minetest/src/environment.cpp
Lars Müller f99a1a7c7c Revert "Optimize raycast performance (#15233)"
This reverts commit f7a695c212bea96887b32b859645f621fd8f1b48.
2024-12-14 19:29:00 +01:00

327 lines
9.4 KiB
C++

// Luanti
// SPDX-License-Identifier: LGPL-2.1-or-later
// Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
#include <fstream>
#include "environment.h"
#include "collision.h"
#include "raycast.h"
#include "scripting_server.h"
#include "server.h"
#include "daynightratio.h"
#include "emerge.h"
Environment::Environment(IGameDef *gamedef):
m_time_of_day_speed(0.0f),
m_day_count(0),
m_gamedef(gamedef)
{
m_cache_active_block_mgmt_interval = g_settings->getFloat("active_block_mgmt_interval");
m_cache_abm_interval = g_settings->getFloat("abm_interval");
m_cache_nodetimer_interval = g_settings->getFloat("nodetimer_interval");
m_cache_abm_time_budget = g_settings->getFloat("abm_time_budget");
m_time_of_day = g_settings->getU32("world_start_time");
m_time_of_day_f = (float)m_time_of_day / 24000.0f;
}
u32 Environment::getDayNightRatio()
{
MutexAutoLock lock(m_time_lock);
if (m_enable_day_night_ratio_override)
return m_day_night_ratio_override;
return time_to_daynight_ratio(m_time_of_day_f * 24000, true);
}
void Environment::setTimeOfDaySpeed(float speed)
{
m_time_of_day_speed = speed;
}
void Environment::setDayNightRatioOverride(bool enable, u32 value)
{
MutexAutoLock lock(m_time_lock);
m_enable_day_night_ratio_override = enable;
m_day_night_ratio_override = value;
}
void Environment::setTimeOfDay(u32 time)
{
MutexAutoLock lock(m_time_lock);
if (m_time_of_day > time)
++m_day_count;
m_time_of_day = time;
m_time_of_day_f = (float)time / 24000.0;
}
u32 Environment::getTimeOfDay()
{
MutexAutoLock lock(m_time_lock);
return m_time_of_day;
}
float Environment::getTimeOfDayF()
{
MutexAutoLock lock(m_time_lock);
return m_time_of_day_f;
}
bool Environment::line_of_sight(v3f pos1, v3f pos2, v3s16 *p)
{
// Iterate trough nodes on the line
voxalgo::VoxelLineIterator iterator(pos1 / BS, (pos2 - pos1) / BS);
do {
MapNode n = getMap().getNode(iterator.m_current_node_pos);
// Return non-air
if (n.param0 != CONTENT_AIR) {
if (p)
*p = iterator.m_current_node_pos;
return false;
}
iterator.next();
} while (iterator.m_current_index <= iterator.m_last_index);
return true;
}
/*
Check how a node can be pointed at
*/
inline static PointabilityType isPointableNode(const MapNode &n,
const NodeDefManager *nodedef, bool liquids_pointable,
const std::optional<Pointabilities> &pointabilities)
{
const ContentFeatures &features = nodedef->get(n);
if (pointabilities) {
std::optional<PointabilityType> match =
pointabilities->matchNode(features.name, features.groups);
if (match)
return match.value();
}
if (features.isLiquid() && liquids_pointable)
return PointabilityType::POINTABLE;
return features.pointable;
}
void Environment::continueRaycast(RaycastState *state, PointedThing *result_p)
{
const NodeDefManager *nodedef = getMap().getNodeDefManager();
if (state->m_initialization_needed) {
// Add objects
if (state->m_objects_pointable) {
std::vector<PointedThing> found;
getSelectedActiveObjects(state->m_shootline, found, state->m_pointabilities);
for (auto &pointed : found)
state->m_found.push(std::move(pointed));
}
// Set search range
core::aabbox3d<s16> maximal_exceed = nodedef->getSelectionBoxIntUnion();
state->m_search_range.MinEdge = -maximal_exceed.MaxEdge;
state->m_search_range.MaxEdge = -maximal_exceed.MinEdge;
// Setting is done
state->m_initialization_needed = false;
}
// The index of the first pointed thing that was not returned
// before. The last index which needs to be tested.
s16 lastIndex = state->m_iterator.m_last_index;
if (!state->m_found.empty()) {
lastIndex = state->m_iterator.getIndex(
floatToInt(state->m_found.top().intersection_point, BS));
}
Map &map = getMap();
std::vector<aabb3f> boxes;
while (state->m_iterator.m_current_index <= lastIndex) {
// Test the nodes around the current node in search_range.
core::aabbox3d<s16> new_nodes = state->m_search_range;
new_nodes.MinEdge += state->m_iterator.m_current_node_pos;
new_nodes.MaxEdge += state->m_iterator.m_current_node_pos;
// Only check new nodes
v3s16 delta = state->m_iterator.m_current_node_pos
- state->m_previous_node;
if (delta.X > 0) {
new_nodes.MinEdge.X = new_nodes.MaxEdge.X;
} else if (delta.X < 0) {
new_nodes.MaxEdge.X = new_nodes.MinEdge.X;
} else if (delta.Y > 0) {
new_nodes.MinEdge.Y = new_nodes.MaxEdge.Y;
} else if (delta.Y < 0) {
new_nodes.MaxEdge.Y = new_nodes.MinEdge.Y;
} else if (delta.Z > 0) {
new_nodes.MinEdge.Z = new_nodes.MaxEdge.Z;
} else if (delta.Z < 0) {
new_nodes.MaxEdge.Z = new_nodes.MinEdge.Z;
}
if (new_nodes.MaxEdge.X == S16_MAX ||
new_nodes.MaxEdge.Y == S16_MAX ||
new_nodes.MaxEdge.Z == S16_MAX) {
break; // About to go out of bounds
}
// For each untested node
for (s16 z = new_nodes.MinEdge.Z; z <= new_nodes.MaxEdge.Z; z++)
for (s16 y = new_nodes.MinEdge.Y; y <= new_nodes.MaxEdge.Y; y++)
for (s16 x = new_nodes.MinEdge.X; x <= new_nodes.MaxEdge.X; x++) {
MapNode n;
v3s16 np(x, y, z);
bool is_valid_position;
n = map.getNode(np, &is_valid_position);
if (!is_valid_position)
continue;
PointabilityType pointable = isPointableNode(n, nodedef,
state->m_liquids_pointable,
state->m_pointabilities);
// If it can be pointed through skip
if (pointable == PointabilityType::POINTABLE_NOT)
continue;
PointedThing result;
boxes.clear();
n.getSelectionBoxes(nodedef, &boxes,
n.getNeighbors(np, &map));
// Is there a collision with a selection box?
bool is_colliding = false;
// Minimal distance of all collisions
float min_distance_sq = 10000000;
// ID of the current box (loop counter)
u16 id = 0;
// If a node is found, this is the center of the
// first nodebox the shootline meets.
v3f found_boxcenter(0, 0, 0);
// Do calculations relative to the node center
// to translate the ray rather than the boxes
v3f npf = intToFloat(np, BS);
v3f rel_start = state->m_shootline.start - npf;
for (aabb3f &box : boxes) {
v3f intersection_point;
v3f intersection_normal;
if (!boxLineCollision(box, rel_start,
state->m_shootline.getVector(), &intersection_point,
&intersection_normal)) {
++id;
continue;
}
intersection_point += npf; // translate back to world coords
f32 distanceSq = (intersection_point
- state->m_shootline.start).getLengthSQ();
// If this is the nearest collision, save it
if (min_distance_sq > distanceSq) {
min_distance_sq = distanceSq;
result.intersection_point = intersection_point;
result.intersection_normal = intersection_normal;
result.box_id = id;
found_boxcenter = box.getCenter();
is_colliding = true;
}
++id;
}
// If there wasn't a collision, stop
if (!is_colliding) {
continue;
}
result.pointability = pointable;
result.type = POINTEDTHING_NODE;
result.node_undersurface = np;
result.distanceSq = min_distance_sq;
// Set undersurface and abovesurface nodes
const f32 d = 0.002 * BS;
v3f fake_intersection = result.intersection_point;
found_boxcenter += npf; // translate back to world coords
// Move intersection towards its source block.
if (fake_intersection.X < found_boxcenter.X) {
fake_intersection.X += d;
} else {
fake_intersection.X -= d;
}
if (fake_intersection.Y < found_boxcenter.Y) {
fake_intersection.Y += d;
} else {
fake_intersection.Y -= d;
}
if (fake_intersection.Z < found_boxcenter.Z) {
fake_intersection.Z += d;
} else {
fake_intersection.Z -= d;
}
result.node_real_undersurface = floatToInt(
fake_intersection, BS);
result.node_abovesurface = result.node_real_undersurface
+ floatToInt(result.intersection_normal, 1.0f);
// Push found PointedThing
state->m_found.push(std::move(result));
// If this is nearer than the old nearest object,
// the search can be shorter
s16 newIndex = state->m_iterator.getIndex(
result.node_real_undersurface);
if (newIndex < lastIndex) {
lastIndex = newIndex;
}
}
// Next node
state->m_previous_node = state->m_iterator.m_current_node_pos;
state->m_iterator.next();
}
// Return empty PointedThing if nothing left on the ray or it is blocking pointable
if (state->m_found.empty()) {
result_p->type = POINTEDTHING_NOTHING;
} else {
*result_p = state->m_found.top();
state->m_found.pop();
if (result_p->pointability == PointabilityType::POINTABLE_BLOCKING)
result_p->type = POINTEDTHING_NOTHING;
}
}
void Environment::stepTimeOfDay(float dtime)
{
MutexAutoLock lock(this->m_time_lock);
// Cached in order to prevent the two reads we do to give
// different results (can be written by code not under the lock)
f32 cached_time_of_day_speed = m_time_of_day_speed;
f32 speed = cached_time_of_day_speed * 24000. / (24. * 3600);
m_time_conversion_skew += dtime;
u32 units = (u32)(m_time_conversion_skew * speed);
bool sync_f = false;
if (units > 0) {
// Sync at overflow
if (m_time_of_day + units >= 24000) {
sync_f = true;
++m_day_count;
}
m_time_of_day = (m_time_of_day + units) % 24000;
if (sync_f)
m_time_of_day_f = (float)m_time_of_day / 24000.0;
}
if (speed > 0) {
m_time_conversion_skew -= (f32)units / speed;
}
if (!sync_f) {
m_time_of_day_f += cached_time_of_day_speed / 24 / 3600 * dtime;
if (m_time_of_day_f > 1.0)
m_time_of_day_f -= 1.0;
if (m_time_of_day_f < 0.0)
m_time_of_day_f += 1.0;
}
}
u32 Environment::getDayCount()
{
// Atomic<u32> counter
return m_day_count;
}