minetest/src/mapgen/mg_schematic.cpp

636 lines
15 KiB
C++

/*
Minetest
Copyright (C) 2014-2018 kwolekr, Ryan Kwolek <kwolekr@minetest.net>
Copyright (C) 2015-2018 paramat
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <fstream>
#include <typeinfo>
#include "mg_schematic.h"
#include "server.h"
#include "mapgen.h"
#include "emerge.h"
#include "map.h"
#include "mapblock.h"
#include "log.h"
#include "util/numeric.h"
#include "util/serialize.h"
#include "serialization.h"
#include "filesys.h"
#include "voxelalgorithms.h"
///////////////////////////////////////////////////////////////////////////////
SchematicManager::SchematicManager(Server *server) :
ObjDefManager(server, OBJDEF_SCHEMATIC),
m_server(server)
{
}
SchematicManager *SchematicManager::clone() const
{
auto mgr = new SchematicManager();
assert(mgr);
ObjDefManager::cloneTo(mgr);
return mgr;
}
void SchematicManager::clear()
{
EmergeManager *emerge = m_server->getEmergeManager();
// Remove all dangling references in Decorations
DecorationManager *decomgr = emerge->getWritableDecorationManager();
for (size_t i = 0; i != decomgr->getNumObjects(); i++) {
Decoration *deco = (Decoration *)decomgr->getRaw(i);
try {
DecoSchematic *dschem = dynamic_cast<DecoSchematic *>(deco);
if (dschem)
dschem->schematic = NULL;
} catch (const std::bad_cast &) {
}
}
ObjDefManager::clear();
}
///////////////////////////////////////////////////////////////////////////////
Schematic::~Schematic()
{
delete []schemdata;
delete []slice_probs;
}
ObjDef *Schematic::clone() const
{
auto def = new Schematic();
ObjDef::cloneTo(def);
NodeResolver::cloneTo(def);
def->c_nodes = c_nodes;
def->flags = flags;
def->size = size;
FATAL_ERROR_IF(!schemdata, "Schematic can only be cloned after loading");
u32 nodecount = size.X * size.Y * size.Z;
def->schemdata = new MapNode[nodecount];
memcpy(def->schemdata, schemdata, sizeof(MapNode) * nodecount);
def->slice_probs = new u8[size.Y];
memcpy(def->slice_probs, slice_probs, sizeof(u8) * size.Y);
return def;
}
void Schematic::resolveNodeNames()
{
c_nodes.clear();
getIdsFromNrBacklog(&c_nodes, true, CONTENT_AIR);
size_t bufsize = size.X * size.Y * size.Z;
for (size_t i = 0; i != bufsize; i++) {
content_t c_original = schemdata[i].getContent();
if (c_original >= c_nodes.size()) {
errorstream << "Corrupt schematic. name=\"" << name
<< "\" at index " << i << std::endl;
c_original = 0;
}
// Unfold condensed ID layout to content_t
schemdata[i].setContent(c_nodes[c_original]);
}
}
void Schematic::blitToVManip(MMVManip *vm, v3s16 p, Rotation rot, bool force_place)
{
assert(schemdata && slice_probs);
sanity_check(m_ndef != NULL);
int xstride = 1;
int ystride = size.X;
int zstride = size.X * size.Y;
s16 sx = size.X;
s16 sy = size.Y;
s16 sz = size.Z;
int i_start, i_step_x, i_step_z;
switch (rot) {
case ROTATE_90:
i_start = sx - 1;
i_step_x = zstride;
i_step_z = -xstride;
SWAP(s16, sx, sz);
break;
case ROTATE_180:
i_start = zstride * (sz - 1) + sx - 1;
i_step_x = -xstride;
i_step_z = -zstride;
break;
case ROTATE_270:
i_start = zstride * (sz - 1);
i_step_x = -zstride;
i_step_z = xstride;
SWAP(s16, sx, sz);
break;
default:
i_start = 0;
i_step_x = xstride;
i_step_z = zstride;
}
s16 y_map = p.Y;
for (s16 y = 0; y != sy; y++) {
if ((slice_probs[y] != MTSCHEM_PROB_ALWAYS) &&
(slice_probs[y] <= myrand_range(1, MTSCHEM_PROB_ALWAYS)))
continue;
for (s16 z = 0; z != sz; z++) {
u32 i = z * i_step_z + y * ystride + i_start;
for (s16 x = 0; x != sx; x++, i += i_step_x) {
v3s16 pos(p.X + x, y_map, p.Z + z);
if (!vm->m_area.contains(pos))
continue;
if (schemdata[i].getContent() == CONTENT_IGNORE)
continue;
u8 placement_prob = schemdata[i].param1 & MTSCHEM_PROB_MASK;
bool force_place_node = schemdata[i].param1 & MTSCHEM_FORCE_PLACE;
if (placement_prob == MTSCHEM_PROB_NEVER)
continue;
u32 vi = vm->m_area.index(pos);
if (!force_place && !force_place_node) {
content_t c = vm->m_data[vi].getContent();
if (c != CONTENT_AIR && c != CONTENT_IGNORE)
continue;
}
if ((placement_prob != MTSCHEM_PROB_ALWAYS) &&
(placement_prob <= myrand_range(1, MTSCHEM_PROB_ALWAYS)))
continue;
vm->m_data[vi] = schemdata[i];
vm->m_data[vi].param1 = 0;
if (rot)
vm->m_data[vi].rotateAlongYAxis(m_ndef, rot);
}
}
y_map++;
}
}
bool Schematic::placeOnVManip(MMVManip *vm, v3s16 p, u32 flags,
Rotation rot, bool force_place)
{
assert(vm != NULL);
assert(schemdata && slice_probs);
sanity_check(m_ndef != NULL);
//// Determine effective rotation and effective schematic dimensions
if (rot == ROTATE_RAND)
rot = (Rotation)myrand_range(ROTATE_0, ROTATE_270);
v3s16 s = (rot == ROTATE_90 || rot == ROTATE_270) ?
v3s16(size.Z, size.Y, size.X) : size;
//// Adjust placement position if necessary
if (flags & DECO_PLACE_CENTER_X)
p.X -= (s.X - 1) / 2;
if (flags & DECO_PLACE_CENTER_Y)
p.Y -= (s.Y - 1) / 2;
if (flags & DECO_PLACE_CENTER_Z)
p.Z -= (s.Z - 1) / 2;
blitToVManip(vm, p, rot, force_place);
return vm->m_area.contains(VoxelArea(p, p + s - v3s16(1, 1, 1)));
}
void Schematic::placeOnMap(ServerMap *map, v3s16 p, u32 flags,
Rotation rot, bool force_place)
{
std::map<v3s16, MapBlock *> modified_blocks;
std::map<v3s16, MapBlock *>::iterator it;
assert(map != NULL);
assert(schemdata != NULL);
sanity_check(m_ndef != NULL);
//// Determine effective rotation and effective schematic dimensions
if (rot == ROTATE_RAND)
rot = (Rotation)myrand_range(ROTATE_0, ROTATE_270);
v3s16 s = (rot == ROTATE_90 || rot == ROTATE_270) ?
v3s16(size.Z, size.Y, size.X) : size;
//// Adjust placement position if necessary
if (flags & DECO_PLACE_CENTER_X)
p.X -= (s.X - 1) / 2;
if (flags & DECO_PLACE_CENTER_Y)
p.Y -= (s.Y - 1) / 2;
if (flags & DECO_PLACE_CENTER_Z)
p.Z -= (s.Z - 1) / 2;
//// Create VManip for affected area, emerge our area, modify area
//// inside VManip, then blit back.
v3s16 bp1 = getNodeBlockPos(p);
v3s16 bp2 = getNodeBlockPos(p + s - v3s16(1, 1, 1));
MMVManip vm(map);
vm.initialEmerge(bp1, bp2);
blitToVManip(&vm, p, rot, force_place);
voxalgo::blit_back_with_light(map, &vm, &modified_blocks);
//// Carry out post-map-modification actions
//// Create & dispatch map modification events to observers
MapEditEvent event;
event.type = MEET_OTHER;
for (it = modified_blocks.begin(); it != modified_blocks.end(); ++it)
event.modified_blocks.insert(it->first);
map->dispatchEvent(event);
}
bool Schematic::deserializeFromMts(std::istream *is)
{
std::istream &ss = *is;
content_t cignore = CONTENT_IGNORE;
bool have_cignore = false;
//// Read signature
u32 signature = readU32(ss);
if (signature != MTSCHEM_FILE_SIGNATURE) {
errorstream << __FUNCTION__ << ": invalid schematic "
"file" << std::endl;
return false;
}
//// Read version
u16 version = readU16(ss);
if (version > MTSCHEM_FILE_VER_HIGHEST_READ) {
errorstream << __FUNCTION__ << ": unsupported schematic "
"file version" << std::endl;
return false;
}
//// Read size
size = readV3S16(ss);
//// Read Y-slice probability values
delete []slice_probs;
slice_probs = new u8[size.Y];
for (int y = 0; y != size.Y; y++)
slice_probs[y] = (version >= 3) ? readU8(ss) : MTSCHEM_PROB_ALWAYS_OLD;
//// Read node names
NodeResolver::reset();
u16 nidmapcount = readU16(ss);
for (int i = 0; i != nidmapcount; i++) {
std::string name = deSerializeString16(ss);
// Instances of "ignore" from v1 are converted to air (and instances
// are fixed to have MTSCHEM_PROB_NEVER later on).
if (name == "ignore") {
name = "air";
cignore = i;
have_cignore = true;
}
m_nodenames.push_back(name);
}
// Prepare for node resolver
m_nnlistsizes.push_back(m_nodenames.size());
//// Read node data
size_t nodecount = size.X * size.Y * size.Z;
delete []schemdata;
schemdata = new MapNode[nodecount];
std::stringstream d_ss(std::ios_base::binary | std::ios_base::in | std::ios_base::out);
decompress(ss, d_ss, MTSCHEM_MAPNODE_SER_FMT_VER);
MapNode::deSerializeBulk(d_ss, MTSCHEM_MAPNODE_SER_FMT_VER, schemdata,
nodecount, 2, 2);
// Fix probability values for nodes that were ignore; removed in v2
if (version < 2) {
for (size_t i = 0; i != nodecount; i++) {
if (schemdata[i].param1 == 0)
schemdata[i].param1 = MTSCHEM_PROB_ALWAYS_OLD;
if (have_cignore && schemdata[i].getContent() == cignore)
schemdata[i].param1 = MTSCHEM_PROB_NEVER;
}
}
// Fix probability values for probability range truncation introduced in v4
if (version < 4) {
for (s16 y = 0; y != size.Y; y++)
slice_probs[y] >>= 1;
for (size_t i = 0; i != nodecount; i++)
schemdata[i].param1 >>= 1;
}
return true;
}
bool Schematic::serializeToMts(std::ostream *os) const
{
// Nodes must not be resolved (-> condensed)
// checking here is not possible because "schemdata" might be temporary.
std::ostream &ss = *os;
writeU32(ss, MTSCHEM_FILE_SIGNATURE); // signature
writeU16(ss, MTSCHEM_FILE_VER_HIGHEST_WRITE); // version
writeV3S16(ss, size); // schematic size
for (int y = 0; y != size.Y; y++) // Y slice probabilities
writeU8(ss, slice_probs[y]);
writeU16(ss, m_nodenames.size()); // name count
for (size_t i = 0; i != m_nodenames.size(); i++) {
ss << serializeString16(m_nodenames[i]); // node names
}
// compressed bulk node data
SharedBuffer<u8> buf = MapNode::serializeBulk(MTSCHEM_MAPNODE_SER_FMT_VER,
schemdata, size.X * size.Y * size.Z, 2, 2);
compress(buf, ss, MTSCHEM_MAPNODE_SER_FMT_VER);
return true;
}
bool Schematic::serializeToLua(std::ostream *os, bool use_comments,
u32 indent_spaces) const
{
std::ostream &ss = *os;
std::string indent("\t");
if (indent_spaces > 0)
indent.assign(indent_spaces, ' ');
bool resolve_done = isResolveDone();
FATAL_ERROR_IF(resolve_done && !m_ndef, "serializeToLua: NodeDefManager is required");
//// Write header
{
ss << "schematic = {" << std::endl;
ss << indent << "size = "
<< "{x=" << size.X
<< ", y=" << size.Y
<< ", z=" << size.Z
<< "}," << std::endl;
}
//// Write y-slice probabilities
{
ss << indent << "yslice_prob = {" << std::endl;
for (u16 y = 0; y != size.Y; y++) {
u8 probability = slice_probs[y] & MTSCHEM_PROB_MASK;
ss << indent << indent << "{"
<< "ypos=" << y
<< ", prob=" << (u16)probability * 2
<< "}," << std::endl;
}
ss << indent << "}," << std::endl;
}
//// Write node data
{
ss << indent << "data = {" << std::endl;
u32 i = 0;
for (u16 z = 0; z != size.Z; z++)
for (u16 y = 0; y != size.Y; y++) {
if (use_comments) {
ss << std::endl
<< indent << indent
<< "-- z=" << z
<< ", y=" << y << std::endl;
}
for (u16 x = 0; x != size.X; x++, i++) {
u8 probability = schemdata[i].param1 & MTSCHEM_PROB_MASK;
bool force_place = schemdata[i].param1 & MTSCHEM_FORCE_PLACE;
// After node resolving: real content_t, lookup using NodeDefManager
// Prior node resolving: condensed ID, lookup using m_nodenames
content_t c = schemdata[i].getContent();
ss << indent << indent << "{" << "name=\"";
if (!resolve_done) {
// Prior node resolving (eg. direct schematic load)
FATAL_ERROR_IF(c >= m_nodenames.size(), "Invalid node list");
ss << m_nodenames[c];
} else {
// After node resolving (eg. biome decoration)
ss << m_ndef->get(c).name;
}
ss << "\", prob=" << (u16)probability * 2
<< ", param2=" << (u16)schemdata[i].param2;
if (force_place)
ss << ", force_place=true";
ss << "}," << std::endl;
}
}
ss << indent << "}," << std::endl;
}
ss << "}" << std::endl;
return true;
}
bool Schematic::loadSchematicFromFile(const std::string &filename,
const NodeDefManager *ndef, StringMap *replace_names)
{
std::ifstream is(filename.c_str(), std::ios_base::binary);
if (!is.good()) {
errorstream << __FUNCTION__ << ": unable to open file '"
<< filename << "'" << std::endl;
return false;
}
if (!m_ndef)
m_ndef = ndef;
if (!deserializeFromMts(&is))
return false;
name = filename;
if (replace_names) {
for (std::string &node_name : m_nodenames) {
StringMap::iterator it = replace_names->find(node_name);
if (it != replace_names->end())
node_name = it->second;
}
}
if (m_ndef)
m_ndef->pendNodeResolve(this);
return true;
}
bool Schematic::saveSchematicToFile(const std::string &filename,
const NodeDefManager *ndef)
{
Schematic *schem = this;
bool needs_condense = isResolveDone();
if (!m_ndef)
m_ndef = ndef;
if (needs_condense) {
if (!m_ndef)
return false;
schem = (Schematic *)this->clone();
schem->condenseContentIds();
}
std::ostringstream os(std::ios_base::binary);
bool status = schem->serializeToMts(&os);
if (needs_condense)
delete schem;
if (!status)
return false;
return fs::safeWriteToFile(filename, os.str());
}
bool Schematic::getSchematicFromMap(Map *map, v3s16 p1, v3s16 p2)
{
MMVManip *vm = new MMVManip(map);
v3s16 bp1 = getNodeBlockPos(p1);
v3s16 bp2 = getNodeBlockPos(p2);
vm->initialEmerge(bp1, bp2);
size = p2 - p1 + 1;
slice_probs = new u8[size.Y];
for (s16 y = 0; y != size.Y; y++)
slice_probs[y] = MTSCHEM_PROB_ALWAYS;
schemdata = new MapNode[size.X * size.Y * size.Z];
u32 i = 0;
for (s16 z = p1.Z; z <= p2.Z; z++)
for (s16 y = p1.Y; y <= p2.Y; y++) {
u32 vi = vm->m_area.index(p1.X, y, z);
for (s16 x = p1.X; x <= p2.X; x++, i++, vi++) {
schemdata[i] = vm->m_data[vi];
schemdata[i].param1 = MTSCHEM_PROB_ALWAYS;
}
}
delete vm;
// Reset and mark as complete
NodeResolver::reset(true);
return true;
}
void Schematic::applyProbabilities(v3s16 p0,
std::vector<std::pair<v3s16, u8> > *plist,
std::vector<std::pair<s16, u8> > *splist)
{
for (size_t i = 0; i != plist->size(); i++) {
v3s16 p = (*plist)[i].first - p0;
int index = p.Z * (size.Y * size.X) + p.Y * size.X + p.X;
if (index < size.Z * size.Y * size.X) {
u8 prob = (*plist)[i].second;
schemdata[index].param1 = prob;
// trim unnecessary node names from schematic
if (prob == MTSCHEM_PROB_NEVER)
schemdata[index].setContent(CONTENT_AIR);
}
}
for (size_t i = 0; i != splist->size(); i++) {
s16 slice = (*splist)[i].first;
if (slice < size.Y)
slice_probs[slice] = (*splist)[i].second;
}
}
void Schematic::condenseContentIds()
{
std::unordered_map<content_t, content_t> nodeidmap;
content_t numids = 0;
// Reset node resolve fields
NodeResolver::reset();
size_t nodecount = size.X * size.Y * size.Z;
for (size_t i = 0; i != nodecount; i++) {
content_t id;
content_t c = schemdata[i].getContent();
auto it = nodeidmap.find(c);
if (it == nodeidmap.end()) {
id = numids;
numids++;
m_nodenames.push_back(m_ndef->get(c).name);
nodeidmap.emplace(std::make_pair(c, id));
} else {
id = it->second;
}
schemdata[i].setContent(id);
}
}