max_wear = math.pow(2, 16) - 1 function override(function_name, function_builder) local func = minetest[function_name] minetest["original_" .. function_name] = func minetest[function_name] = function_builder(func) end -- TODO fix modlib.minetest.get_gametime() messing up responsible "mod" determined by engine on crash get_gametime = minetest.get_gametime local get_gametime_initialized local function get_gametime_init(dtime) if get_gametime_initialized then -- if the profiler is being used, the globalstep can't be unregistered return end get_gametime_initialized = true assert(dtime == 0) local gametime = minetest.get_gametime() assert(gametime) function modlib.minetest.get_gametime() local imprecise_gametime = minetest.get_gametime() if imprecise_gametime > gametime then minetest.log("warning", "modlib.minetest.get_gametime(): Called after increment and before first globalstep") return imprecise_gametime end return gametime end for index, globalstep in pairs(minetest.registered_globalsteps) do if globalstep == get_gametime_init then table.remove(minetest.registered_globalsteps, index) break end end -- globalsteps of mods which depend on modlib will execute after this minetest.register_globalstep(function(dtime) gametime = gametime + dtime end) end minetest.register_globalstep(get_gametime_init) delta_times={} delays={} callbacks={} function register_globalstep(interval, callback) if type(callback) ~= "function" then return end table.insert(delta_times, 0) table.insert(delays, interval) table.insert(callbacks, callback) end function texture_modifier_inventorycube(face_1, face_2, face_3) return "[inventorycube{" .. string.gsub(face_1, "%^", "&") .. "{" .. string.gsub(face_2, "%^", "&") .. "{" .. string.gsub(face_3, "%^", "&") end function get_node_inventory_image(nodename) local n = minetest.registered_nodes[nodename] if not n then return end local tiles = {} for l, tile in pairs(n.tiles or {}) do tiles[l] = (type(tile) == "string" and tile) or tile.name end local chosen_tiles = { tiles[1], tiles[3], tiles[5] } if #chosen_tiles == 0 then return false end if not chosen_tiles[2] then chosen_tiles[2] = chosen_tiles[1] end if not chosen_tiles[3] then chosen_tiles[3] = chosen_tiles[2] end local img = minetest.registered_items[nodename].inventory_image if string.len(img) == 0 then img = nil end return img or texture_modifier_inventorycube(chosen_tiles[1], chosen_tiles[2], chosen_tiles[3]) end function get_color_int(color) return color.b + (color.g*256) + (color.r*256*256) end function check_player_privs(playername, privtable) local privs=minetest.get_player_privs(playername) local missing_privs={} local to_lose_privs={} for priv, expected_value in pairs(privtable) do local actual_value=privs[priv] if expected_value then if not actual_value then table.insert(missing_privs, priv) end else if actual_value then table.insert(to_lose_privs, priv) end end end return missing_privs, to_lose_privs end function box_box_collision(a, b) for i=1, 3 do if a[i] < (b[i] + b[i+3]) or b[i] < (a[i] + a[i+3]) then return false end end return true end minetest.register_globalstep(function(dtime) for k, v in pairs(delta_times) do local v=dtime+v if v > delays[k] then callbacks[k](v) v=0 end delta_times[k]=v end end) form_listeners = {} function register_form_listener(formname, func) local current_listeners = form_listeners[formname] or {} table.insert(current_listeners, func) form_listeners[formname] = current_listeners end minetest.register_on_player_receive_fields(function(player, formname, fields) local handlers = form_listeners[formname] if handlers then for _, handler in pairs(handlers) do handler(player, fields) end end end) liquid_level_max = 8 --+ Calculates the flow direction of a flowingliquid node --# as returned by `minetest.get_node` --> 4 corner levels from 0 to 1 as list function get_liquid_corner_levels(pos, node) local def = minetest.registered_nodes[node.name] if not (def and def.drawtype == "flowingliquid") then return pointed_thing end local source, flowing = def.liquid_alternative_source, node.name local range = def.liquid_range or liquid_level_max local neighbors = {} for x = -1, 1 do neighbors[x] = {} for z = -1, 1 do local neighbor_pos = {x = pos.x + x, y = pos.y, z = pos.z + z} local neighbor_node = minetest.get_node(neighbor_pos) local level if neighbor_node.name == source then level = 1 elseif neighbor_node.name == flowing then local neighbor_level = neighbor_node.param2 % 8 level = (math.max(0, neighbor_level - liquid_level_max + range) + 0.5) / range end neighbor_pos.y = neighbor_pos.y + 1 local node_above = minetest.get_node(neighbor_pos) neighbors[x][z] = { air = neighbor_node.name == "air", level = level, above_is_same_liquid = node_above.name == flowing or node_above.name == source } end end local function get_corner_level(x, z) local air_neighbor local levels = 0 local neighbor_count = 0 for nx = x - 1, x do for nz = z - 1, z do local neighbor = neighbors[nx][nz] if neighbor.above_is_same_liquid then return 1 end local level = neighbor.level if level then if level == 1 then return 1 end levels = levels + level neighbor_count = neighbor_count + 1 elseif neighbor.air then if air_neighbor then return 0.02 end air_neighbor = true end end end if neighbor_count == 0 then return 0 end return levels / neighbor_count end local corner_levels = { {x = 0, z = 0}, {x = 1, z = 0}, {x = 1, z = 1}, {x = 0, z = 1} } for _, corner_level in pairs(corner_levels) do corner_level.y = get_corner_level(corner_level.x, corner_level.z) end return corner_levels end flowing_downwards = vector.new(0, -1, 0) --+ Calculates the flow direction of a flowingliquid node --# as returned by `minetest.get_node` --> `modlib.minetest.flowing_downwards = vector.new(0, -1, 0)` if only flowing downwards --> surface direction as `vector` else function get_liquid_flow_direction(pos, node) local corner_levels = get_liquid_corner_levels(pos, node) local max_level = corner_levels[1].y for index = 2, 4 do local level = corner_levels[index].y if level > max_level then max_level = level end end local dir = vector.new(0, 0, 0) local count = 0 for max_level_index, corner_level in pairs(corner_levels) do if corner_level.y == max_level then for offset = 1, 3 do local index = (max_level_index + offset - 1) % 4 + 1 local diff = vector.subtract(corner_level, corner_levels[index]) if diff.y ~= 0 then diff.x = diff.x * diff.y diff.z = diff.z * diff.y if offset == 3 then diff = vector.divide(diff, math.sqrt(2)) end dir = vector.add(dir, diff) count = count + 1 end end end end if count ~= 0 then dir = vector.divide(dir, count) end if vector.equals(dir, vector.new(0, 0, 0)) then if node.param2 % 32 > 7 then return flowing_downwards end end return dir end