4);
for (u32 i = 0; i < drawCount; i++) {
core::position2d<s32> targetPos = positions[i];
core::position2d<s32> sourcePos = sourceRects[i].UpperLeftCorner;
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRects[i].getSize());
// now draw it.
core::rect<f32> tcoords;
tcoords.UpperLeftCorner.X = (((f32)sourcePos.X)) / texture->getOriginalSize().Width;
tcoords.UpperLeftCorner.Y = (((f32)sourcePos.Y)) / texture->getOriginalSize().Height;
tcoords.LowerRightCorner.X = tcoords.UpperLeftCorner.X + ((f32)(sourceSize.Width) / texture->getOriginalSize().Width);
tcoords.LowerRightCorner.Y = tcoords.UpperLeftCorner.Y + ((f32)(sourceSize.Height) / texture->getOriginalSize().Height);
const core::rect<s32> poss(targetPos, sourceSize);
f32 left = (f32)poss.UpperLeftCorner.X;
f32 right = (f32)poss.LowerRightCorner.X;
f32 down = (f32)poss.LowerRightCorner.Y;
f32 top = (f32)poss.UpperLeftCorner.Y;
vtx.emplace_back(left, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
vtx.emplace_back(right, top, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
vtx.emplace_back(right, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
vtx.emplace_back(left, down, 0.0f,
0.0f, 0.0f, 0.0f, color,
tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
}
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, QuadIndexVBO.getName());
drawElements(GL_TRIANGLES, vt2DImage, vtx.data(), vtx.size(), 0, 6 * drawCount);
GL.BindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
if (clipRect)
GL.Disable(GL_SCISSOR_TEST);
}
//! draw a 2d rectangle
void COpenGL3DriverBase::draw2DRectangle(SColor color,
const core::rect<s32> &position,
const core::rect<s32> *clip)
{
draw2DRectangle(position, color, color, color, color, clip);
}
//! draw an 2d rectangle
void COpenGL3DriverBase::draw2DRectangle(const core::rect<s32> &position,
SColor colorLeftUp, SColor colorRightUp,
SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32> *clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255,
false, false);
f32 left = (f32)pos.UpperLeftCorner.X;
f32 right = (f32)pos.LowerRightCorner.X;
f32 down = (f32)pos.LowerRightCorner.Y;
f32 top = (f32)pos.UpperLeftCorner.Y;
S3DVertex vertices[4];
vertices[0] = S3DVertex(left, top, 0, 0, 0, 1, colorLeftUp, 0, 0);
vertices[1] = S3DVertex(right, top, 0, 0, 0, 1, colorRightUp, 0, 0);
vertices[2] = S3DVertex(right, down, 0, 0, 0, 1, colorRightDown, 0, 0);
vertices[3] = S3DVertex(left, down, 0, 0, 0, 1, colorLeftDown, 0, 0);
drawQuad(vtPrimitive, vertices);
}
//! Draws a 2d line.
void COpenGL3DriverBase::draw2DLine(const core::position2d<s32> &start,
const core::position2d<s32> &end, SColor color)
{
{
chooseMaterial2D();
setMaterialTexture(0, 0);
setRenderStates2DMode(color.getAlpha() < 255, false, false);
f32 startX = (f32)start.X;
f32 endX = (f32)end.X;
f32 startY = (f32)start.Y;
f32 endY = (f32)end.Y;
S3DVertex vertices[2];
vertices[0] = S3DVertex(startX, startY, 0, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(endX, endY, 0, 0, 0, 1, color, 1, 1);
drawArrays(GL_LINES, vtPrimitive, vertices, 2);
}
}
void COpenGL3DriverBase::drawQuad(const VertexType &vertexType, const S3DVertex (&vertices)[4])
{
drawArrays(GL_TRIANGLE_FAN, vertexType, vertices, 4);
}
void COpenGL3DriverBase::drawArrays(GLenum primitiveType, const VertexType &vertexType, const void *vertices, int vertexCount)
{
beginDraw(vertexType, reinterpret_cast<uintptr_t>(vertices));
GL.DrawArrays(primitiveType, 0, vertexCount);
endDraw(vertexType);
}
void COpenGL3DriverBase::drawElements(GLenum primitiveType, const VertexType &vertexType, const void *vertices, int vertexCount, const u16 *indices, int indexCount)
{
beginDraw(vertexType, reinterpret_cast<uintptr_t>(vertices));
GL.DrawRangeElements(primitiveType, 0, vertexCount - 1, indexCount, GL_UNSIGNED_SHORT, indices);
endDraw(vertexType);
}
void COpenGL3DriverBase::drawGeneric(const void *vertices, const void *indexList,
u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
auto &vTypeDesc = getVertexTypeDescription(vType);
beginDraw(vTypeDesc, reinterpret_cast<uintptr_t>(vertices));
GLenum indexSize = 0;
switch (iType) {
case EIT_16BIT:
indexSize = GL_UNSIGNED_SHORT;
break;
case EIT_32BIT:
indexSize = GL_UNSIGNED_INT;
break;
}
switch (pType) {
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
GL.DrawArrays(GL_POINTS, 0, primitiveCount);
break;
case scene::EPT_LINE_STRIP:
GL.DrawElements(GL_LINE_STRIP, primitiveCount + 1, indexSize, indexList);
break;
case scene::EPT_LINE_LOOP:
GL.DrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
break;
case scene::EPT_LINES:
GL.DrawElements(GL_LINES, primitiveCount * 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
GL.DrawElements(GL_TRIANGLE_STRIP, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
GL.DrawElements(GL_TRIANGLE_FAN, primitiveCount + 2, indexSize, indexList);
break;
case scene::EPT_TRIANGLES:
GL.DrawElements(GL_TRIANGLES, primitiveCount * 3, indexSize, indexList);
break;
default:
break;
}
endDraw(vTypeDesc);
}
void COpenGL3DriverBase::beginDraw(const VertexType &vertexType, uintptr_t verticesBase)
{
for (auto &attr : vertexType) {
GL.EnableVertexAttribArray(attr.Index);
switch (attr.mode) {
case VertexAttribute::Mode::Regular:
GL.VertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_FALSE, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset));
break;
case VertexAttribute::Mode::Normalized:
GL.VertexAttribPointer(attr.Index, attr.ComponentCount, attr.ComponentType, GL_TRUE, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset));
break;
case VertexAttribute::Mode::Integer:
GL.VertexAttribIPointer(attr.Index, attr.ComponentCount, attr.ComponentType, vertexType.VertexSize, reinterpret_cast<void *>(verticesBase + attr.Offset));
break;
}
}
}
void COpenGL3DriverBase::endDraw(const VertexType &vertexType)
{
for (auto &attr : vertexType)
GL.DisableVertexAttribArray(attr.Index);
}
ITexture *COpenGL3DriverBase::createDeviceDependentTexture(const io::path &name, IImage *image)
{
std::vector<IImage*> tmp { image };
COpenGL3Texture *texture = new COpenGL3Texture(name, tmp, ETT_2D, this);
return texture;
}
ITexture *COpenGL3DriverBase::createDeviceDependentTextureCubemap(const io::path &name, const std::vector<IImage*> &image)
{
COpenGL3Texture *texture = new COpenGL3Texture(name, image, ETT_CUBEMAP, this);
return texture;
}
//! Sets a material.
void COpenGL3DriverBase::setMaterial(const SMaterial &material)
{
Material = material;
OverrideMaterial.apply(Material);
for (u32 i = 0; i < Feature.MaxTextureUnits; ++i) {
auto *texture = material.getTexture(i);
CacheHandler->getTextureCache().set(i, texture);
if (texture) {
setTransform((E_TRANSFORMATION_STATE)(ETS_TEXTURE_0 + i), material.getTextureMatrix(i));
}
}
}
//! prints error if an error happened.
bool COpenGL3DriverBase::testGLError(const char *file, int line)
{
if (!EnableErrorTest)
return false;
GLenum g = GL.GetError();
const char *err = nullptr;
switch (g) {
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
err = "GL_INVALID_ENUM";
break;
case GL_INVALID_VALUE:
err = "GL_INVALID_VALUE";
break;
case GL_INVALID_OPERATION:
err = "GL_INVALID_OPERATION";
break;
case GL_STACK_OVERFLOW:
err = "GL_STACK_OVERFLOW";
break;
case GL_STACK_UNDERFLOW:
err = "GL_STACK_UNDERFLOW";
break;
case GL_OUT_OF_MEMORY:
err = "GL_OUT_OF_MEMORY";
break;
case GL_INVALID_FRAMEBUFFER_OPERATION:
err = "GL_INVALID_FRAMEBUFFER_OPERATION";
break;
#ifdef GL_VERSION_4_5
case GL_CONTEXT_LOST:
err = "GL_CONTEXT_LOST";
break;
#endif
};
// Empty the error queue, see <https://www.khronos.org/opengl/wiki/OpenGL_Error>
bool multiple = false;
while (GL.GetError() != GL_NO_ERROR)
multiple = true;
// basename
for (char sep : {'/', '\\'}) {
const char *tmp = strrchr(file, sep);
if (tmp)
file = tmp+1;
}
char buf[80];
snprintf_irr(buf, sizeof(buf), "%s %s:%d%s",
err, file, line, multiple ? " (older errors exist)" : "");
os::Printer::log(buf, ELL_ERROR);
return true;
}
void COpenGL3DriverBase::setRenderStates3DMode()
{
if (LockRenderStateMode)
return;
if (CurrentRenderMode != ERM_3D) {
// Reset Texture Stages
CacheHandler->setBlend(false);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material) {
// unset old material
// unset last 3d material
if (CurrentRenderMode == ERM_2D && MaterialRenderer2DActive) {
MaterialRenderer2DActive->OnUnsetMaterial();
MaterialRenderer2DActive = 0;
} else if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COpenGL3DriverBase::setBasicRenderStates(const SMaterial &material, const SMaterial &lastmaterial, bool resetAllRenderStates)
{
// ZBuffer
switch (material.ZBuffer) {
case ECFN_DISABLED:
CacheHandler->setDepthTest(false);
break;
case ECFN_LESSEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_ALWAYS);
break;
case ECFN_NEVER:
CacheHandler->setDepthTest(true);
CacheHandler->setDepthFunc(GL_NEVER);
break;
default:
break;
}
// ZWrite
if (getWriteZBuffer(material)) {
CacheHandler->setDepthMask(true);
} else {
CacheHandler->setDepthMask(false);
}
// Back face culling
if ((material.FrontfaceCulling) && (material.BackfaceCulling)) {
CacheHandler->setCullFaceFunc(GL_FRONT_AND_BACK);
CacheHandler->setCullFace(true);
} else if (material.BackfaceCulling) {
CacheHandler->setCullFaceFunc(GL_BACK);
CacheHandler->setCullFace(true);
} else if (material.FrontfaceCulling) {
CacheHandler->setCullFaceFunc(GL_FRONT);
CacheHandler->setCullFace(true);
} else {
CacheHandler->setCullFace(false);
}
// Color Mask
CacheHandler->setColorMask(material.ColorMask);
// Blend Equation
if (material.BlendOperation == EBO_NONE)
CacheHandler->setBlend(false);
else {
CacheHandler->setBlend(true);
switch (material.BlendOperation) {
case EBO_ADD:
CacheHandler->setBlendEquation(GL_FUNC_ADD);
break;
case EBO_SUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_SUBTRACT);
break;
case EBO_REVSUBTRACT:
CacheHandler->setBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
break;
case EBO_MIN:
if (BlendMinMaxSupported)
CacheHandler->setBlendEquation(GL_MIN);
else
os::Printer::log("Attempt to use EBO_MIN without driver support", ELL_WARNING);
break;
case EBO_MAX:
if (BlendMinMaxSupported)
CacheHandler->setBlendEquation(GL_MAX);
else
os::Printer::log("Attempt to use EBO_MAX without driver support", ELL_WARNING);
break;
default:
break;
}
}
// Blend Factor
if (IR(material.BlendFactor) & 0xFFFFFFFF // TODO: why the & 0xFFFFFFFF?
&& material.MaterialType != EMT_ONETEXTURE_BLEND) {
E_BLEND_FACTOR srcRGBFact = EBF_ZERO;
E_BLEND_FACTOR dstRGBFact = EBF_ZERO;
E_BLEND_FACTOR srcAlphaFact = EBF_ZERO;
E_BLEND_FACTOR dstAlphaFact = EBF_ZERO;
E_MODULATE_FUNC modulo = EMFN_MODULATE_1X;
u32 alphaSource = 0;
unpack_textureBlendFuncSeparate(srcRGBFact, dstRGBFact, srcAlphaFact, dstAlphaFact, modulo, alphaSource, material.BlendFactor);
CacheHandler->setBlendFuncSeparate(getGLBlend(srcRGBFact), getGLBlend(dstRGBFact),
getGLBlend(srcAlphaFact), getGLBlend(dstAlphaFact));
}
// fillmode
if (Version.Spec != OpenGLSpec::ES && // not supported in gles
(resetAllRenderStates ||
lastmaterial.Wireframe != material.Wireframe ||
lastmaterial.PointCloud != material.PointCloud)) {
GL.PolygonMode(GL_FRONT_AND_BACK,
material.Wireframe ? GL_LINE :
material.PointCloud ? GL_POINT :
GL_FILL);
}
// Polygon Offset
if (resetAllRenderStates ||
lastmaterial.PolygonOffsetDepthBias != material.PolygonOffsetDepthBias ||
lastmaterial.PolygonOffsetSlopeScale != material.PolygonOffsetSlopeScale) {
if (material.PolygonOffsetDepthBias || material.PolygonOffsetSlopeScale) {
GL.Enable(GL.POLYGON_OFFSET_FILL);
GL.PolygonOffset(material.PolygonOffsetSlopeScale, material.PolygonOffsetDepthBias);
} else {
GL.Disable(GL.POLYGON_OFFSET_FILL);
}
}
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
GL.LineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
// Anti aliasing
// Deal with MSAA even if it's not enabled in the OpenGL context, we might be
// rendering to an FBO with multisampling.
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) {
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
GL.Enable(GL_SAMPLE_ALPHA_TO_COVERAGE);
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
GL.Disable(GL_SAMPLE_ALPHA_TO_COVERAGE);
}
// Texture parameters
setTextureRenderStates(material, resetAllRenderStates);
}
//! Compare in SMaterial doesn't check texture parameters, so we should call this on each OnRender call.
void COpenGL3DriverBase::setTextureRenderStates(const SMaterial &material, bool resetAllRenderstates)
{
// Set textures to TU/TIU and apply filters to them
for (s32 i = Feature.MaxTextureUnits - 1; i >= 0; --i) {
const COpenGL3Texture *tmpTexture = CacheHandler->getTextureCache()[i];
if (!tmpTexture)
continue;
GLenum tmpTextureType = tmpTexture->getOpenGLTextureType();
CacheHandler->setActiveTexture(GL_TEXTURE0 + i);
const auto &layer = material.TextureLayers[i];
auto &states = tmpTexture->getStatesCache();
if (resetAllRenderstates)
states.IsCached = false;
if (!states.IsCached || layer.MagFilter != states.MagFilter) {
E_TEXTURE_MAG_FILTER magFilter = layer.MagFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MAG_FILTER,
magFilter == ETMAGF_NEAREST ? GL_NEAREST : (assert(magFilter == ETMAGF_LINEAR), GL_LINEAR));
states.MagFilter = magFilter;
}
if (material.UseMipMaps && tmpTexture->hasMipMaps()) {
if (!states.IsCached || layer.MinFilter != states.MinFilter ||
!states.MipMapStatus) {
E_TEXTURE_MIN_FILTER minFilter = layer.MinFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
minFilter == ETMINF_NEAREST_MIPMAP_NEAREST ? GL_NEAREST_MIPMAP_NEAREST : minFilter == ETMINF_LINEAR_MIPMAP_NEAREST ? GL_LINEAR_MIPMAP_NEAREST
: minFilter == ETMINF_NEAREST_MIPMAP_LINEAR ? GL_NEAREST_MIPMAP_LINEAR
: (assert(minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR_MIPMAP_LINEAR));
states.MinFilter = minFilter;
states.MipMapStatus = true;
}
} else {
if (!states.IsCached || layer.MinFilter != states.MinFilter ||
states.MipMapStatus) {
E_TEXTURE_MIN_FILTER minFilter = layer.MinFilter;
GL.TexParameteri(tmpTextureType, GL_TEXTURE_MIN_FILTER,
(minFilter == ETMINF_NEAREST_MIPMAP_NEAREST || minFilter == ETMINF_NEAREST_MIPMAP_LINEAR) ? GL_NEAREST : (assert(minFilter == ETMINF_LINEAR_MIPMAP_NEAREST || minFilter == ETMINF_LINEAR_MIPMAP_LINEAR), GL_LINEAR));
states.MinFilter = minFilter;
states.MipMapStatus = false;
}
}
if (LODBiasSupported &&
(!states.IsCached || layer.LODBias != states.LODBias)) {
if (layer.LODBias) {
const float tmp = core::clamp(layer.LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
GL.TexParameterf(tmpTextureType, GL.TEXTURE_LOD_BIAS, tmp);
} else
GL.TexParameterf(tmpTextureType, GL.TEXTURE_LOD_BIAS, 0.f);
states.LODBias = layer.LODBias;
}
if (AnisotropicFilterSupported &&
(!states.IsCached || layer.AnisotropicFilter != states.AnisotropicFilter)) {
GL.TexParameteri(tmpTextureType, GL.TEXTURE_MAX_ANISOTROPY,
layer.AnisotropicFilter > 1 ? core::min_(MaxAnisotropy, layer.AnisotropicFilter) : 1);
states.AnisotropicFilter = layer.AnisotropicFilter;
}
if (!states.IsCached || layer.TextureWrapU != states.WrapU) {
GL.TexParameteri(tmpTextureType, GL_TEXTURE_WRAP_S, getTextureWrapMode(layer.TextureWrapU));
states.WrapU = layer.TextureWrapU;
}
if (!states.IsCached || layer.TextureWrapV != states.WrapV) {
GL.TexParameteri(tmpTextureType, GL_TEXTURE_WRAP_T, getTextureWrapMode(layer.TextureWrapV));
states.WrapV = layer.TextureWrapV;
}
states.IsCached = true;
}
}
// Get OpenGL ES2.0 texture wrap mode from Irrlicht wrap mode.
GLint COpenGL3DriverBase::getTextureWrapMode(u8 clamp) const
{
switch (clamp) {
case ETC_CLAMP:
case ETC_CLAMP_TO_EDGE:
case ETC_CLAMP_TO_BORDER:
return GL_CLAMP_TO_EDGE;
case ETC_MIRROR:
return GL_REPEAT;
default:
return GL_REPEAT;
}
}
//! sets the needed renderstates
void COpenGL3DriverBase::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (LockRenderStateMode)
return;
COpenGL3Renderer2D *nextActiveRenderer = texture ? MaterialRenderer2DTexture : MaterialRenderer2DNoTexture;
if (CurrentRenderMode != ERM_2D) {
// unset last 3d material
if (CurrentRenderMode == ERM_3D) {
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
}
CurrentRenderMode = ERM_2D;
} else if (MaterialRenderer2DActive && MaterialRenderer2DActive != nextActiveRenderer) {
MaterialRenderer2DActive->OnUnsetMaterial();
}
MaterialRenderer2DActive = nextActiveRenderer;
MaterialRenderer2DActive->OnSetMaterial(Material, LastMaterial, true, 0);
LastMaterial = Material;
CacheHandler->correctCacheMaterial(LastMaterial);
// no alphaChannel without texture
alphaChannel &= texture;
if (alphaChannel || alpha) {
CacheHandler->setBlend(true);
CacheHandler->setBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
CacheHandler->setBlendEquation(GL_FUNC_ADD);
} else
CacheHandler->setBlend(false);
Material.setTexture(0, const_cast<COpenGL3Texture *>(CacheHandler->getTextureCache().get(0)));
setTransform(ETS_TEXTURE_0, core::IdentityMatrix);
if (texture) {
if (OverrideMaterial2DEnabled)
setTextureRenderStates(OverrideMaterial2D, false);
else
setTextureRenderStates(InitMaterial2D, false);
}
MaterialRenderer2DActive->OnRender(this, video::EVT_STANDARD);
}
void COpenGL3DriverBase::chooseMaterial2D()
{
if (!OverrideMaterial2DEnabled)
Material = InitMaterial2D;
if (OverrideMaterial2DEnabled) {
OverrideMaterial2D.ZWriteEnable = EZW_OFF;
OverrideMaterial2D.ZBuffer = ECFN_DISABLED; // it will be ECFN_DISABLED after merge
Material = OverrideMaterial2D;
}
}
//! \return Returns the name of the video driver.
const char *COpenGL3DriverBase::getName() const
{
return Name.c_str();
}
void COpenGL3DriverBase::setViewPort(const core::rect<s32> &area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0, 0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight() > 0 && vp.getWidth() > 0)
CacheHandler->setViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
void COpenGL3DriverBase::setViewPortRaw(u32 width, u32 height)
{
CacheHandler->setViewport(0, 0, width, height);
ViewPort = core::recti(0, 0, width, height);
}
//! Draws a 3d line.
void COpenGL3DriverBase::draw3DLine(const core::vector3df &start,
const core::vector3df &end, SColor color)
{
setRenderStates3DMode();
S3DVertex vertices[2];
vertices[0] = S3DVertex(start.X, start.Y, start.Z, 0, 0, 1, color, 0, 0);
vertices[1] = S3DVertex(end.X, end.Y, end.Z, 0, 0, 1, color, 0, 0);
drawArrays(GL_LINES, vtPrimitive, vertices, 2);
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COpenGL3DriverBase::OnResize(const core::dimension2d<u32> &size)
{
CNullDriver::OnResize(size);
CacheHandler->setViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COpenGL3DriverBase::getDriverType() const
{
return EDT_OPENGL3;
}
//! returns color format
ECOLOR_FORMAT COpenGL3DriverBase::getColorFormat() const
{
return ColorFormat;
}
//! Get a vertex shader constant index.
s32 COpenGL3DriverBase::getVertexShaderConstantID(const c8 *name)
{
return getPixelShaderConstantID(name);
}
//! Get a pixel shader constant index.
s32 COpenGL3DriverBase::getPixelShaderConstantID(const c8 *name)
{
os::Printer::log("Error: Please call services->getPixelShaderConstantID(), not VideoDriver->getPixelShaderConstantID().");
return -1;
}
//! Sets a constant for the vertex shader based on an index.
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const f32 *floats, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Int interface for the above.
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const s32 *ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
bool COpenGL3DriverBase::setVertexShaderConstant(s32 index, const u32 *ints, int count)
{
os::Printer::log("Error: Please call services->setVertexShaderConstant(), not VideoDriver->setVertexShaderConstant().");
return false;
}
//! Sets a constant for the pixel shader based on an index.
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const f32 *floats, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Int interface for the above.
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const s32 *ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
bool COpenGL3DriverBase::setPixelShaderConstant(s32 index, const u32 *ints, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COpenGL3DriverBase::addHighLevelShaderMaterial(
const c8 *vertexShaderProgram,
const c8 *pixelShaderProgram,
const c8 *geometryShaderProgram,
const c8 *shaderName,
scene::E_PRIMITIVE_TYPE inType,
scene::E_PRIMITIVE_TYPE outType,
u32 verticesOut,
IShaderConstantSetCallBack *callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
COpenGL3MaterialRenderer *r = new COpenGL3MaterialRenderer(
this, nr, vertexShaderProgram,
pixelShaderProgram, shaderName,
callback, baseMaterial, userData);
r->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver *COpenGL3DriverBase::getVideoDriver()
{
return this;
}
//! Returns pointer to the IGPUProgrammingServices interface.
IGPUProgrammingServices *COpenGL3DriverBase::getGPUProgrammingServices()
{
return this;
}
ITexture *COpenGL3DriverBase::addRenderTargetTexture(const core::dimension2d<u32> &size,
const io::path &name, const ECOLOR_FORMAT format)
{
return addRenderTargetTextureMs(size, 0, name, format);
}
ITexture *COpenGL3DriverBase::addRenderTargetTextureMs(const core::dimension2d<u32> &size, u8 msaa,
const io::path &name, const ECOLOR_FORMAT format)
{
// disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
COpenGL3Texture *renderTargetTexture = new COpenGL3Texture(name, size, msaa > 0 ? ETT_2D_MS : ETT_2D, format, this, msaa);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
// restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
ITexture *COpenGL3DriverBase::addRenderTargetTextureCubemap(const irr::u32 sideLen, const io::path &name, const ECOLOR_FORMAT format)
{
// disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
bool supportForFBO = (Feature.ColorAttachment > 0);
const core::dimension2d<u32> size(sideLen, sideLen);
core::dimension2du destSize(size);
if (!supportForFBO) {
destSize = core::dimension2d<u32>(core::min_(size.Width, ScreenSize.Width), core::min_(size.Height, ScreenSize.Height));
destSize = destSize.getOptimalSize((size == size.getOptimalSize()), false, false);
}
COpenGL3Texture *renderTargetTexture = new COpenGL3Texture(name, destSize, ETT_CUBEMAP, format, this);
addTexture(renderTargetTexture);
renderTargetTexture->drop();
// restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return renderTargetTexture;
}
//! Returns the maximum amount of primitives
u32 COpenGL3DriverBase::getMaximalPrimitiveCount() const
{
return Version.Spec == OpenGLSpec::ES ? 65535 : 0x7fffffff;
}
bool COpenGL3DriverBase::setRenderTargetEx(IRenderTarget *target, u16 clearFlag, SColor clearColor, f32 clearDepth, u8 clearStencil)
{
if (target && target->getDriverType() != getDriverType()) {
os::Printer::log("Fatal Error: Tried to set a render target not owned by OpenGL 3 driver.", ELL_ERROR);
return false;
}
core::dimension2d<u32> destRenderTargetSize(0, 0);
if (target) {
COpenGL3RenderTarget *renderTarget = static_cast<COpenGL3RenderTarget *>(target);
CacheHandler->setFBO(renderTarget->getBufferID());
renderTarget->update();
destRenderTargetSize = renderTarget->getSize();
setViewPortRaw(destRenderTargetSize.Width, destRenderTargetSize.Height);
} else {
CacheHandler->setFBO(0);
destRenderTargetSize = core::dimension2d<u32>(0, 0);
setViewPortRaw(ScreenSize.Width, ScreenSize.Height);
}
if (CurrentRenderTargetSize != destRenderTargetSize) {
CurrentRenderTargetSize = destRenderTargetSize;
Transformation3DChanged = true;
}
CurrentRenderTarget = target;
clearBuffers(clearFlag, clearColor, clearDepth, clearStencil);
return true;
}
void COpenGL3DriverBase::clearBuffers(u16 flag, SColor color, f32 depth, u8 stencil)
{
GLbitfield mask = 0;
u8 colorMask = 0;
bool depthMask = false;
CacheHandler->getColorMask(colorMask);
CacheHandler->getDepthMask(depthMask);
if (flag & ECBF_COLOR) {
CacheHandler->setColorMask(ECP_ALL);
const f32 inv = 1.0f / 255.0f;
GL.ClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (flag & ECBF_DEPTH) {
CacheHandler->setDepthMask(true);
GL.ClearDepthf(depth);
mask |= GL_DEPTH_BUFFER_BIT;
}
if (flag & ECBF_STENCIL) {
GL.ClearStencil(stencil);
mask |= GL_STENCIL_BUFFER_BIT;
}
if (mask)
GL.Clear(mask);
CacheHandler->setColorMask(colorMask);
CacheHandler->setDepthMask(depthMask);
}
//! Returns an image created from the last rendered frame.
// We want to read the front buffer to get the latest render finished.
// This is not possible under ogl-es, though, so one has to call this method
// outside of the render loop only.
IImage *COpenGL3DriverBase::createScreenShot(video::ECOLOR_FORMAT format, video::E_RENDER_TARGET target)
{
if (target == video::ERT_MULTI_RENDER_TEXTURES || target == video::ERT_RENDER_TEXTURE || target == video::ERT_STEREO_BOTH_BUFFERS)
return 0;
GLint internalformat = GL_RGBA;
GLint type = GL_UNSIGNED_BYTE;
{
// GL.GetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT, &internalformat);
// GL.GetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE, &type);
// there's a format we don't support ATM
if (GL_UNSIGNED_SHORT_4_4_4_4 == type) {
internalformat = GL_RGBA;
type = GL_UNSIGNED_BYTE;
}
}
IImage *newImage = 0;
if (GL_RGBA == internalformat) {
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_A8R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_A1R5G5B5, ScreenSize);
} else {
if (GL_UNSIGNED_BYTE == type)
newImage = new CImage(ECF_R8G8B8, ScreenSize);
else
newImage = new CImage(ECF_R5G6B5, ScreenSize);
}
if (!newImage)
return 0;
u8 *pixels = static_cast<u8 *>(newImage->getData());
if (!pixels) {
newImage->drop();
return 0;
}
GL.ReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, internalformat, type, pixels);
TEST_GL_ERROR(this);
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch = newImage->getPitch();
u8 *p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8 *tmpBuffer = new u8[pitch];
for (u32 i = 0; i < ScreenSize.Height; i += 2) {
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete[] tmpBuffer;
// also GL_RGBA doesn't match the internal encoding of the image (which is BGRA)
if (GL_RGBA == internalformat && GL_UNSIGNED_BYTE == type) {
pixels = static_cast<u8 *>(newImage->getData());
for (u32 i = 0; i < ScreenSize.Height; i++) {
for (u32 j = 0; j < ScreenSize.Width; j++) {
u32 c = *(u32 *)(pixels + 4 * j);
*(u32 *)(pixels + 4 * j) = (c & 0xFF00FF00) |
((c & 0x00FF0000) >> 16) | ((c & 0x000000FF) << 16);
}
pixels += pitch;
}
}
if (TEST_GL_ERROR(this)) {
newImage->drop();
return 0;
}
return newImage;
}
void COpenGL3DriverBase::removeTexture(ITexture *texture)
{
CacheHandler->getTextureCache().remove(texture);
CNullDriver::removeTexture(texture);
}
core::dimension2du COpenGL3DriverBase::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
GLenum COpenGL3DriverBase::getGLBlend(E_BLEND_FACTOR factor) const
{
static GLenum const blendTable[] = {
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_SRC_ALPHA_SATURATE,
};
return blendTable[factor];
}
bool COpenGL3DriverBase::getColorFormatParameters(ECOLOR_FORMAT format, GLint &internalFormat, GLenum &pixelFormat,
GLenum &pixelType, void (**converter)(const void *, s32, void *)) const
{
auto &info = TextureFormats[format];
internalFormat = info.InternalFormat;
pixelFormat = info.PixelFormat;
pixelType = info.PixelType;
*converter = info.Converter;
return info.InternalFormat != 0;
}
bool COpenGL3DriverBase::queryTextureFormat(ECOLOR_FORMAT format) const
{
return TextureFormats[format].InternalFormat != 0;
}
bool COpenGL3DriverBase::needsTransparentRenderPass(const irr::video::SMaterial &material) const
{
return CNullDriver::needsTransparentRenderPass(material) || material.isAlphaBlendOperation();
}
const SMaterial &COpenGL3DriverBase::getCurrentMaterial() const
{
return Material;
}
COpenGL3CacheHandler *COpenGL3DriverBase::getCacheHandler() const
{
return CacheHandler;
}
} // end namespace
} // end namespace