minetestmapper/TileGenerator.cpp
2020-03-28 14:02:27 +01:00

815 lines
20 KiB
C++

#include <cstdio>
#include <cstdlib>
#include <climits>
#include <cassert>
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <cstring>
#include <vector>
#include "TileGenerator.h"
#include "config.h"
#include "PlayerAttributes.h"
#include "BlockDecoder.h"
#include "util.h"
#include "db-sqlite3.h"
#if USE_POSTGRESQL
#include "db-postgresql.h"
#endif
#if USE_LEVELDB
#include "db-leveldb.h"
#endif
#if USE_REDIS
#include "db-redis.h"
#endif
using namespace std;
template<typename T>
static inline T mymax(T a, T b)
{
return (a > b) ? a : b;
}
template<typename T>
static inline T mymin(T a, T b)
{
return (a > b) ? b : a;
}
// rounds n (away from 0) to a multiple of f while preserving the sign of n
static int round_multiple_nosign(int n, int f)
{
int abs_n, sign;
abs_n = (n >= 0) ? n : -n;
sign = (n >= 0) ? 1 : -1;
if (abs_n % f == 0)
return n; // n == abs_n * sign
else
return sign * (abs_n + f - (abs_n % f));
}
static inline unsigned int colorSafeBounds (int channel)
{
return mymin(mymax(channel, 0), 255);
}
static Color mixColors(Color a, Color b)
{
Color result;
double a1 = a.a / 255.0;
double a2 = b.a / 255.0;
result.r = (int) (a1 * a.r + a2 * (1 - a1) * b.r);
result.g = (int) (a1 * a.g + a2 * (1 - a1) * b.g);
result.b = (int) (a1 * a.b + a2 * (1 - a1) * b.b);
result.a = (int) (255 * (a1 + a2 * (1 - a1)));
return result;
}
TileGenerator::TileGenerator():
m_bgColor(255, 255, 255),
m_scaleColor(0, 0, 0),
m_originColor(255, 0, 0),
m_playerColor(255, 0, 0),
m_drawOrigin(false),
m_drawPlayers(false),
m_drawScale(false),
m_drawAlpha(false),
m_shading(true),
m_dontWriteEmpty(false),
m_backend(""),
m_xBorder(0),
m_yBorder(0),
m_db(NULL),
m_image(NULL),
m_xMin(INT_MAX),
m_xMax(INT_MIN),
m_zMin(INT_MAX),
m_zMax(INT_MIN),
m_yMin(INT16_MIN),
m_yMax(INT16_MAX),
m_geomX(-2048),
m_geomY(-2048),
m_geomX2(2048),
m_geomY2(2048),
m_exhaustiveSearch(EXH_AUTO),
m_zoom(1),
m_scales(SCALE_LEFT | SCALE_TOP)
{
}
TileGenerator::~TileGenerator()
{
closeDatabase();
}
void TileGenerator::setBgColor(const std::string &bgColor)
{
m_bgColor = parseColor(bgColor);
}
void TileGenerator::setScaleColor(const std::string &scaleColor)
{
m_scaleColor = parseColor(scaleColor);
}
void TileGenerator::setOriginColor(const std::string &originColor)
{
m_originColor = parseColor(originColor);
}
void TileGenerator::setPlayerColor(const std::string &playerColor)
{
m_playerColor = parseColor(playerColor);
}
void TileGenerator::setZoom(int zoom)
{
if (zoom < 1)
throw std::runtime_error("Zoom level needs to be a number: 1 or higher");
m_zoom = zoom;
}
void TileGenerator::setScales(uint flags)
{
m_scales = flags;
}
Color TileGenerator::parseColor(const std::string &color)
{
Color parsed;
if (color.length() != 7)
throw std::runtime_error("Color needs to be 7 characters long");
if (color[0] != '#')
throw std::runtime_error("Color needs to begin with #");
unsigned long col = strtoul(color.c_str() + 1, NULL, 16);
parsed.b = col & 0xff;
parsed.g = (col >> 8) & 0xff;
parsed.r = (col >> 16) & 0xff;
parsed.a = 255;
return parsed;
}
void TileGenerator::setDrawOrigin(bool drawOrigin)
{
m_drawOrigin = drawOrigin;
}
void TileGenerator::setDrawPlayers(bool drawPlayers)
{
m_drawPlayers = drawPlayers;
}
void TileGenerator::setDrawScale(bool drawScale)
{
m_drawScale = drawScale;
}
void TileGenerator::setDrawAlpha(bool drawAlpha)
{
m_drawAlpha = drawAlpha;
}
void TileGenerator::setShading(bool shading)
{
m_shading = shading;
}
void TileGenerator::setBackend(std::string backend)
{
m_backend = backend;
}
void TileGenerator::setGeometry(int x, int y, int w, int h)
{
assert(w > 0 && h > 0);
m_geomX = round_multiple_nosign(x, 16) / 16;
m_geomY = round_multiple_nosign(y, 16) / 16;
m_geomX2 = round_multiple_nosign(x + w, 16) / 16;
m_geomY2 = round_multiple_nosign(y + h, 16) / 16;
}
void TileGenerator::setMinY(int y)
{
m_yMin = y;
if (m_yMin > m_yMax)
std::swap(m_yMin, m_yMax);
}
void TileGenerator::setMaxY(int y)
{
m_yMax = y;
if (m_yMin > m_yMax)
std::swap(m_yMin, m_yMax);
}
void TileGenerator::setExhaustiveSearch(int mode)
{
m_exhaustiveSearch = mode;
}
void TileGenerator::parseColorsFile(const std::string &fileName)
{
ifstream in;
in.open(fileName.c_str(), ifstream::in);
if (!in.is_open())
throw std::runtime_error("Specified colors file could not be found");
parseColorsStream(in);
}
void TileGenerator::printGeometry(const std::string &input)
{
string input_path = input;
if (input_path[input.length() - 1] != PATH_SEPARATOR) {
input_path += PATH_SEPARATOR;
}
setExhaustiveSearch(EXH_NEVER);
openDb(input_path);
loadBlocks();
std::cout << "Map extent: "
<< m_xMin*16 << ":" << m_zMin*16
<< "+" << (m_xMax - m_xMin+1)*16
<< "+" << (m_zMax - m_zMin+1)*16
<< std::endl;
closeDatabase();
}
void TileGenerator::setDontWriteEmpty(bool f)
{
m_dontWriteEmpty = f;
}
void TileGenerator::generate(const std::string &input, const std::string &output)
{
string input_path = input;
if (input_path[input.length() - 1] != PATH_SEPARATOR) {
input_path += PATH_SEPARATOR;
}
if (m_dontWriteEmpty) // FIXME: possible too, just needs to be done differently
setExhaustiveSearch(EXH_NEVER);
openDb(input_path);
loadBlocks();
if (m_dontWriteEmpty && m_positions.empty())
{
closeDatabase();
return;
}
createImage();
renderMap();
closeDatabase();
if (m_drawScale) {
renderScale();
}
if (m_drawOrigin) {
renderOrigin();
}
if (m_drawPlayers) {
renderPlayers(input_path);
}
writeImage(output);
printUnknown();
}
void TileGenerator::parseColorsStream(std::istream &in)
{
char line[512];
while (in.good()) {
in.getline(line, sizeof(line));
for(char *p = line; *p; p++) {
if(*p != '#')
continue;
*p = '\0'; // Cut off at the first #
break;
}
if(strlen(line) == 0)
continue;
char name[128 + 1] = {0};
unsigned int r, g, b, a, t;
a = 255;
t = 0;
int items = sscanf(line, "%128s %u %u %u %u %u", name, &r, &g, &b, &a, &t);
if(items < 4) {
std::cerr << "Failed to parse color entry '" << line << "'" << std::endl;
continue;
}
ColorEntry color(r, g, b, a, t);
m_colorMap[name] = color;
}
}
std::set<std::string> TileGenerator::getSupportedBackends()
{
std::set<std::string> r;
r.insert("sqlite3");
#if USE_POSTGRESQL
r.insert("postgresql");
#endif
#if USE_LEVELDB
r.insert("leveldb");
#endif
#if USE_REDIS
r.insert("redis");
#endif
return r;
}
void TileGenerator::openDb(const std::string &input)
{
std::string backend = m_backend;
if(backend == "") {
std::ifstream ifs((input + "/world.mt").c_str());
if(!ifs.good())
throw std::runtime_error("Failed to read world.mt");
backend = read_setting("backend", ifs);
ifs.close();
}
if(backend == "sqlite3")
m_db = new DBSQLite3(input);
#if USE_POSTGRESQL
else if(backend == "postgresql")
m_db = new DBPostgreSQL(input);
#endif
#if USE_LEVELDB
else if(backend == "leveldb")
m_db = new DBLevelDB(input);
#endif
#if USE_REDIS
else if(backend == "redis")
m_db = new DBRedis(input);
#endif
else
throw std::runtime_error(((std::string) "Unknown map backend: ") + backend);
// Determine how we're going to traverse the database (heuristic)
if (m_exhaustiveSearch == EXH_AUTO) {
using u64 = uint64_t;
u64 y_range = (m_yMax / 16 + 1) - (m_yMin / 16);
u64 blocks = (u64)(m_geomX2 - m_geomX) * y_range * (u64)(m_geomY2 - m_geomY);
#ifndef NDEBUG
std::cout << "Heuristic parameters:"
<< " preferRangeQueries()=" << m_db->preferRangeQueries()
<< " y_range=" << y_range << " blocks=" << blocks << std::endl;
#endif
if (m_db->preferRangeQueries())
m_exhaustiveSearch = EXH_NEVER;
else if (blocks < 200000)
m_exhaustiveSearch = EXH_FULL;
else if (y_range < 42)
m_exhaustiveSearch = EXH_Y;
else
m_exhaustiveSearch = EXH_NEVER;
} else if (m_exhaustiveSearch == EXH_FULL || m_exhaustiveSearch == EXH_Y) {
if (m_db->preferRangeQueries()) {
std::cerr << "Note: The current database backend supports efficient "
"range queries, forcing exhaustive search should always result "
" in worse performance." << std::endl;
}
}
assert(m_exhaustiveSearch != EXH_AUTO);
}
void TileGenerator::closeDatabase()
{
delete m_db;
m_db = NULL;
}
void TileGenerator::loadBlocks()
{
const int16_t yMax = m_yMax / 16 + 1;
if (m_exhaustiveSearch == EXH_NEVER || m_exhaustiveSearch == EXH_Y) {
std::vector<BlockPos> vec = m_db->getBlockPos(
BlockPos(m_geomX, m_yMin / 16, m_geomY),
BlockPos(m_geomX2, yMax, m_geomY2)
);
for (auto pos : vec) {
assert(pos.x >= m_geomX && pos.x < m_geomX2);
assert(pos.y >= m_yMin / 16 && pos.y < yMax);
assert(pos.z >= m_geomY && pos.z < m_geomY2);
// Adjust minimum and maximum positions to the nearest block
if (pos.x < m_xMin)
m_xMin = pos.x;
if (pos.x > m_xMax)
m_xMax = pos.x;
if (pos.z < m_zMin)
m_zMin = pos.z;
if (pos.z > m_zMax)
m_zMax = pos.z;
m_positions[pos.z].emplace(pos.x);
}
#ifndef NDEBUG
int count = 0;
for (const auto &it : m_positions)
count += it.second.size();
std::cout << "Loaded " << count
<< " positions (across Z: " << m_positions.size() << ") for rendering" << std::endl;
#endif
}
}
void TileGenerator::createImage()
{
const int scale_d = 40; // pixels reserved for a scale
if(!m_drawScale)
m_scales = 0;
// If a geometry is explicitly set, set the bounding box to the requested geometry
// instead of cropping to the content. This way we will always output a full tile
// of the correct size.
if (m_geomX > -2048 && m_geomX2 < 2048)
{
m_xMin = m_geomX;
m_xMax = m_geomX2-1;
}
if (m_geomY > -2048 && m_geomY2 < 2048)
{
m_zMin = m_geomY;
m_zMax = m_geomY2-1;
}
m_mapWidth = (m_xMax - m_xMin + 1) * 16;
m_mapHeight = (m_zMax - m_zMin + 1) * 16;
m_xBorder = (m_scales & SCALE_LEFT) ? scale_d : 0;
m_yBorder = (m_scales & SCALE_TOP) ? scale_d : 0;
m_blockPixelAttributes.setWidth(m_mapWidth);
int image_width, image_height;
image_width = (m_mapWidth * m_zoom) + m_xBorder;
image_width += (m_scales & SCALE_RIGHT) ? scale_d : 0;
image_height = (m_mapHeight * m_zoom) + m_yBorder;
image_height += (m_scales & SCALE_BOTTOM) ? scale_d : 0;
if(image_width > 4096 || image_height > 4096) {
std::cerr << "Warning: The width or height of the image to be created exceeds 4096 pixels!"
<< " (Dimensions: " << image_width << "x" << image_height << ")"
<< std::endl;
}
m_image = new Image(image_width, image_height);
m_image->drawFilledRect(0, 0, image_width, image_height, m_bgColor); // Background
}
void TileGenerator::renderMap()
{
BlockDecoder blk;
const int16_t yMax = m_yMax / 16 + 1;
auto renderSingle = [&] (int16_t xPos, int16_t zPos, BlockList &blockStack) {
m_readPixels.reset();
m_readInfo.reset();
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 16; j++) {
m_color[i][j] = m_bgColor; // This will be drawn by renderMapBlockBottom() for y-rows with only 'air', 'ignore' or unknown nodes if --drawalpha is used
m_color[i][j].a = 0; // ..but set alpha to 0 to tell renderMapBlock() not to use this color to mix a shade
m_thickness[i][j] = 0;
}
}
for (const auto &it : blockStack) {
const BlockPos pos = it.first;
assert(pos.x == xPos && pos.z == zPos);
assert(pos.y >= m_yMin / 16 && pos.y < yMax);
blk.reset();
blk.decode(it.second);
if (blk.isEmpty())
continue;
renderMapBlock(blk, pos);
// Exit out if all pixels for this MapBlock are covered
if (m_readPixels.full())
break;
}
if (!m_readPixels.full())
renderMapBlockBottom(blockStack.begin()->first);
};
auto postRenderRow = [&] (int16_t zPos) {
if (m_shading)
renderShading(zPos);
};
if (m_exhaustiveSearch == EXH_NEVER) {
for (auto it = m_positions.rbegin(); it != m_positions.rend(); ++it) {
int16_t zPos = it->first;
for (auto it2 = it->second.rbegin(); it2 != it->second.rend(); ++it2) {
int16_t xPos = *it2;
BlockList blockStack;
m_db->getBlocksOnXZ(blockStack, xPos, zPos, m_yMin / 16, yMax);
blockStack.sort();
renderSingle(xPos, zPos, blockStack);
}
postRenderRow(zPos);
}
} else if (m_exhaustiveSearch == EXH_Y) {
#ifndef NDEBUG
std::cerr << "Exhaustively searching height of "
<< (yMax - (m_yMin / 16)) << " blocks" << std::endl;
#endif
std::vector<BlockPos> positions;
positions.reserve(yMax - (m_yMin / 16));
for (auto it = m_positions.rbegin(); it != m_positions.rend(); ++it) {
int16_t zPos = it->first;
for (auto it2 = it->second.rbegin(); it2 != it->second.rend(); ++it2) {
int16_t xPos = *it2;
positions.clear();
for (int16_t yPos = m_yMin / 16; yPos < yMax; yPos++)
positions.emplace_back(xPos, yPos, zPos);
BlockList blockStack;
m_db->getBlocksByPos(blockStack, positions);
blockStack.sort();
renderSingle(xPos, zPos, blockStack);
}
postRenderRow(zPos);
}
} else if (m_exhaustiveSearch == EXH_FULL) {
#ifndef NDEBUG
std::cerr << "Exhaustively searching "
<< (m_geomX2 - m_geomX) << "x" << (yMax - (m_yMin / 16)) << "x"
<< (m_geomY2 - m_geomY) << " blocks" << std::endl;
#endif
std::vector<BlockPos> positions;
positions.reserve(yMax - (m_yMin / 16));
for (int16_t zPos = m_geomY2 - 1; zPos >= m_geomY; zPos--) {
for (int16_t xPos = m_geomX2 - 1; xPos >= m_geomX; xPos--) {
positions.clear();
for (int16_t yPos = m_yMin / 16; yPos < yMax; yPos++)
positions.emplace_back(xPos, yPos, zPos);
BlockList blockStack;
m_db->getBlocksByPos(blockStack, positions);
blockStack.sort();
renderSingle(xPos, zPos, blockStack);
}
postRenderRow(zPos);
}
}
}
void TileGenerator::renderMapBlock(const BlockDecoder &blk, const BlockPos &pos)
{
int xBegin = (pos.x - m_xMin) * 16;
int zBegin = (m_zMax - pos.z) * 16;
int minY = (pos.y * 16 > m_yMin) ? 0 : m_yMin - pos.y * 16;
int maxY = (pos.y * 16 + 15 < m_yMax) ? 15 : m_yMax - pos.y * 16;
for (int z = 0; z < 16; ++z) {
int imageY = zBegin + 15 - z;
for (int x = 0; x < 16; ++x) {
if (m_readPixels.get(x, z))
continue;
int imageX = xBegin + x;
for (int y = maxY; y >= minY; --y) {
string name = blk.getNode(x, y, z);
if (name == "")
continue;
ColorMap::const_iterator it = m_colorMap.find(name);
if (it == m_colorMap.end()) {
m_unknownNodes.insert(name);
continue;
}
const Color c = it->second.to_color();
if (m_drawAlpha) {
if (m_color[z][x].a == 0)
m_color[z][x] = c; // first visible time, no color mixing
else
m_color[z][x] = mixColors(m_color[z][x], c);
if(m_color[z][x].a < 0xff) {
// near thickness value to thickness of current node
m_thickness[z][x] = (m_thickness[z][x] + it->second.t) / 2.0;
continue;
}
// color became opaque, draw it
setZoomed(imageX, imageY, m_color[z][x]);
m_blockPixelAttributes.attribute(15 - z, xBegin + x).thickness = m_thickness[z][x];
} else {
setZoomed(imageX, imageY, c.noAlpha());
}
m_readPixels.set(x, z);
// do this afterwards so we can record height values
// inside transparent nodes (water) too
if (!m_readInfo.get(x, z)) {
m_blockPixelAttributes.attribute(15 - z, xBegin + x).height = pos.y * 16 + y;
m_readInfo.set(x, z);
}
break;
}
}
}
}
void TileGenerator::renderMapBlockBottom(const BlockPos &pos)
{
if (!m_drawAlpha)
return; // "missing" pixels can only happen with --drawalpha
int xBegin = (pos.x - m_xMin) * 16;
int zBegin = (m_zMax - pos.z) * 16;
for (int z = 0; z < 16; ++z) {
int imageY = zBegin + 15 - z;
for (int x = 0; x < 16; ++x) {
if (m_readPixels.get(x, z))
continue;
int imageX = xBegin + x;
// set color since it wasn't done in renderMapBlock()
setZoomed(imageX, imageY, m_color[z][x]);
m_readPixels.set(x, z);
m_blockPixelAttributes.attribute(15 - z, xBegin + x).thickness = m_thickness[z][x];
}
}
}
void TileGenerator::renderShading(int zPos)
{
int zBegin = (m_zMax - zPos) * 16;
for (int z = 0; z < 16; ++z) {
int imageY = zBegin + z;
if (imageY >= m_mapHeight)
continue;
for (int x = 0; x < m_mapWidth; ++x) {
if(
!m_blockPixelAttributes.attribute(z, x).valid_height() ||
!m_blockPixelAttributes.attribute(z, x - 1).valid_height() ||
!m_blockPixelAttributes.attribute(z - 1, x).valid_height()
)
continue;
// calculate shadow to apply
int y = m_blockPixelAttributes.attribute(z, x).height;
int y1 = m_blockPixelAttributes.attribute(z, x - 1).height;
int y2 = m_blockPixelAttributes.attribute(z - 1, x).height;
int d = ((y - y1) + (y - y2)) * 12;
if (m_drawAlpha) { // less visible shadow with increasing "thickness"
double t = m_blockPixelAttributes.attribute(z, x).thickness * 1.2;
d *= 1.0 - mymin(t, 255.0) / 255.0;
}
d = mymin(d, 36);
Color c = m_image->getPixel(getImageX(x), getImageY(imageY));
c.r = colorSafeBounds(c.r + d);
c.g = colorSafeBounds(c.g + d);
c.b = colorSafeBounds(c.b + d);
setZoomed(x, imageY, c);
}
}
m_blockPixelAttributes.scroll();
}
void TileGenerator::renderScale()
{
const int scale_d = 40; // see createImage()
if (m_scales & SCALE_TOP) {
m_image->drawText(24, 0, "X", m_scaleColor);
for (int i = (m_xMin / 4) * 4; i <= m_xMax; i += 4) {
std::ostringstream buf;
buf << i * 16;
int xPos = getImageX(i * 16, true);
if (xPos >= 0) {
m_image->drawText(xPos + 2, 0, buf.str(), m_scaleColor);
m_image->drawLine(xPos, 0, xPos, m_yBorder - 1, m_scaleColor);
}
}
}
if (m_scales & SCALE_LEFT) {
m_image->drawText(2, 24, "Z", m_scaleColor);
for (int i = (m_zMax / 4) * 4; i >= m_zMin; i -= 4) {
std::ostringstream buf;
buf << i * 16;
int yPos = getImageY(i * 16 + 1, true);
if (yPos >= 0) {
m_image->drawText(2, yPos, buf.str(), m_scaleColor);
m_image->drawLine(0, yPos, m_xBorder - 1, yPos, m_scaleColor);
}
}
}
if (m_scales & SCALE_BOTTOM) {
int xPos = m_xBorder + m_mapWidth*m_zoom - 24 - 8,
yPos = m_yBorder + m_mapHeight*m_zoom + scale_d - 12;
m_image->drawText(xPos, yPos, "X", m_scaleColor);
for (int i = (m_xMin / 4) * 4; i <= m_xMax; i += 4) {
std::ostringstream buf;
buf << i * 16;
xPos = getImageX(i * 16, true);
yPos = m_yBorder + m_mapHeight*m_zoom;
if (xPos >= 0) {
m_image->drawText(xPos + 2, yPos, buf.str(), m_scaleColor);
m_image->drawLine(xPos, yPos, xPos, yPos + 39, m_scaleColor);
}
}
}
if (m_scales & SCALE_RIGHT) {
int xPos = m_xBorder + m_mapWidth*m_zoom + scale_d - 2 - 8,
yPos = m_yBorder + m_mapHeight*m_zoom - 24 - 12;
m_image->drawText(xPos, yPos, "Z", m_scaleColor);
for (int i = (m_zMax / 4) * 4; i >= m_zMin; i -= 4) {
std::ostringstream buf;
buf << i * 16;
xPos = m_xBorder + m_mapWidth*m_zoom;
yPos = getImageY(i * 16 + 1, true);
if (yPos >= 0) {
m_image->drawText(xPos + 2, yPos, buf.str(), m_scaleColor);
m_image->drawLine(xPos, yPos, xPos + 39, yPos, m_scaleColor);
}
}
}
}
void TileGenerator::renderOrigin()
{
if (m_xMin > 0 || m_xMax < 0 ||
m_zMin > 0 || m_zMax < 0)
return;
m_image->drawCircle(getImageX(0, true), getImageY(0, true), 12, m_originColor);
}
void TileGenerator::renderPlayers(const std::string &inputPath)
{
PlayerAttributes players(inputPath);
for (auto &player : players) {
if (player.x < m_xMin * 16 || player.x > m_xMax * 16 ||
player.z < m_zMin * 16 || player.z > m_zMax * 16)
continue;
if (player.y < m_yMin || player.y > m_yMax)
continue;
int imageX = getImageX(player.x, true),
imageY = getImageY(player.z, true);
m_image->drawFilledRect(imageX - 1, imageY, 3, 1, m_playerColor);
m_image->drawFilledRect(imageX, imageY - 1, 1, 3, m_playerColor);
m_image->drawText(imageX + 2, imageY, player.name, m_playerColor);
}
}
void TileGenerator::writeImage(const std::string &output)
{
m_image->save(output);
delete m_image;
m_image = NULL;
}
void TileGenerator::printUnknown()
{
if (m_unknownNodes.size() == 0)
return;
std::cerr << "Unknown nodes:" << std::endl;
for (const auto &node : m_unknownNodes)
std::cerr << "\t" << node << std::endl;
}
inline int TileGenerator::getImageX(int val, bool absolute) const
{
if (absolute)
val = (val - m_xMin * 16);
return (m_zoom*val) + m_xBorder;
}
inline int TileGenerator::getImageY(int val, bool absolute) const
{
if (absolute)
val = m_mapHeight - (val - m_zMin * 16); // Z axis is flipped on image
return (m_zoom*val) + m_yBorder;
}
inline void TileGenerator::setZoomed(int x, int y, Color color)
{
m_image->drawFilledRect(getImageX(x), getImageY(y), m_zoom, m_zoom, color);
}